09.01.2014 Views

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10 N. Jacob <strong>and</strong> R. L. Schilling<br />

<strong>and</strong> the convolution theorem for the (one-sided) Laplace transform,<br />

where Lu(x) = ∫ ∞<br />

e −xy u(y) dy <strong>and</strong><br />

0<br />

u ⋆ w(x) =<br />

L(u ⋆ w) = Lu · Lw,<br />

∫ x<br />

0<br />

u(x − r)w(r) dr.<br />

Setting u(r) := ∫ ∞<br />

0+ e−r/s /s ρ(ds) <strong>and</strong> w(r) := Γ ( )<br />

n −1r n/2−1 we find<br />

2<br />

Finally,<br />

<strong>and</strong> (21) follows.<br />

( 1<br />

)<br />

r −n/2 g =<br />

r<br />

∫ ∞<br />

0<br />

e −rx u ⋆ w(x) dx.<br />

∫ x<br />

( ∫<br />

1<br />

∞<br />

)<br />

u ⋆ w(x) =<br />

0 Γ ( ) t n/2−1 −(x−t)/s ρ(ds)<br />

e dt<br />

n<br />

2<br />

0+<br />

s<br />

= 1 ∫ ∞<br />

( ∫ x<br />

)<br />

Γ ( ) e −x/s t n/2 t/s dt ρ(ds)<br />

e<br />

n<br />

2 0+<br />

0 t s<br />

= 1 ∫ ∞<br />

( ∫ x/s<br />

)<br />

Γ ( ) s n/2−1 e −x/s y n/2−1 e y dy ρ(ds),<br />

n<br />

2 0+<br />

0<br />

Lemma 3.5. Let g : [0, ∞) → [0, ∞) be a monotone incre<strong>as</strong>ing function with<br />

g(0) = 0. If<br />

∫ 1<br />

G := g(s) ds ∫ ∞<br />

s + g(s) ds<br />

s s < ∞,<br />

0<br />

then the function µ(t) defined in Lemma 3.3 is finitely valued <strong>and</strong><br />

µ(t) =<br />

∫ t<br />

Conversely, if µ(1) < ∞, then G < ∞.<br />

Proof. By definition, µ(t) := ∫ t<br />

0<br />

∫ 1<br />

( ∫ ∞<br />

µ(1) =<br />

0<br />

r<br />

0<br />

g(s) ds<br />

s 2 )<br />

dr <br />

1<br />

g(s) ds<br />

s + t ∫ ∞<br />

t<br />

g(s)<br />

s<br />

ds<br />

s .<br />

∫ ∞<br />

g(s)/s 2 ds dr so that<br />

r<br />

∫ 1<br />

( ∫ ∞<br />

0<br />

1<br />

g(s) ds ) ∫ ∞<br />

g(s) ds<br />

dr =<br />

s 2 1 s s<br />

<strong>and</strong><br />

µ(1) =<br />

∫ 1<br />

0<br />

( ∫ ∞<br />

r<br />

g(s) ds<br />

s 2 )<br />

dr <br />

∫ 1<br />

0<br />

( ∫ ∞<br />

)<br />

ds<br />

g(r) dr =<br />

r s 2<br />

∫ 1<br />

0<br />

g(r) dr<br />

r .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!