09.01.2014 Views

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 17<br />

Proof. We begin with the elementary remark that 1 − e −x ∼ x/(1 + x) for all<br />

x 0. Therefore, we find<br />

∫ ∞<br />

(<br />

f(r) =<br />

πn/2<br />

4 Γ ( 1 − e<br />

)<br />

−rλ ∫ ∞<br />

[ ∫ 1 (<br />

exp − 1 − t ) ] ) ρ(ds)<br />

t n/2−1 dt dλ .<br />

n<br />

2 0 λ 2 0+ 0 4sλ<br />

s<br />

∫ ∞<br />

( ∫ ∞<br />

[ ∫ 1<br />

rλ<br />

(<br />

∼<br />

0 0+ 0 1 + rλ exp − 1 − t ) ] ) ρ(ds)<br />

t n/2−1 dt dλ<br />

4sλ<br />

s<br />

∫ ∞<br />

( ∫ ∞<br />

[ ∫ 1<br />

r x (<br />

s<br />

=<br />

0 0+ 0 1 + r x exp − 1 − t ) ] ) dx<br />

t n/2−1 dt ρ(ds)<br />

4x<br />

x<br />

s<br />

2<br />

∫ ∞<br />

( ∫ 1<br />

[ ∫ ∞<br />

]<br />

rx<br />

(<br />

=<br />

0 0 0+ s + rx ρ(ds) exp − 1 − t ) ) dx<br />

t n/2−1 dt<br />

4x<br />

x 2<br />

{ ∫ 1 ∫ ∞<br />

}( ∫ 1 (<br />

= +<br />

g(rx) exp − 1 − t ) ) dx<br />

t n/2−1 dt<br />

4x<br />

x 2<br />

0<br />

=: I 1 + I 2 .<br />

1<br />

We will estimate I 1 <strong>and</strong> I 2 separately.<br />

∫ ∞<br />

( ∫ 1<br />

I 2 =<br />

r<br />

c 1 r<br />

r<br />

∫ ∞<br />

r∫ ∞<br />

r<br />

0<br />

0<br />

(<br />

g(y) exp −<br />

g(y) dy ∫ 1<br />

t n/2−1 dt<br />

y 2<br />

0<br />

g(y) dy<br />

y 2 .<br />

(1 − t)r<br />

) ) r dy<br />

t n/2−1 dt<br />

4y<br />

y 2<br />

On the other h<strong>and</strong>, we find<br />

∫ ∞<br />

( ∫ 1 (<br />

(1 − t)r<br />

) ) r dy<br />

I 2 = g(y) exp − t n/2−1 dt<br />

r 0<br />

4y<br />

y 2<br />

∫ ∞<br />

( ∫ 1<br />

) dy<br />

r g(y)e −1/4 t n/2−1 dt<br />

so that<br />

c 2 r<br />

r<br />

∫ ∞<br />

r<br />

0<br />

g(y) dy<br />

y 2 ,<br />

I 2 ∼ r<br />

Let us now estimate I 1 . We have<br />

∫ 1<br />

( ∫ r<br />

I 1 =<br />

0 0<br />

∫ r<br />

( ∫ 1<br />

= 4<br />

0<br />

0<br />

∫ ∞<br />

r<br />

(<br />

g(y) exp −<br />

r<br />

(<br />

4y exp −<br />

g(y) dy<br />

y 2 .<br />

y 2<br />

(1 − t)r<br />

)<br />

t n/2−1 r dy<br />

4y<br />

)<br />

(1 − t)r<br />

4y<br />

)<br />

t n/2−1 dt<br />

)<br />

dt<br />

y 2<br />

g(y) dy<br />

y .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!