18.01.2015 Views

Ion Beam Analysis for Forensic Science - SPIRIT

Ion Beam Analysis for Forensic Science - SPIRIT

Ion Beam Analysis for Forensic Science - SPIRIT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ion</strong> <strong>Beam</strong> <strong>Analysis</strong> <strong>for</strong> <strong>Forensic</strong> <strong>Science</strong><br />

Fighting Crime with <strong>Ion</strong> <strong>Beam</strong>s<br />

Dr. Melanie J. Bailey<br />

Surrey <strong>Ion</strong> <strong>Beam</strong> Centre, University of Surrey, UK


Contents<br />

• Why use IBA techniques in <strong>for</strong>ensic science<br />

• Example 1: Gunshot residues<br />

• Example 2: Soil analysis<br />

• Example 3: PIXE in case work<br />

• Complementary IBA / SIMS<br />

• Example 4: Fingerprints<br />

• Conclusions


Contents<br />

• Why use IBA techniques in <strong>for</strong>ensic science<br />

• Example 1: Gunshot residues<br />

• Example 2: Soil analysis<br />

• Example 3: PIXE in case work<br />

• Complementary IBA / SIMS<br />

• Example 4: Fingerprints<br />

• Conclusions


Background : IBA in <strong>for</strong>ensics<br />

Industrial Collaborators:<br />

National Police Improvement Agency, Surrey Police, Scotland Yard, Merseyside Police,<br />

the Home Office, the <strong>Forensic</strong> <strong>Science</strong> Service, LGC <strong>Forensic</strong>s<br />

• IBA was used in the case of Markov and the poison umbrella in<br />

1979<br />

• Only a very small number of academic publications exist on this<br />

subject<br />

• IBA has been used only recently in UK casework (by Surrey)


Background : IBA in <strong>for</strong>ensics<br />

Courtesy of Steve Sugden, Harwell Consulting


Can <strong>Ion</strong> <strong>Beam</strong>s Be Useful in <strong>Forensic</strong>s<br />

Industrial Collaborators:<br />

National Police Improvement Agency, Surrey Police, Scotland Yard, Merseyside Police,<br />

the Home Office, the <strong>Forensic</strong> <strong>Science</strong> Service, LGC <strong>Forensic</strong>s<br />

• IBA was used in the case of Markov and the poison umbrella in<br />

1979<br />

• Only a very small number of academic publications exist on this<br />

subject<br />

• IBA has been used only recently in UK casework (by Surrey)


What Do <strong>Forensic</strong> Analysts Need<br />

• Trace evidence analysis: establish<br />

provenance of material (e.g glass, paints,<br />

fibres) on a suspect or found at crime scene<br />

• <strong>Analysis</strong> techniques <strong>for</strong> trace evidence that<br />

are<br />

• Non-destructive<br />

ti<br />

• Accurate / reproducible<br />

• Highly discriminating<br />

• Need no sample preparation


<strong>Ion</strong> <strong>Beam</strong> <strong>Analysis</strong><br />

RBS<br />

Energy of scattered protons or He give<br />

light element composition and elemental<br />

depth profiles<br />

MeV protons<br />

or He<br />

Sample<br />

PIXE<br />

Characteristic i X-ray emission<br />

i<br />

Simultaneous part-per-million<br />

detection of trace elements from<br />

Na to U<br />

PIGE/NRA<br />

Nuclear reactions give characteristic<br />

gamma rays and/or particles from light<br />

nuclei (e.g. Li, B, F)<br />

IBIL<br />

<strong>Ion</strong> beam induced<br />

luminescence


Particle Induced X-ray Emission<br />

•Analogous to SEM-EDX EDX but using MeV protons or He<br />

•In<strong>for</strong>mation is from femtograms of material<br />

•Imaging resolution determined by beam size<br />

•Fully quantitative and absolute<br />

Courtesy of T. Calligro, C2RMF, France<br />

•Detection of Na to U<br />

•ppm sensitivity<br />

Intensit ty (log scale e)<br />

Mo<br />

Si<br />

Ca<br />

Fe<br />

Cu<br />

Se<br />

As<br />

Mo<br />

X Ray Energy (KeV)


Particle Induced Gamma-ray Emission<br />

• MeV protons can tunnel through the Coulomb barrier<br />

of light nuclei to induce gamma-emitting g nuclear<br />

reactions<br />

• Gamma energy is characteristic of specific isotopes<br />

• Detection limits ~ 10-100ppm<br />

• Useful <strong>for</strong> light elements: Al, F, Li, B, Na, Mg<br />

• Sharp resonances in the excitation function can be<br />

used <strong>for</strong> depth profiling<br />

^3 f:\pc_users\jpn\971118\490001g4._ : Tourmaline std: GRR573<br />

^2<br />

F<br />

F<br />

Li<br />

B Al Al<br />

Na<br />

^1<br />

^0<br />

Tourmaline standard<br />

GRR573<br />

100 300 500 700 900 1100 1300 1500 1700


Ruther<strong>for</strong>d Backscattering Spectrometry<br />

• Energy of ions scattering from nuclear collisions<br />

depends on mass and depth<br />

• Depth profiling with depth resolution


<strong>Ion</strong> <strong>Beam</strong> Induced Luminescence<br />

• Analogous to cathodoluminescence on SEM (CL)<br />

• Visible light emitted under ion impact<br />

• Yields chemical in<strong>for</strong>mation :<br />

– Impurities<br />

– Structural defects<br />

– Valence states<br />

Malquvist et al: NIMB 109/110 (1996) 337-233<br />

Courtesy of S. Calusi, INFN Firenze, Florence, Italy


Why Use <strong>Ion</strong> <strong>Beam</strong>s in <strong>Forensic</strong>s<br />

• <strong>Analysis</strong> does not destroy the samples<br />

• Very high sensitivity to trace elements<br />

• Fully quantitative and absolute<br />

• <strong>Analysis</strong> can take place in air or in vacuum<br />

• Can produce elemental maps on a sub<br />

micron scale<br />

• Most samples do not need any preparation<br />

treatments prior to analysis


What Do <strong>Forensic</strong> Analysts Need<br />

• Comparison of particles found on suspect with<br />

particles found at crime scene<br />

• <strong>Analysis</strong> techniques es <strong>for</strong> trace evidence such<br />

