25.03.2013 Views

In Pharmaceutical Sciences (Pharmacognosy)

In Pharmaceutical Sciences (Pharmacognosy)

In Pharmaceutical Sciences (Pharmacognosy)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A PHARMACOGNOSTICAL STUDY OF<br />

PHYLLANTHUS ATROPURPUREUS BOJ. HORT. MAURIT.<br />

FAMILY EUPHORBIACEAE CULTIVATED IN EGYPT<br />

By<br />

MAY AHMED MOHAMED EL-SAYED<br />

A Thesis Submitted in Partial Fulfillment of The Requirements for<br />

The Degree of Master<br />

<strong>In</strong><br />

<strong>Pharmaceutical</strong> <strong>Sciences</strong><br />

(<strong>Pharmacognosy</strong>)<br />

Department of <strong>Pharmacognosy</strong><br />

Faculty of Pharmacy<br />

Zagazig University<br />

2009


A PHARMACOGNOSTICAL STUDY OF<br />

PHYLLANTHUS ATROPURPUREUS BOJ. HORT. MAURIT.<br />

FAMILY EUPHORBIACEAE CULTIVATED IN EGYPT<br />

By<br />

MAY AHMED MOHAMED EL-SAYED<br />

A Thesis Submitted in Partial Fulfillment of The Requirements for<br />

The Degree of Master<br />

<strong>In</strong><br />

<strong>Pharmaceutical</strong> <strong>Sciences</strong><br />

(<strong>Pharmacognosy</strong>)<br />

Department of <strong>Pharmacognosy</strong><br />

Faculty of Pharmacy<br />

Zagazig University<br />

2009


A PHARMACOGNOSTICAL STUDY OF<br />

PHYLLANTHUS ATROPURPUREUS BOJ. HORT. MAURIT.<br />

FAMILY EUPHORBIACEAE CULTIVATED IN EGYPT<br />

Submitted By:<br />

MAY AHMED MOHAMED EL-SAYED<br />

Under The Supervision of:<br />

(B.Sc. in <strong>Pharmaceutical</strong> <strong>Sciences</strong>)<br />

PROF. DR. TAHA MOUSTAFA SARG<br />

Professor of <strong>Pharmacognosy</strong>, Zagazig University.<br />

PROF. DR. AFAF EL-SAYED ABDEL-GHANI<br />

Professor of <strong>Pharmacognosy</strong>, Zagazig University.<br />

DR. RAWIA ABDEL-HADY ZAYED<br />

Assistant Professor of <strong>Pharmacognosy</strong>, Zagazig<br />

University.


Approval Sheet<br />

A PHARMACOGNOSTICAL STUDY OF<br />

PHYLLANTHUS ATROPURPUREUS BOJ. HORT. MAURIT.<br />

FAMILY EUPHORBIACEAE CULTIVATED IN EGYPT<br />

BY<br />

MAY AHMED MOHAMED EL-SAYED<br />

(B.Sc. in <strong>Pharmaceutical</strong> <strong>Sciences</strong>)<br />

This thesis for M.Sc. degree has been<br />

Approved by:<br />

1- Prof. Dr. Taha Moustafa Sarg<br />

Professor of <strong>Pharmacognosy</strong>, Faculty of Pharmacy, Zagazig University.<br />

…………………………………………………………………………..<br />

2- Prof. Dr. Nabil Ahmed Abd El-Salam<br />

Professor of <strong>Pharmacognosy</strong>, Faculty of Pharmacy, Alexandria University.<br />

………………………………………………………………………………<br />

3- Prof. Dr. Ehsan Mahmoud Abd El-Aziz<br />

Professor and Head of <strong>Pharmacognosy</strong> Department, Faculty of Pharmacy,<br />

Zagazig University.<br />

…………………………………………………………………………….<br />

Date of examination:7-11-2009


ﻢﻴﺣﺮﻟﺍ ﻦﲪﺮﻟﺍ ﺍ ﻢﺴﺑ<br />

ﻚﻧﺎﺤﺒﺳ ﺍﻮﻟﺎﻗ<br />

ﺎﻨـﺘﻤﻠﻋ ﺎﻣ ﻻﺇ ﺎﻨﻟ ﻢﻠﻋ ﻻ<br />

" ﻢﻴﻜﳊﺍ ﻢﻴﻠﻌﻟﺍ ