22.03.2013 Views

Fundamentals of Ion-Solid Interaction - SPIRIT

Fundamentals of Ion-Solid Interaction - SPIRIT

Fundamentals of Ion-Solid Interaction - SPIRIT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Tutorial "<strong>Ion</strong> Implantation and Irradiation"<br />

Dresden, Germany, December 13-14, 2010<br />

Tel. +49 351 2602245<br />

E-mail w.moeller@fzd.de<br />

Internet http://www.fzd.de/FWI<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Ion</strong>-<strong>Solid</strong> <strong>Interaction</strong><br />

II: Damage, Sputtering, Mixing, Synthesis<br />

Wolfhard Möller<br />

Forschungszentrum Dresden-Rossendorf, Dresden, Germany<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Effects <strong>of</strong> Collision Cascade<br />

Sputtering<br />

Surface<br />

Erosion<br />

<strong>Ion</strong><br />

Scattering<br />

Atomic Displacement<br />

Radiation Damage<br />

Atomic Mixing<br />

Recoil Implantation<br />

<strong>Ion</strong><br />

Implantation<br />

TRIM Binary Collision Computer Simulation<br />

<strong>Ion</strong> Trajectories<br />

100 incident ions<br />

Recoil Distribution<br />

1000 incident ions<br />

1 keV<br />

Ar + Si<br />

0 Depth (nm) 10<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Cascade Regimes<br />

Linear Cascade Thermal Spike<br />

Low energy density<br />

No interaction between moving particles<br />

Sequence <strong>of</strong> binary collisions<br />

High energy density<br />

<strong>Interaction</strong> between moving particles<br />

Many-body interactions<br />

Thermal spike regime may be entered in the early phase<br />

<strong>of</strong> the cascade at sufficiently high energy density<br />

(e.g., heavy ion incidence at energy ~100 keV)<br />

Thermal spike regime is always entered in the<br />

thermalization phase <strong>of</strong> the cascade<br />

(at mean energies <strong>of</strong> the cascade atoms lower than solid-state<br />

binding energies - typically a few eV)<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Spatial Structure <strong>of</strong> Cascades<br />

E 0<br />

Light ions, high energies Heavy ions, low energies<br />

T<br />

T Nuclear Energy Transfer<br />

E 0<br />

T<br />

Spatial deposition <strong>of</strong> energy in cascade is <strong>of</strong>ten described by a Gaussian rotational ellipsoid<br />

E 0<br />

R D<br />

x,y<br />

z<br />

E0 <br />

3 2 2 <br />

z - R <br />

2 2 2<br />

D x y<br />

Dr <br />

exp -<br />

2<br />

2<br />

2 z 2 <br />

z x<br />

x<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

F 2<br />

(E 0) total energy deposited into nuclear collisions<br />

R D mean depth <strong>of</strong> nuclear energy deposition<br />

(exact values for R D, x and z best from collisional<br />

computer simulation)<br />

Similar average topology<br />

for multiple ion incidence<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Collisional Damage<br />

F<br />

T <br />

N <br />

T<br />

2U<br />

Cascade atom receives<br />

sufficient energy to<br />

become displaced<br />

Analytical hard-sphere approximation for number <strong>of</strong><br />

resulting I-V pairs (or Frenkel pairs) (Kinchin and Pease)<br />

d<br />

T initial energy <strong>of</strong> recoil atom<br />

U d damage threshold energy<br />

(15 ... 80 eV depending on<br />

material)<br />

For dense cascades with >> U d, K-P formula holds for<br />

the total number <strong>of</strong> FP's generated by one incident ion<br />

E <br />

E<br />

0<br />

N F 0 Eo incident ion energy<br />

2Ud<br />

In dense cascades, I-V recombination might occur during the slowing-down<br />

phase. Further, corrections arise as part <strong>of</strong> the energy is dissipated into<br />

electronic collisions (about 10%), and from a more realistic interaction potential.<br />

eff<br />

E<br />

NF 0 x<br />

U<br />

0<br />

E <br />

0.<br />

35 m , m , E <br />

d<br />

1<br />

2<br />

0<br />

x "cascade efficiency" (between ~0.3 – heavy<br />

ions at high energy – and 1 – light ions)<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Collisional Damage – High Fluence<br />