as glass, paints, fibres, soils that are<br />

• Non-destructive<br />

• Accurate / reproducible<br />

• Highly discriminating<br />

• Need no sample preparation<br />

a


Contents<br />

• Why use IBA techniques in <strong>for</strong>ensic science<br />

• Example 1: Gunshot residues<br />

• Example 2: Soil analysis<br />

• Example 3: Glass analysis<br />

• Complementary IBA / SIMS<br />

• Example 4: Fingerprints<br />

• Conclusions


The Gunshot Residue Problem in <strong>Forensic</strong>s<br />

Gunshot residue (GSR) particles :<br />

primer, bullet, bullet jacket,<br />

cartridge casing, gun barrel


Uniqueness of GSR<br />

LGC <strong>Forensic</strong>s (UK) :<br />

Classification of<br />

gunshot residue into 5<br />

different types using<br />

SEM-EDS elemental<br />

composition


Gunshot Residue in UK Casework


SEM-EDSEDS<br />

• Technique of choice <strong>for</strong> GSR analysis<br />

• Imaging of GSR<br />

• Automated analysis of GSR<br />

• Cheap


PIXE and SEM-EDS EDS <strong>for</strong> GSR <strong>Analysis</strong><br />

Residue No. of GSR Firearm Ammunition<br />

Reference particles<br />

studied<br />

Residue 1 12 Ruger Old Army 45<br />

Pistol<br />

Residue 2 8 Franchi 12 bone<br />

Semi Automatic<br />

Shotgun<br />

Pyrodex powder<br />

and Perdesol bullet<br />

Rottweil 12 cal<br />

70mm Dynamite<br />

Nobel<br />

Residue 3 11 Marlin 357 Gallery<br />

Magtech 357<br />

Rifle<br />

Cowboy Action<br />

Loads<br />

Residue 4 8 Parker Hale Rifle Radwell Green<br />

7.62mm, 155gr<br />

Samples were collected on an SEM stub with a high purity C sticky pad


SEM-EDS results<br />

K<br />

Cu<br />

S<br />

Fe<br />

•Small differences in K, Cu, S and Fe<br />

•All detected close to the detection limit (at%)<br />

•Non-quantitative technique<br />

F ll i t th b d t f f i<br />

•Fall into the same broad category as far as <strong>for</strong>ensics<br />

providers are concerned (Pb:Ba:Sb)


PIXE<br />

2.5 MeV protons, SiLi 50mm 2 detector with 130um Be filter<br />

• Particles studied by EDS were located using a Cu finder grid<br />

• Backscattered particle image and Pb signal was used to image particles<br />

• 10 minute point spectra (on average) were recorded<br />

d<br />

BSE image analogue


PIXE and EDX spectra<br />

100000<br />

Cu K<br />

Pb L<br />

10000<br />

1000<br />

Sn K<br />

100<br />

Sb K<br />

10<br />

Fe K<br />

1<br />

0 500 1000 1500 2000 2500 3000<br />

M J Bailey, K Kirkby and C Jeynes, J. X Ray Spec, accepted Dec 2008, DOI<br />

10.1002/xrs.1142


PIXE<br />

K Cl Ca Ni Sn<br />

•PIXE detects additional differences in Ni, Cl, Ca, Zn and Sn which<br />

are not detected by EDS<br />

•These differences are well above the detection limit (at% cf ppm)


Accurate Quantification of GSR particles by PIXE/RBS<br />

M J Bailey and C Jeynes, 10.1016/j.nimb.2009.03.031 (2008)<br />

• Fitted RBS spectrum<br />

• Fitted PIXE data<br />

• Fitted depth profile<br />

• Quantitative analysis<br />

possible by PIXE/RBS<br />

C substrate<br />

GSR<br />

particle


Work in Progress....<br />

• Round robin project with LGC <strong>Forensic</strong>s and police <strong>for</strong>ces from<br />

across the UK to characterise GSR from different sources<br />

• PIXE will be used to determine to what extent GSR can be further<br />

sub-categorised.


Contents<br />

• Why use IBA techniques in <strong>for</strong>ensic science<br />

• Example 1: Gunshot residues<br />

• Example 2: Soil analysis<br />

• Example 3: PIXE in case work<br />

• Complementary IBA / SIMS<br />

• Example 4: Fingerprints<br />

• Conclusions


Quartz Grain Texture <strong>Analysis</strong><br />

R Morgan and P Bull, University of Ox<strong>for</strong>d / Jill Dando Institute <strong>for</strong> Crime <strong>Science</strong><br />

• Frequently used in UK casework<br />

• Quartz grains used to provenance soil particles<br />

recovered from <strong>for</strong>ensic investigations<br />

• Texture of the quartz is studied by SEM<br />

• Different quartz grains have different textures<br />

depending on:<br />

• the parent rock<br />

• subsequent processes


Quartz Grain Texture <strong>Analysis</strong><br />

Examples....<br />

Grain type I<br />

“Well rounded grain with impact features (caused<br />

by river transportation) and subsequent grain<br />

surface solution (caused by soil acids<br />

following deposition)”<br />

Grain type II<br />

“Very angular grain with no edge abrasion<br />

(derived from a rock comprising of angular<br />

grains) with crystal growths on the surface of<br />

the grain (diagenetic features <strong>for</strong>med when<br />

the nearby sandstone had been turned into<br />

rock millions of years ago)”


