31.01.2013 Views

Nabla Algebras and Chu Spaces

Nabla Algebras and Chu Spaces

Nabla Algebras and Chu Spaces

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

<strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong><br />

Aless<strong>and</strong>ra Palmigiano<br />

(joint work with Yde Venema)<br />

TANCL’07, Oxford, 8 August 2007<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Algebraic <strong>and</strong> Coalgebraic study on <strong>Nabla</strong><br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Algebraic <strong>and</strong> Coalgebraic study on <strong>Nabla</strong><br />

<strong>Nabla</strong> axiomatizatized<br />

Two intrinsic axiomatizations: Classical Modal Logic <strong>and</strong> Positive<br />

Modal Logic.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Algebraic <strong>and</strong> Coalgebraic study on <strong>Nabla</strong><br />

<strong>Nabla</strong> axiomatizatized<br />

Two intrinsic axiomatizations: Classical Modal Logic <strong>and</strong> Positive<br />

Modal Logic.<br />

<strong>Chu</strong> spaces<br />

setting for connecting <strong>Nabla</strong> <strong>and</strong> lifting constructions.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Algebraic <strong>and</strong> Coalgebraic study on <strong>Nabla</strong><br />

<strong>Nabla</strong> axiomatizatized<br />

Two intrinsic axiomatizations: Classical Modal Logic <strong>and</strong> Positive<br />

Modal Logic.<br />

<strong>Chu</strong> spaces<br />

setting for connecting <strong>Nabla</strong> <strong>and</strong> lifting constructions.<br />

Case study<br />

Vietoris construction reformulated as P-lifting.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Algebraic <strong>and</strong> Coalgebraic study on <strong>Nabla</strong><br />

<strong>Nabla</strong> axiomatizatized<br />

Two intrinsic axiomatizations: Classical Modal Logic <strong>and</strong> Positive<br />

Modal Logic.<br />

<strong>Chu</strong> spaces<br />

setting for connecting <strong>Nabla</strong> <strong>and</strong> lifting constructions.<br />

Case study<br />

Vietoris construction reformulated as P-lifting.<br />

Key for generalizing Vietoris construction to arbitrary set<br />

functors.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator<br />

A defined operator<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator<br />

A defined operator<br />

Φ (finite) set of formulas,<br />

∇Φ = ✷( � Φ) ∧ � ✸Φ,<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator<br />

A defined operator<br />

Φ (finite) set of formulas,<br />

where ✸Φ = {✸ϕ | ϕ ∈ Φ}.<br />

∇Φ = ✷( � Φ) ∧ � ✸Φ,<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator<br />

A defined operator<br />

Φ (finite) set of formulas,<br />

where ✸Φ = {✸ϕ | ϕ ∈ Φ}.<br />

∇Φ = ✷( � Φ) ∧ � ✸Φ,<br />

First-order logic: Ehrenfeucht-Fraïssé games, Scott<br />

sentences...<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator<br />

A defined operator<br />

Φ (finite) set of formulas,<br />

where ✸Φ = {✸ϕ | ϕ ∈ Φ}.<br />

∇Φ = ✷( � Φ) ∧ � ✸Φ,<br />

First-order logic: Ehrenfeucht-Fraïssé games, Scott<br />

sentences...<br />

Modal logic, Fine’s normal forms.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator<br />

A defined operator<br />

Φ (finite) set of formulas,<br />

where ✸Φ = {✸ϕ | ϕ ∈ Φ}.<br />

∇Φ = ✷( � Φ) ∧ � ✸Φ,<br />

First-order logic: Ehrenfeucht-Fraïssé games, Scott<br />

sentences...<br />

Modal logic, Fine’s normal forms.<br />

Domain theory: Abramsky, Vickers, Johnstone on Vietoris,<br />

hyperspace constructions...<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator<br />

A defined operator<br />

Φ (finite) set of formulas,<br />

where ✸Φ = {✸ϕ | ϕ ∈ Φ}.<br />

∇Φ = ✷( � Φ) ∧ � ✸Φ,<br />

First-order logic: Ehrenfeucht-Fraïssé games, Scott<br />

sentences...<br />

Modal logic, Fine’s normal forms.<br />

Domain theory: Abramsky, Vickers, Johnstone on Vietoris,<br />

hyperspace constructions...<br />

As a logical connective: Barwise & Moss on circularity, Janin<br />

& Walukiewicz on automata-theory, modal µ-calculus.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator, semantically<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator, semantically<br />

S Kripke structure with accessibility relation σ : S → P(S):<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator, semantically<br />

S Kripke structure with accessibility relation σ : S → P(S):<br />

S, s � ∇Φ iff for all ϕ ∈ Φ there is a t ∈ σ(s) with S, t � ϕ,<br />

<strong>and</strong><br />

for all t ∈ σ(s) there is a ϕ ∈ Φ with S, t � ϕ.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator, semantically<br />