At increasing fluence, newly generated Frenkel pairs may<br />

annihilate with previously generated ones (typical for metals)<br />

c<br />

(assuming that affected depth is ~2·R p)<br />

In materials with covalent binding (e.g., semiconductors), lattice damage might increase<br />

until amorphization. A simple formal estimate for the fluence required for amorphization is<br />

obtained when each atom in the irradiated volume has been displaced once in average,<br />

i.e. the FP concentration becomes equal to the atomic density <strong>of</strong> the irradiated material<br />

<br />

<br />

dpa<br />

dpa<br />

eff<br />

E0 , NF<br />

E0 <br />

1 cF<br />

a <br />

d<br />

2R<br />

E <br />

F V<br />

am<br />

2nR<br />

<br />

N<br />

cF<br />

<br />

n<br />

p<br />

eff<br />

F<br />

<br />

E0 <br />

E <br />

0<br />

p<br />

eff<br />

NF<br />

2nR<br />

<br />

<br />

E0<br />

E<br />

p<br />

0<br />

n atomic density<br />

0<br />

ion fluence<br />

V a annihilation volume (for metals,<br />

typically 20…50 atomic volumes)<br />

R p mean projected ion range<br />

Correspondingly, in radiation damage studies the fluence is <strong>of</strong>ten given in units <strong>of</strong><br />

dpa = displacements per atom<br />

<strong>Ion</strong> Fluence<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

Frenkel Pair Concentration<br />

V a -1<br />

0


Amorphization and Epitaxial Regrowth<br />

<strong>Ion</strong> channeling measurements <strong>of</strong> damage pr<strong>of</strong>iles<br />

200 keV Ge + 6H- SiC @ R.T.<br />

Amorphization<br />

300 keV Si + @ 480 °C<br />

<strong>Ion</strong>-Induced Epitaxial<br />

Regrowth<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Collisional Sputtering<br />

14<br />

4.2 10 cm m <br />

Ys i<br />

<br />

U <br />

s m <br />

i <br />

E <br />

t S E <br />

Y s sputter yield<br />

U s surface binding energy<br />

(3 ... 8 eV depending on<br />

material)<br />

S n nuclear stopping power<br />

momentum reversal<br />

factor<br />

m t target atomic mass<br />

Cascade atom overcomes<br />

surface binding energy<br />

nr.<br />

<strong>of</strong> sputtered atoms<br />

Ys Sputtering yield<br />

nr.<br />

<strong>of</strong> incident ions<br />

Analytical transport theory by Sigmund<br />

2<br />

<br />

0.8 0.8<br />

0.6<br />

0.4<br />

( z)<br />

0.4<br />

0.2<br />

0<br />

0<br />

n<br />

i<br />

0.1 1 10<br />

0 1 10<br />

x( z)<br />

mt / mi Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

Sputtering Yield<br />

<strong>Ion</strong> Energy (eV)<br />

Read line: Sigmund formula<br />

Blue line: Corrected for threshold effects<br />

Dots: From computer simulation (TRIM,<br />

TRIDYN)


Sputtering Yield – Experiment and Theory<br />

Thermal Spike ?<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Sputtering – Energy and Angle Distributions<br />

Thompson energy distribution <strong>of</strong> sputtered atoms<br />

f<br />

s<br />

E <br />

s<br />

~<br />

3 E U<br />

s<br />

E<br />

s<br />

s<br />

Mean energy <strong>of</strong> sputtered atoms<br />

E0<br />

E 2 ln 3<br />

U<br />

, <br />

s<br />

Dependence on angles <strong>of</strong> incidence<br />

and emission (amorphous substance)<br />

f<br />

<br />

cos <br />

~<br />

cos <br />

10-3 1 103 0<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

f s(E s) (arb. Units)<br />

1<br />

<br />

0.5<br />

<br />

E s / U s


Sputtering – Angular Distributions from Crystals<br />

Angular distribution <strong>of</strong> sputtered particles may be strongly influenced by crystallinity<br />

100 eV Hg + → Ag s.cr.<br />

"Wehner" spots<br />

G.K. Wehner, JAP 26(1955)1056<br />

5 keV Ar + → Rh[111]<br />

oxidized<br />

1..10 eV<br />

10..20 eV<br />

20..30 eV<br />

J.P. Baxter et al., JVSTA 4(1986)1218<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Preferential Sputtering<br />