Why use PIXE<br />

• Need an independent technique to verify conclusions<br />

• PIXE gives completely independent in<strong>for</strong>mation to quartz<br />

texture t analysis (elemental l cf topographical)<br />

• PIXE is more sensitive to trace elements than SEM-EDX<br />

and mapping is quicker


Can PIXE be used to identify different<br />

Can PIXE be used to identify different<br />

provenances (grain types) of quartz


Sample 3:<br />

“Mixed” Sample 1:<br />

2 grain types<br />

“Pure”<br />

Quartz<br />

Sample 2:<br />

“Real”<br />

1 grain type


How reproducible is the technique<br />

Typical PIXE maps from sample 1 Typical PIXE maps from sample 2


How reproducible is the technique<br />

1000000<br />

1000000<br />

100000<br />

100000<br />

Concentra ation (ug/g)<br />

10000<br />

1000<br />

100<br />

10<br />

grain 1<br />

grain 2<br />

grain 3<br />

grain 4<br />

grain 5<br />

ion (ug/g)<br />

Concentrat<br />

10000<br />

1000<br />

100<br />

10<br />

grain 1<br />

grain 2<br />

grain 3<br />

grain 4<br />

grain 5<br />

grain 6<br />

grain 7<br />

grain 8<br />

grain 9<br />

grain 10<br />

1<br />

Si P S Cl K Ca Ti Cr Mn Fe Cu Zn Rb Sr Ba<br />

1<br />

Si P S Cl K Ca Ti Cr Mn Fe Cu Zn Rb Sr Ba Zr<br />

Sample 1 Sample 2<br />

• There is a clear distinction between sample 1 and<br />

sample 2<br />

• The grain to grain variability is demonstrated


Typical PIXE maps <strong>for</strong> Sample 3 “Mixed” (two grain types)<br />

Two major classes of map:<br />

Either:<br />

Or:<br />

+Sr, Ba and Rb<br />

+ luminescence


Can we distinguish i i one source from another<br />

100000<br />

10000<br />

(ug/g)<br />

Fe<br />

1000<br />

100<br />

Mixed<br />

Real<br />

Pure Quartz<br />

10<br />

1<br />

1 10 100 1000 10000 100000<br />

Ca (ug/g)


Can we distinguish i i one source from another<br />

100000<br />

10000<br />

(ug/g)<br />

Fe<br />

1000<br />

100<br />

Mixed<br />

Real<br />

Pure Quartz<br />

10<br />

1<br />

1 10 100 1000 10000 100000<br />

Ca (ug/g)


Work in Progress<br />

• Quartz grains from previous murder investigations will be studied<br />

d<br />

using<br />

– PIXE<br />

– PIGE<br />

– IBIL<br />

– Mapping to study the microstructure


Contents<br />

• Why use IBA techniques in <strong>for</strong>ensic science<br />

• Example 1: Gunshot residues<br />

• Example 2: Soil analysis<br />

• Example 3: PIXE in case work<br />

• Complementary IBA / SIMS<br />

• Example 4: Fingerprints<br />

• Conclusions


PIXE in casework<br />

• June 2008, Surrey IBC<br />

• Document from a murder investigation<br />

• External beam PIXE used to establish the age of the document<br />

• i.e. was it current (>2006) or old (c1960)


PIXE in casework<br />

• The paper<br />

contains many<br />

impurities<br />

• Note in<br />

particular S, K,<br />

Ba, Pb, Rb


PIXE in casework<br />

• A previous study of newspaper<br />

from three different dates by<br />

XRF<br />

• Earlier paper contained a<br />

greater concentration of<br />

impurities<br />

• In modern day paper, Pb, Ba,<br />

S, K and Rb should not be<br />

present<br />

Concentration (μg g -1 )<br />

1919<br />

100000<br />

1941<br />

2005<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

S K Ca Ti Mn Fe Cu Zn Ga As Rb Sr Ba Pb<br />

Manso et al (Nucl. Instr. Meth. Res. B, 580 (2007), 732-734)


