24.03.2013 Views

Linear Algebra 5: A linear transformation on a finite-dimensional ...

Linear Algebra 5: A linear transformation on a finite-dimensional ...

Linear Algebra 5: A linear transformation on a finite-dimensional ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Linear</str<strong>on</strong>g> <str<strong>on</strong>g>Algebra</str<strong>on</strong>g> 5: A <str<strong>on</strong>g>linear</str<strong>on</strong>g> <str<strong>on</strong>g>transformati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong><br />

a <strong>finite</strong>-dimensi<strong>on</strong>al vector space<br />

Thursday 10 November 2005<br />

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools<br />

• Characteristic polynomial of a <str<strong>on</strong>g>linear</str<strong>on</strong>g> <str<strong>on</strong>g>transformati<strong>on</strong></str<strong>on</strong>g><br />

• Properties of characteristic polynomial<br />

• Minimal polynomial of a <str<strong>on</strong>g>linear</str<strong>on</strong>g> <str<strong>on</strong>g>transformati<strong>on</strong></str<strong>on</strong>g><br />

• Properties of minimal polynomial<br />

• Roots of the minimal and characteristic polynomials<br />

Note: Throughout the lecture F is a field, V is a <strong>finite</strong>-dimensi<strong>on</strong>al<br />

vector space over F , and T : V → V is a <str<strong>on</strong>g>linear</str<strong>on</strong>g> <str<strong>on</strong>g>transformati<strong>on</strong></str<strong>on</strong>g>.<br />

0


Determinants<br />

Recall from Mods: Det A and Trace A of a square matrix A.<br />

Definiti<strong>on</strong>: Define the determinant of T by Det T := Det A,<br />

where A is the matrix of T with respect to some basis of V .<br />

Similarly, define the trace by Trace T := Trace A.<br />

Observati<strong>on</strong>: Determinant and trace of T do not depend <strong>on</strong> the<br />

basis of V . They depend <strong>on</strong>ly <strong>on</strong> T .<br />

Proof.<br />

1


The characteristic polynomial<br />

Definiti<strong>on</strong>: The characteristic polynomial of an n × n matrix A<br />

is defined by<br />

c A(x) := Det (xI − A) .<br />

The characteristic polynomial of T is defined by C T (x) := C A(x)<br />

where A represents T with respect to some basis of V .<br />

Note: If n := dim V then c T (x) is a m<strong>on</strong>ic polynomial (m<strong>on</strong>ic<br />

means leading coefficient = 1), and it is of degree n. In fact<br />

where<br />

c T (x) = x n − c1x n−1 + c2x n−2 − · · · + (−1) n cn ,<br />

c1 = Trace T , cn = Det T, etc.<br />

2


Properties of the characteristic polynomial<br />

• c T (x) is well defined (independent of basis).<br />

• If S = U −1 T U, where U : V → V is <str<strong>on</strong>g>linear</str<strong>on</strong>g> and invertible,<br />

then c S(x) = c T (x).<br />

• Roots of c T (x) are the eigenvalues of T .<br />

• If λ ∈ F is an eigenvalue of T then ∃v ∈ V such that v = 0<br />

and T v = λv, that is, there exists an eigenvector for T with<br />

eigenvalue λ.<br />

• C<strong>on</strong>versely, if v is an eigenvector for T , so that v = 0 and<br />

∃λ ∈ F such that T v = λv, then c T (λ) = 0.<br />

3


The minimal polynomial, I<br />

Lemma. Let n := dim V . The set of all <str<strong>on</strong>g>linear</str<strong>on</strong>g> <str<strong>on</strong>g>transformati<strong>on</strong></str<strong>on</strong>g>s<br />

S : V → V is a vector space of dimensi<strong>on</strong> n 2 .<br />

Proof.<br />

Polynomial functi<strong>on</strong>s of T : for f(x) = a0+a1x+· · ·+a kx k ∈ F [x]<br />

we define f(T ) := a0I + a1T + · · · + a kT k , where I : V → V is<br />

the identity map.<br />

Note: if f, g ∈ F [x] then f(T )g(T ) = g(T )f(T ).<br />

4


The minimal polynomial, II<br />

Lemma. There is a polynomial f ∈ F [x]\{0} such that f(T ) = 0.<br />

[Similarly for n × n matrices.]<br />

Proof.<br />

Definiti<strong>on</strong>. A m<strong>on</strong>ic polynomial f ∈ F [x] \ {0} of least degree<br />

such that f(T ) = 0 is known as the minimal polynomial of T .<br />

[Similarly for n × n matrices A.]<br />

Examples. m I(x) = x − 1; m0(x) = x; if A =<br />

then m A(x) = (x 2 − 3x + 2).<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0<br />

0 2 0<br />

0 0 2<br />

5<br />

⎞<br />

⎟<br />


Properties of the minimal polynomial, I<br />

• Minimal polynomial is unique.<br />

• We’ll write m T (x) (or m A(x) when A is an n × n matrix<br />

over F ) for the minimal polynomial.<br />

• If A ∈ Mn×n(F ) and A represents T with respect to some<br />

basis of V then m T (x) = m A(x).<br />

• If S = U −1 T U, where U : V → V is <str<strong>on</strong>g>linear</str<strong>on</strong>g> and invertible,<br />

then m S(x) = m T (x).<br />

6


Properties of the minimal polynomial, II<br />

Theorem. For f ∈ F [x], f(T ) = 0 if and <strong>on</strong>ly if m T (x) divides<br />

f(x) in F [x]. [Similarly for A ∈ Mn×n(F ).]<br />

Proof.<br />

7


Roots of the minimal polynomial<br />

Theorem. For λ ∈ F , m T (λ) = 0 if and <strong>on</strong>ly if c T (λ) = 0.<br />

[Similarly for A ∈ Mn×n(F ).]<br />

Proof.<br />

Example. A =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0<br />

0 2 0<br />

0 0 2<br />

m A(x) = (x − 1)(x − 2).<br />

⎞<br />

⎟<br />

⎠ . Here c A(x) = (x − 1)(x − 2) 2 and<br />

Note: in fact m T (x) and c T (x) always have the same irreducible<br />

factors in F [x].<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!