Partial sputtering yields<br />

Y <br />

p<br />

k<br />

Y<br />

<br />

Y<br />

p<br />

A<br />

p<br />

B<br />

c<br />

c<br />

c<br />

s<br />

k<br />

s<br />

A<br />

s<br />

B<br />

Y<br />

c<br />

k<br />

are generally different<br />

Preferential sputtering if<br />

Irradiation <strong>of</strong> two-component<br />

substance A nB m<br />

k = A,B<br />

Y k c "component" sputter<br />

yields<br />

c k s surface atomic fractions<br />

Mass conservation requires<br />

Y<br />

Y<br />

p<br />

A<br />

p<br />

B<br />

t <br />

cA<br />

<br />

t <br />

cB<br />

c(x)<br />

c A<br />

c B<br />

0<br />

Example: B is preferentially sputtered<br />

A<br />

B<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

Y p (t)<br />

t 0<br />

0<br />

x<br />

A<br />

c(x)<br />

B<br />

c A<br />

c B<br />

0<br />

t<br />

A<br />

B<br />

t <br />

x


Preferential Sputtering<br />

4 He TaC<br />

TRIDYN<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

Expt.<br />

1 keV<br />

W. Eckstein and W. Möller, Nucl. Instr. Meth. B 7/8(1985)727


Sputter-Controlled Implantation Pr<strong>of</strong>iles<br />

Deposition<br />

Pr<strong>of</strong>ile<br />

Sputtered<br />

Flux<br />

Q( x ) j0<br />

fR<br />

j Y j n<br />

Surface x x st<br />

Recession<br />

Concentration<br />

at Time t<br />

x, t<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

c<br />

<br />

s<br />

c<br />

s<br />

0<br />

x s<br />

j 0 <strong>Ion</strong> Flux<br />

t<br />

x , t<br />

Qx<br />

tdt<br />

<br />

Gaussian range distribution<br />

Surface<br />

Concentration<br />

n x st<br />

erf<br />

<br />

<br />

Ys<br />

<br />

<br />

0<br />

<br />

R<br />

p<br />

f R Range Distribution<br />

s<br />

v s<br />

<br />

x’<br />

x R<br />

<br />

erf<br />

<br />

<br />

<br />

n 1 x R<br />

erf<br />

<br />

<br />

Ys<br />

<br />

2 <br />

<br />

t<br />

p<br />

c<br />

x 0,<br />

t <br />

n<br />

<br />

1<br />

Ys<br />

x<br />

p<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

R<br />

<br />

p


2<br />

<br />

<strong>Ion</strong> Beam Mixing<br />

Analytical transport theory only for<br />

cascade mixing (Sigmund and Gras-Marti)<br />

m<br />

2<br />

S 2<br />

<br />

n<br />

E <br />

2 REc <br />

<br />

E<br />

E c min. recoil energy for relocation<br />

R(E c) Recoil range at E c<br />

<strong>Ion</strong> fluence<br />

c<br />

Intermixing <strong>of</strong> layered<br />

materials by ion-induced<br />

atomic relocation<br />

Recoil Mixing Cascade Mixing<br />

<br />

4m<br />

m<br />

2 m m<br />

1<br />

1<br />

2<br />

2<br />

Fluence dependence <strong>of</strong> recoil implantation<br />

and mixing difficult to describe analytically<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


<strong>Ion</strong> Beam Mixing: Thermal and Chemical Effects<br />

Radiation-enhanced<br />

interdiffusion<br />

275 keV Si<br />

→ 144 nm Nb/Si[100]<br />

radiationenhanced<br />

interdiffusion<br />

purely<br />

collisional<br />

S. Matteson et al., Rad. Eff. 42(1979)217<br />

Chemical driving forces: Enthalpy<br />

<strong>of</strong> mixing and cohesive energy<br />

d<br />

d<br />

<br />

<br />

3<br />

2<br />

S <br />

n E Hmix<br />

<br />

1<br />

K<br />

2<br />

2<br />

H<br />

H<br />

2<br />

1<br />

m n<br />

K1, K2 K1<br />

Constants<br />

<br />

coh<br />

coh<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

<br />

T.W. Workman et al., Appl. Phys. Lett. 50(1987)1485


<strong>Ion</strong> Implantation and <strong>Ion</strong> Beam Synthesis<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Nucleation <strong>of</strong> Precipitates<br />

