22.03.2013 Views

Tutorial "Ion Implantation and Irradiation" - SPIRIT

Tutorial "Ion Implantation and Irradiation" - SPIRIT

Tutorial "Ion Implantation and Irradiation" - SPIRIT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Tutorial</strong> "<strong>Ion</strong> <strong>Implantation</strong> <strong>and</strong> Irradiation"<br />

Dresden, Germany, December 13-14, 2010<br />

Tel. +49 351 2602245<br />

E-mail w.moeller@fzd.de<br />

Internet http://www.fzd.de/FWI<br />

Fundamentals of <strong>Ion</strong>-Solid Interaction<br />

III: Computer Simulation<br />

Wolfhard Möller<br />

Forschungszentrum Dresden-Rossendorf, Dresden, Germany<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller


Computer Simulation of <strong>Ion</strong>-Solid Interaction<br />

V(R)<br />

Binary Collision<br />

Approximation<br />

(BCA)<br />

R<br />

Classical Molecular<br />

Dynamics (MD)<br />

V(R)<br />

Lattice Kinetic<br />

Monte Carlo (KMC)<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

R<br />

E<br />

Coord. #<br />

T = 0, t < 10 -13 s T > 0, t < 10 -9 s T > 0, 10 -13 s < t < ∞


TRIM BCA Computer Simulation<br />

Trajectories of incident ions <strong>and</strong> all<br />

recoil atoms as sequence of binary<br />

collisions (BCA = Binary Collision<br />

Approximation)<br />

“Linear” cascade regime: Only<br />

collisions with target atoms at rest<br />

Validity: above E 10..30 eV<br />

(“Collisional phase” of the<br />

cascade)<br />

Collisional Transformation<br />

E E Tn<br />

nSes<br />

<br />

r r s<br />

, <br />

Tr<br />

, <br />

, <br />

TRIM = TRansport of <strong>Ion</strong>s in Matter<br />

S e Electronic Stopping<br />

Cross Section<br />

n Atomic Density<br />

T n Nuclear Energy Loss<br />

(from )<br />

Tr Angular Transformation<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

E<br />

r<br />

,<br />

s<br />

,<br />

“State” of moving atom<br />

Energy E<br />

Coordinates r<br />

Flight Direction ,<br />

Collisional Variables<br />

Free Pathlength s<br />

Polar Deflection <br />

Azimuthal Deflection <br />

Energy Loss E el


TRIM BCA Computer Simulation<br />

Amorphous Substance<br />

Position of target atoms <strong>and</strong><br />

thereby impact parameter are<br />

r<strong>and</strong>omly chosen<br />

Path is r<strong>and</strong>om<br />

R<strong>and</strong>om Generator r 0<br />

, 1<br />

p <br />

Impact Parameter p<br />

Azimuthal Angle<br />

p<br />

max r<br />

2r<br />

Conservation of atomic density,<br />

one collision per target atom<br />

Constant free pathlength<br />

equal to mean atomic distance<br />

<br />

<br />

Fast algorithm for classical scattering<br />

integral (p) (“Magic Formula”)<br />

Multiatomic target materials<br />

Static target: No modification<br />

s<br />

p<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

p<br />

2<br />

max<br />

<br />

n<br />

s<br />

<br />

1<br />

/<br />

3<br />

n<br />

1<br />

<br />

p<br />

p max<br />

Biersack <strong>and</strong> Haggmark<br />

1978<br />

Eckstein <strong>and</strong> Biersack<br />

1982 (Sputter Version)<br />

Ziegler ~1980 ... 2010<br />

http://www.srim.org<br />

s


TRIM BCA Computer Simulation<br />

Classical Scattering Integral (CMS System)<br />

2 p<br />

V ( R ) <br />

R<br />

1<br />

min<br />

<br />

0<br />

1<br />

d<br />

R<br />

V<br />

