09.01.2014 Views

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hence, µ(1) < ∞ implies G < ∞.<br />

Now suppose that G < ∞. Integration <strong>by</strong> parts yields<br />

µ(t) =<br />

=<br />

= t<br />

∫ t<br />

( ∫ ∞<br />

0 r<br />

∫ ∞<br />

[<br />

r<br />

r<br />

∫ ∞<br />

t<br />

g(s) ds<br />

s 2 )<br />

dr<br />

g(s) ds<br />

s 2 ] r=t<br />

g(s)<br />

s<br />

r=0<br />

∫<br />

ds t<br />

s +<br />

0<br />

+<br />

<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 11<br />

∫ t<br />

0<br />

sg(s) ds<br />

s 2<br />

g(s) ds<br />

s − lim<br />

r→0<br />

( ∫ ∞<br />

g(s)<br />

r<br />

r s<br />

)<br />

ds<br />

.<br />

s<br />

Since g(rt)/t g(t)/t if 0 r 1, <strong>and</strong> since <strong>by</strong> <strong>as</strong>sumption t ↦→ g(t)/t is<br />

integrable at +∞, the dominated convergence theorem applies <strong>and</strong><br />

( ∫ ∞<br />

) ∫<br />

g(s) ds<br />

∞<br />

lim r<br />

= lim g(rt) dt<br />

r→0<br />

r s s r→0<br />

1 t = 0,<br />

where we used that g(0) = 0.<br />

Lemma 3.6. Let g(r) = ∫ ∞ r<br />

ρ(ds) be a complete Bernstein function <strong>and</strong><br />

0+ s+r<br />

let<br />

∫<br />

µ(t) be <strong>as</strong> in Lemma 3.3. Then µ(1) < ∞ – <strong>and</strong>, <strong>by</strong> Lemma 3.5, G =<br />

1<br />

g(s)/s ds + ∫ ∞<br />

g(s)/s 2 ds < ∞ – if, <strong>and</strong> only if, the me<strong>as</strong>ure ρ representing<br />

0 1<br />

g satisfies<br />

∫ 1<br />

0+<br />

log(1 + s −1 ) ρ(ds) +<br />

∫ ∞<br />

1<br />

log(1 + s) ρ(ds)<br />

s<br />

< ∞.<br />

Proof. Because of Tonelli’s Theorem we find<br />

∫ 1<br />

g(s) ds ∫ 1<br />

( ∫ ∞<br />

)<br />

0 s = ρ(dr)<br />

ds<br />

0 0+ s + r<br />

∫ ∞<br />

( ∫ 1<br />

)<br />

ds<br />

=<br />

ρ(dr)<br />

0+ 0 s + r<br />

∫ ∞<br />

s=1<br />

= log(s + r)<br />

∣ ρ(dr)<br />

=<br />

0+<br />

∫ 1<br />

0+<br />

s=0<br />

log(1 + r −1 )ρ(dr) +<br />

∫ ∞<br />

1<br />

log(1 + r −1 ) ρ(dr).<br />

Since log(1 + r −1 ) r −1 <strong>and</strong> since, <strong>by</strong> <strong>as</strong>sumption, ∫ ∞<br />

1<br />

r −1 ρ(dr) < ∞ we find<br />

that<br />

∫ 1<br />

0<br />

g(s) ds<br />

∫ 1<br />

s < ∞ if, <strong>and</strong> only if, log(1 + r −1 ) ρ(dr) < ∞.<br />

0+

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!