S Kripke structure with accessibility relation σ : S → P(S):<br />

S, s � ∇Φ iff for all ϕ ∈ Φ there is a t ∈ σ(s) with S, t � ϕ,<br />

<strong>and</strong><br />

for all t ∈ σ(s) there is a ϕ ∈ Φ with S, t � ϕ.<br />

Equivalently, in terms of the relation lifting of �:<br />

S, s � ∇Φ iff (σ(s), Φ) ∈ P(�).<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator, semantically<br />

S Kripke structure with accessibility relation σ : S → P(S):<br />

S, s � ∇Φ iff for all ϕ ∈ Φ there is a t ∈ σ(s) with S, t � ϕ,<br />

<strong>and</strong><br />

for all t ∈ σ(s) there is a ϕ ∈ Φ with S, t � ϕ.<br />

Equivalently, in terms of the relation lifting of �:<br />

S, s � ∇Φ iff (σ(s), Φ) ∈ P(�).<br />

∇ <strong>and</strong> σ are adjoint (in a generalized sense):<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator, semantically<br />

S Kripke structure with accessibility relation σ : S → P(S):<br />

S, s � ∇Φ iff for all ϕ ∈ Φ there is a t ∈ σ(s) with S, t � ϕ,<br />

<strong>and</strong><br />

for all t ∈ σ(s) there is a ϕ ∈ Φ with S, t � ϕ.<br />

Equivalently, in terms of the relation lifting of �:<br />

S, s � ∇Φ iff (σ(s), Φ) ∈ P(�).<br />

∇ <strong>and</strong> σ are adjoint (in a generalized sense):<br />

(s, ∇Φ) ∈ � iff (σ(s), Φ) ∈ P(�).<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

The <strong>Nabla</strong> operator, semantically<br />

S Kripke structure with accessibility relation σ : S → P(S):<br />

S, s � ∇Φ iff for all ϕ ∈ Φ there is a t ∈ σ(s) with S, t � ϕ,<br />

<strong>and</strong><br />

for all t ∈ σ(s) there is a ϕ ∈ Φ with S, t � ϕ.<br />

Equivalently, in terms of the relation lifting of �:<br />

S, s � ∇Φ iff (σ(s), Φ) ∈ P(�).<br />

∇ <strong>and</strong> σ are adjoint (in a generalized sense):<br />

(s, ∇Φ) ∈ � iff (σ(s), Φ) ∈ P(�).<br />

Intuition: The tuple (σ, ∇) is a morphism of suitable <strong>Chu</strong> spaces.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Semantic equivalences<br />

The following semantic equivalences hold:<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Semantic equivalences<br />

The following semantic equivalences hold:<br />

✸ϕ ≡ ∇{ϕ, ⊤}<br />

✷ϕ ≡ ∇∅ ∨ ∇{ϕ}<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong><br />

(1)


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Semantic equivalences<br />

The following semantic equivalences hold:<br />

✸ϕ ≡ ∇{ϕ, ⊤}<br />

✷ϕ ≡ ∇∅ ∨ ∇{ϕ}<br />

So ✷ <strong>and</strong> ✸ can be defined in terms of ∇.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong><br />

(1)


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Semantic equivalences<br />

The following semantic equivalences hold:<br />

✸ϕ ≡ ∇{ϕ, ⊤}<br />

✷ϕ ≡ ∇∅ ∨ ∇{ϕ}<br />

So ✷ <strong>and</strong> ✸ can be defined in terms of ∇.<br />

Question: Can this equivalences be expressed also axiomatically?<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong><br />

(1)


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Semantic equivalences<br />

The following semantic equivalences hold:<br />

✸ϕ ≡ ∇{ϕ, ⊤}<br />

✷ϕ ≡ ∇∅ ∨ ∇{ϕ}<br />

So ✷ <strong>and</strong> ✸ can be defined in terms of ∇.<br />

Question: Can this equivalences be expressed also axiomatically?<br />

Desiderata<br />

Intrinsic, non roundabout axiomatization for ∇;<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong><br />

(1)


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Semantic equivalences<br />

The following semantic equivalences hold:<br />

✸ϕ ≡ ∇{ϕ, ⊤}<br />

✷ϕ ≡ ∇∅ ∨ ∇{ϕ}<br />

So ✷ <strong>and</strong> ✸ can be defined in terms of ∇.<br />

Question: Can this equivalences be expressed also axiomatically?<br />

Desiderata<br />

Intrinsic, non roundabout axiomatization for ∇;<br />

✷ <strong>and</strong> ✸ defined as in (1) are normal modal operators.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong><br />

(1)