1 <br />

E<br />

2<br />

Z1Z<br />

2e<br />

<br />

<br />

4<br />

R <br />

0<br />

<br />

<br />

<br />

R c<br />

<br />

R <br />

<br />

a <br />

p<br />

R<br />

Screened Coulomb Potential<br />

Asymptotic Path Approximation<br />

Approximate Time Integral<br />

(Hard Sphere Approximation)<br />

<br />

t p tan R 0<br />

2<br />

t<br />

2<br />

2<br />

0 10 20 30<br />

x = R/a<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

1<br />

f U(x)<br />

10 -2<br />

10 -4<br />

p<br />

Bohr<br />

R<br />

t<br />

<br />

t R<br />

HFS atomic calculations with<br />

linear superposition of atomic<br />

electron densities for 522<br />

projectile-target<br />

combinations<br />

“Universal”<br />

Fit<br />

Function<br />

R<br />

Thomas-Fermi


TRIM Energy Parameters<br />

Sputtering<br />

BCA Parameters<br />

Radiation<br />

Damage<br />

<strong>Ion</strong><br />

Slowing<br />

Down<br />

Cutoff energy at which particle histories<br />

are terminated (~ 3 eV)<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

Eco<br />

Bulk binding energy subtracted from<br />

nuclear energy transfer (often set to 0) Eb<br />

Surface binding energy for sputtering<br />

(enthalpy of sublimation for monoatomic<br />

materials: 2...8 eV; from thermodynamic<br />

data for multicomponent materials)<br />

Threshold energy of Frenkel pair<br />

formation for damage calculation<br />

(25...80 eV)<br />

Electronic stopping model (nonlocal,<br />

local) <strong>and</strong> data<br />

Es<br />

Ed<br />

Se


TRIM: <strong>Ion</strong> Trajectories<br />

<strong>Ion</strong>s only<br />

<strong>Ion</strong>s <strong>and</strong> recoil atoms<br />

4 ions<br />

100 ions<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller


TRIM: Range, Energy Deposition, Damage Profiles<br />

Projected Range<br />

Distribution (nm-1 )<br />

Vacancy Distribution (nm -1 )<br />

0.2 1 keV<br />

Ar + Si<br />

0<br />

5<br />

0<br />

0<br />

Depth (nm)<br />

10<br />

0 10<br />

Depth (nm)<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

Energy Deposition (eV/nm)<br />

200<br />

0<br />

50<br />

0<br />

nuclear<br />

electronic


TRIM Results: Doping Profiles<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller


TRIDYN – Including Dynamic Alteration<br />

Collision cascade simulation as in TRIM<br />

Initially equidistant depth slabs<br />

(i=1,...,N) with thickness x 0 <strong>and</strong><br />

fractional compositions c ik (k=1,...,M)<br />

for M different elements (including<br />

projectile)<br />

Each pseudoparticle (deposited,<br />

relocated or sputtered atom) in the<br />

computer simulation corresponds to<br />

an increment in areal density<br />

<br />

<br />

<br />

N<br />

tot<br />

pp<br />

tot Total <strong>Ion</strong> Fluence<br />

N pp Total Number of<br />

Pseudoprojectiles<br />

Only compositional information is<br />

provided. BCA is unable to treat<br />

sructure or morphology.<br />

For each incident pseudoprojectile,<br />

simulation in two steps:<br />

Slowing down <strong>and</strong> cascade formation,<br />

implantation, sputtering <strong>and</strong><br />

relocation<br />

Relaxation of depth intervals<br />

according to fixed atomic volumes<br />

Möller, Eckstein <strong>and</strong> Biersack 1984<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller


TRIDYN Dynamic Relaxation<br />

After termination of pseudoprojectile <strong>and</strong> recoil<br />

histories, new areal densities ik are calculated<br />

all components <strong>and</strong> depth intervals. From these<br />

Fractional<br />

Compositions<br />

Total<br />

Atomic<br />

Densities<br />

Slab<br />

Thicknesses<br />

Limitation<br />

of Slab<br />

Thicknesses<br />

cik<br />

1<br />

n<br />

tot<br />

i<br />

x<br />

0.<br />

5<br />

i<br />

<br />

ik<br />

<br />

j<br />

<br />

j<br />

<br />

1<br />

n<br />

tot<br />

i<br />

ij<br />

c<br />

n<br />

ij<br />

0<br />

j<br />

<br />

j<br />

n j 0 Pure Element<br />

Atomic Densities<br />

ij<br />

xi<br />

1.<br />

5<br />

x<br />

Otherwise Splitting<br />

or Combination<br />

0<br />

For reasonable statistics<br />

<strong>and</strong> precision, the relative<br />

change per slab has to be<br />

kept sufficiently small, by<br />

choosing Δν small enough.<br />

From experience,<br />

0.<br />

05<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

max<br />

i<br />

<br />

i<br />

<br />

<br />

<br />

<br />

i <br />

<br />

per pseudoprojectile


TRIDYN - Artificial Add-ons<br />

Local Saturation<br />

e.g., stoichiometric limitation<br />

Feeding excess into vacuum ("reemission")<br />

or to flanks of profile ("diffusion")<br />

Molecular Release<br />

e.g., by local saturation or by bond breaking<br />

Release<br />

R <br />

2<br />

fc<br />

c concentration of<br />

excess or free atoms<br />

Matrix Effects in Sputtering: Simple Model<br />

Sputter yield of a specified component depends<br />

linearly on surface concentration of another<br />

component<br />

Molecular Sputtering: Simple Model<br />

Diatomic "molecular" yield is assumed to be<br />

proportional to product of monomer yields<br />

Y <br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

Implant Concentration<br />

M<br />

i<br />

f<br />

i<br />

M<br />

, j<br />

c<br />

s,<br />

j<br />

f predefined factor<br />

Y <br />

mol<br />

i,<br />

j<br />

f<br />

f Predefined<br />

Factor<br />

Depth<br />

mol<br />

i,<br />

j<br />

YY<br />

i<br />

j<br />

C max


TRIDYN Applications<br />

Implant Concentration<br />

Partial Sputtering Yields<br />

High-Fluence <strong>Implantation</strong><br />

Fluence<br />

Depth<br />

Preferential Sputtering<br />

A<br />

B<br />

Time or Fluence<br />

A xB y<br />

<strong>Ion</strong> Mixing<br />

A B<br />

Depth<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

Atomic Fractions<br />

Atomic Fractions<br />

<strong>Ion</strong>-Assisted Deposition<br />

B<br />

A<br />

Depth<br />

A o<br />

B +<br />

A B<br />

C<br />

C


TRIDYN Applications<br />

<strong>Ion</strong>-Beam Assisted Deposition<br />

of Boron Nitride<br />

0<br />

0 0.4 0.8 1.2 1.6 20<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

N/B Bulk Ratio<br />

3.0<br />

2.4<br />

1.8<br />

1.2<br />

0.6<br />

500 eV N +<br />

N +<br />

Expt.<br />

w/o<br />

N/B Flux Ratio<br />

Ag<br />

TRIDYN<br />

with<br />

molecular<br />

reemissio<br />

n<br />

W. Möller <strong>and</strong> D. Bouchier, SCT 45(1991)73<br />

B


TRIDYN Applications<br />

Target Poisoning during<br />

Reactive Magnetron Sputtering<br />

<strong>Ion</strong> (Ar + ,N 2 + ,N + ) <strong>and</strong> radical (N 0 ) fluxes<br />

from simple 0D plasma model<br />

Sticking 0<br />

N 2 addition (mol%)<br />

TRIDYN<br />

Ar+N 2<br />

→ Ti<br />

Sticking 1<br />

W. Möller <strong>and</strong> D. Güttler, JAP 45(2007)094501<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller


3D Lattice Kinetic Monte Carlo Simulation<br />

Precipitate<br />

Detachment<br />

Monomer<br />

Attachment<br />

Diffusion<br />

Empty<br />

Site<br />

"Ising" Model: Configurational energy<br />

of each atom depends only on<br />

occupied<br />

number of<br />

lattice<br />

nearest<br />

site<br />

neighbours<br />

selected Probability for of jump attempt from<br />

initial site i to final site f<br />

empty lattice site<br />

diffusion jump<br />

detachment jump<br />

attachment 0 jump<br />

{<br />

1 if Ni<br />

N f<br />

E p<br />

N i N<br />

f <br />

kT e else<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller<br />

w<br />

Ed Ep Ni,f if<br />

<br />

<br />

0<br />

e<br />

Ed<br />

<br />

kT<br />

Attempt frequency<br />

Activation energy of diffusion<br />

Energy gain per nearest neighbour<br />

Initial <strong>and</strong> final number of nearest<br />

neighbours


Ostwald Ripening by LKMC Simulation<br />

GT Equation Reproduced<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller


Inverse Ostwald Ripening by LKMC Simulation<br />

Start<br />

Conventional OR Inverse OR<br />

Institute of <strong>Ion</strong> Beam Physics <strong>and</strong> Materials Research Prof. Wolfhard Möller

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!