Supersaturated Solution <strong>of</strong> Monomers<br />

Change in Gibb’s Free Energy<br />

i G<br />

<br />

i <br />

<br />

<br />

Volume Gain<br />

2 1 3<br />

36V <br />

at<br />

i Monomers /<br />

Nanocluster<br />

2<br />

3 i<br />

Creation <strong>of</strong><br />

Interface<br />

V at Atomic Volume<br />

Surface Tension<br />

Nucleation Threshold<br />

Size i<br />

3<br />

* 2<br />

i<br />

3<br />

<br />

<br />

<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

G(i)<br />

0<br />

1<br />

i *<br />

i *<br />

< 0: No Supersaturation<br />

> 0<br />

* i <br />

G <br />

27<br />

4<br />

Nucleation by Fluctuations!<br />

3<br />

2


Ostwald Ripening<br />

Monomer Concentration<br />

around Precipitate<br />

(Gibbs-Thomson Equation)<br />

c<br />

<br />

R<br />

<br />

c<br />

c<br />

R c<br />

exp<br />

c<br />

1 <br />

R R <br />

“Capillary” Length<br />

R<br />

c<br />

<br />

2V<br />

kT<br />

at<br />

<br />

c Solubility<br />

R<br />

Surface Tension<br />

V at Atomic Volume<br />

<br />

Monomer Concentration<br />

Diffusive<br />

Flux<br />

Position<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

R


<strong>Ion</strong> mixing at precipitates<br />

R<br />

<br />

Atomic relocation<br />

probability per<br />

incident ion<br />

(Assumed to be<br />

isotropic)<br />

w r<br />

<br />

<br />

<br />

exp<br />

<br />

<br />

= (E ion,m ion,m target)<br />

Characteristic Relocation Length<br />

R<br />

Angular and spatial<br />

integration yields radial<br />

relocation field<br />

W r<br />

r<br />

r Atomic relocation is<br />

counteracted by diffusion.<br />

In local equilibrium<br />

K.-H. Heinig et al., Mat.Res.Soc.Proc. vol. 650 (2001)<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller<br />

r D 2 c<br />

<br />

- r jW<br />

2 r<br />

r r<br />

r<br />

<br />

D Diffusion Coefficient<br />

r j <strong>Ion</strong> Flux<br />

After minor approximations (e.g., r-R > )<br />

<br />

R <br />

<br />

<br />

R <br />

~<br />

c 1 ~<br />

c c R<br />

(Linearized) Gibbs-Thomson<br />

equation holds for ion mixing !<br />

with<br />

c ~<br />

<br />

c<br />

1 <br />

R 5<br />

/<br />

R <br />

1 <br />

~ c<br />

c<br />

<br />

<br />

Dc<br />

q 2<br />

<br />

4<br />

q Nr. <strong>of</strong> displacements per<br />

Atom and Unit <strong>of</strong> Time


Inverse Ostwald Ripening<br />

Conventional Ostwald ripening<br />

c<br />

s<br />

c<br />

R c 1<br />

<br />

R <br />

c <br />

Under irradiation<br />

c<br />

irr<br />

s<br />

R 5<br />

/<br />

R <br />

1 <br />

~ c<br />

c<br />

<br />

4<br />

R<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

c 1<br />

~<br />

c<br />

R<br />

irr<br />

c<br />

<br />

R ~<br />

R<br />

Capillary length may become<br />

negative !<br />

Growth <strong>of</strong> smaller precipitates<br />

Towards homogeneous size<br />

distribution<br />

<br />

R c <br />

1<br />

kT<br />

increasing<br />

R<br />

K.-H. Heinig et al., Mat.Res.Soc.Proc. vol. 650 (2001)<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller


Nanocluster Evolution under <strong>Ion</strong> Irradiation<br />

Institute <strong>of</strong> <strong>Ion</strong> Beam Physics and Materials Research Pr<strong>of</strong>. Wolfhard Möller

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!