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

∇-algebras, negation free<br />

A = 〈A, ∧, ∨, ⊤, ⊥, ∇〉 is a positive modal ∇-algebra if its lattice<br />

reduct is a BDL<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

∇-algebras, negation free<br />

A = 〈A, ∧, ∨, ⊤, ⊥, ∇〉 is a positive modal ∇-algebra if its lattice<br />

reduct is a BDL <strong>and</strong> ∇ : Pω(A) → A satisfies:<br />

∇1. If αP(≤)β, then ∇α ≤ ∇β,<br />

∇2. If ⊥ ∈ α, then ∇α = ⊥,<br />

∇3. ∇α ∧ ∇β ≤ � {∇{a ∧ b | (a, b) ∈ Z} | Z ∈ α ⊲⊳ β},<br />

∇4. If ⊤ ∈ α ∩ β, then<br />

∇{a ∨ b | a ∈ α, b ∈ β} ≤ ∇α ∨ ∇β,<br />

∇5. ∇∅ ∨ ∇{⊤} = ⊤,<br />

∇6. ∇α ∪ {a ∨ b} ≤<br />

∇(α ∪ {a}) ∨ ∇(α ∪ {b}) ∨ ∇(α ∪ {a, b}).<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

A more compact equivalent axiomatization<br />

A ∈ PPω(Fm), B ∈ PωP(Fm),<br />

∇1. If αP(≤)β, then ∇α ≤ ∇β,<br />

∇2 ′ . � {∇α | α ∈ A} ≤ � {∇{ � β |β ∈ B} | � B ⊆<br />

� A, <strong>and</strong> for every α ∈ A, αP(∈)B)},<br />

∇3 ′ . ∇{ � α | α ∈ B} ≤ � {∇γ | γP(∈)B}.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

∇-algebras, Boolean case<br />

A = 〈A, ∧, ∨, ⊤, ⊥, ¬, ∇〉 is a modal ∇-algebra if<br />

its ∇-free reduct is a BA<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

∇-algebras, Boolean case<br />

A = 〈A, ∧, ∨, ⊤, ⊥, ¬, ∇〉 is a modal ∇-algebra if<br />

its ∇-free reduct is a BA<br />

it satisfies ∇1 – ∇6 (or equivalently ∇1, ∇2 ′ , ∇3 ′ ),<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

∇-algebras, Boolean case<br />

A = 〈A, ∧, ∨, ⊤, ⊥, ¬, ∇〉 is a modal ∇-algebra if<br />

its ∇-free reduct is a BA<br />

it satisfies ∇1 – ∇6 (or equivalently ∇1, ∇2 ′ , ∇3 ′ ),<br />

<strong>and</strong> in addition,<br />

∇7. ¬∇α = ∇{ � α, ⊤} ∨ ∇∅ ∨ � {∇{a} | a ∈ α}.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Axiomatic equivalences<br />

Using the stipulations<br />

one shows:<br />

✸ϕ ≡ ∇{ϕ, ⊤}<br />

✷ϕ ≡ ∇∅ ∨ ∇{ϕ}<br />

∇Φ ≡ ✷( � Φ) ∧ � ✸Φ<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Axiomatic equivalences<br />

Using the stipulations<br />

one shows:<br />

✸ϕ ≡ ∇{ϕ, ⊤}<br />

✷ϕ ≡ ∇∅ ∨ ∇{ϕ}<br />

∇Φ ≡ ✷( � Φ) ∧ � ✸Φ<br />

Theorem<br />

The categories PMA <strong>and</strong> PMA∇ are isomorphic.<br />

The categories MA <strong>and</strong> MA∇ are isomorphic.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

<strong>Chu</strong> spaces<br />

A (two-valued) <strong>Chu</strong> space is a triple S = 〈X , S, A〉 s.t. X <strong>and</strong> A<br />

are sets (objects <strong>and</strong> attributes) <strong>and</strong> S ⊆ X × A.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

<strong>Chu</strong> spaces<br />

A (two-valued) <strong>Chu</strong> space is a triple S = 〈X , S, A〉 s.t. X <strong>and</strong> A<br />

are sets (objects <strong>and</strong> attributes) <strong>and</strong> S ⊆ X × A.<br />

S = 〈X , S, A〉 <strong>and</strong> T = 〈Y , T , B〉, a <strong>Chu</strong> transform S → T is a<br />

pair (f : X → Y , g : B → A) s.t. the (generalized) adjointness<br />

condition holds<br />

xSg(a) ⇐⇒ f (x)Ta.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

<strong>Chu</strong> spaces<br />

A (two-valued) <strong>Chu</strong> space is a triple S = 〈X , S, A〉 s.t. X <strong>and</strong> A<br />

are sets (objects <strong>and</strong> attributes) <strong>and</strong> S ⊆ X × A.<br />