Contents<br />

• Why use IBA techniques in <strong>for</strong>ensic science<br />

• Example 1: Gunshot residues<br />

• Example 2: Soil analysis<br />

• Example 3: PIXE in case work<br />

• Complementary IBA / SIMS<br />

• Example 4: Fingerprints<br />

• Conclusions


Secondary <strong>Ion</strong> Mass Spectrometry<br />

• Primary ion beam (KeV or MeV) is used to sputter target material<br />

• Secondary ions are analysed in mass spectrometer<br />

• Surface mass spectrometry<br />

• High sensitivity– ppb<br />

• Molecular specificity<br />

• Quantification difficult


Example 4 : Fingerprint <strong>Analysis</strong> by SIMS (secondary<br />

ion mass spectrometry)<br />

Thames Valley Police, Scotland Yard + Steve e Hinder and John Watts – University of Surrey


SIMS Imaging of Fingerprints<br />

i<br />

• Fingerprints are still used in police<br />

investigations<br />

• To back up DNA evidence<br />

• Where it cannot be used<br />

• Can we obtain chemical in<strong>for</strong>mation from<br />

fingerprints<br />

• Smoker<br />

• Diet<br />

• Cosmetics


Can We Detect Moisturiser i in Fingerprints i Nivea <strong>for</strong> Men : Moisturiser<br />

Glycerin; sugar-alcohol of varied use<br />

Na Laureth sulphate; detergent/surfactant used widely in personal care products.<br />

Tocopheryl acetate; vitamin E acetate used in skin creams<br />

Bisabolol; fragrance, has perceived skin care properties.<br />

PEG-7 glyceryl cocoate; fatty acid mixture from coconuts<br />

Xanthan Gum; polysaccharide chain used as rheology modifier<br />

Benzophenone; UV blocker<br />

Phenoxyethanol; range of properties, often found in skin creams<br />

Parabens; Methyl, Ethyl, Propyl & Butyl : used as an antifungal preservative.<br />

Na carbomer.<br />

Na methyl cocoyl taurate.<br />

Farnesol; perfume/flavouring agent<br />

Imaged molecule : polyethylene terephthalate (PET)<br />

Substrate : poly(vinylndene difluoride) (PVdF)


C 3 F 4 H +<br />

Green = fingerprint<br />

149 m/z<br />

C +<br />

3 F 5 H<br />

Blue = PVdF topcoat<br />

197 m/z<br />

Substrate (PVdF) Moisturiser (PET)


Fingerprint i <strong>Analysis</strong> Using MeV SIMS<br />

• 10 MeV O4+ TOF SIMS, 4 micron beam<br />

• Nivea <strong>for</strong> women<br />

Fingerprint<br />

600<br />

H + 500<br />

300<br />

400<br />

200<br />

100<br />

0<br />

0 100 200 300 400 500


Future Prospects<br />

• MeV SIMS : in air analyses<br />

• Will allow larger molecular fragments to be imaged – i.e. chemical<br />

in<strong>for</strong>mation from fingerprints<br />

• Can we develop fingerprints on difficult surfaces<br />

– Patterned surfaces : e.g. money<br />

– Reagent development issues : covert analyses<br />

• Can we use SIMS/MeV SIMS to detect the sequencing of fingerprint<br />

/i ink


Conclusions<br />

• PIXE / PIGE / RBS / IBIL can be carried out simultaneously and are<br />

highly discriminating compared with other non-destructive<br />

techniques.<br />

• Work is in progress to establish the use of these techniques in police<br />

casework<br />

• SIMS / MeV SIMS are useful techniques <strong>for</strong> new types of fingerprint<br />

analysis


Ak Acknowledgements ld<br />

Surrey IBC Staff<br />

Chris Jeynes<br />

Karen Kirkby<br />

Geoff Grime<br />

Matt Christopher<br />

Jill Dando Institute <strong>for</strong> Crime <strong>Science</strong><br />

Ruth Morgan<br />

NPIA and Surrey Police<br />

John Armstrong<br />

Martin Hanly<br />

Scotland Yard<br />

Gary Pugh<br />

LGC <strong>Forensic</strong>s<br />

Chris Moynehan<br />

Ox<strong>for</strong>d University<br />

Peter Bull


Thank you

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!