S = 〈X , S, A〉 <strong>and</strong> T = 〈Y , T , B〉, a <strong>Chu</strong> transform S → T is a<br />

pair (f : X → Y , g : B → A) s.t. the (generalized) adjointness<br />

condition holds<br />

∇ <strong>and</strong> <strong>Chu</strong>, coalgebraically<br />

xSg(a) ⇐⇒ f (x)Ta.<br />

s � ∇Φ ⇐⇒ σ(s)P(�)Φ.<br />

(σ, ∇) is a <strong>Chu</strong> transform (S, �, Fm) → (PS, P(�), Pω(Fm)).<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

A lifting construction<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

A lifting construction<br />

Relation lifting<br />

F Set-endofunctor, Z ⊆ S × S ′ :<br />

S π<br />

←− Z π′<br />

−→ S ′<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

A lifting construction<br />

Relation lifting<br />

F Set-endofunctor, Z ⊆ S × S ′ :<br />

S π<br />

←− Z π′<br />

−→ S ′<br />

Applying F to this diagram we obtain<br />

FS Fπ<br />

←− FZ Fπ′<br />

−→ FS ′<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

A lifting construction<br />

Relation lifting<br />

F Set-endofunctor, Z ⊆ S × S ′ :<br />

S π<br />

←− Z π′<br />

−→ S ′<br />

Applying F to this diagram we obtain<br />

FS Fπ<br />

←− FZ Fπ′<br />

−→ FS ′<br />

The range F(Z) of the product map (Fπ, Fπ ′ ) is in F(X ) × F(A):<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

A lifting construction<br />

Relation lifting<br />

F Set-endofunctor, Z ⊆ S × S ′ :<br />

S π<br />

←− Z π′<br />

−→ S ′<br />

Applying F to this diagram we obtain<br />

FS Fπ<br />

←− FZ Fπ′<br />

−→ FS ′<br />

The range F(Z) of the product map (Fπ, Fπ ′ ) is in F(X ) × F(A):<br />

Fact: If F preserves weak pullbacks, then � FS := 〈F(X ), F(S), F(A)〉<br />

is an endofunctor on <strong>Chu</strong>.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Main results on Vietoris construction<br />

Let S = 〈X , ∈, A〉 be a Stone space:<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Main results on Vietoris construction<br />

Let S = 〈X , ∈, A〉 be a Stone space:<br />

The Vietoris space V (S) = 〈K(X ), ∈, V (A)〉 can be realized<br />

as an instance of a P-lifting construction (via a normalization<br />

step).<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Main results on Vietoris construction<br />

Let S = 〈X , ∈, A〉 be a Stone space:<br />

The Vietoris space V (S) = 〈K(X ), ∈, V (A)〉 can be realized<br />

as an instance of a P-lifting construction (via a normalization<br />

step).<br />

V (A) is isomorphic to<br />

BA〈 {∇α | α ∈ PωA} : ∇1 − ∇7 〉<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Conclusions<br />

On the algebraic side: we gave an axiomatic characterization<br />

of those ∇-algebras isomorphic to (positive) modal algebras.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Conclusions<br />

On the algebraic side: we gave an axiomatic characterization<br />

of those ∇-algebras isomorphic to (positive) modal algebras.<br />

On <strong>Chu</strong> spaces: we gave F-lifting constructions on <strong>Chu</strong>, which<br />

are functorial in case F preserves weak pullbacks.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Conclusions<br />

On the algebraic side: we gave an axiomatic characterization<br />

of those ∇-algebras isomorphic to (positive) modal algebras.<br />

On <strong>Chu</strong> spaces: we gave F-lifting constructions on <strong>Chu</strong>, which<br />

are functorial in case F preserves weak pullbacks.<br />

Case study: Vietoris construction on Stone spaces<br />

reformulated as a P-lifting construction for the (finite) power<br />

set functor.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>


Foreword<br />

Basic observations<br />

∇-algebras<br />

Lifting constructions on <strong>Chu</strong> spaces<br />

Vietoris endofunctor on Stone spaces<br />

Conclusions<br />

On the algebraic side: we gave an axiomatic characterization<br />

of those ∇-algebras isomorphic to (positive) modal algebras.<br />

On <strong>Chu</strong> spaces: we gave F-lifting constructions on <strong>Chu</strong>, which<br />

are functorial in case F preserves weak pullbacks.<br />

Case study: Vietoris construction on Stone spaces<br />

reformulated as a P-lifting construction for the (finite) power<br />

set functor.<br />

We linked this reformulation to the axiomatization of the<br />

modal ∇-algebras.<br />

Aless<strong>and</strong>ra Palmigiano (joint work with Yde Venema) <strong>Nabla</strong> <strong>Algebras</strong> <strong>and</strong> <strong>Chu</strong> <strong>Spaces</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!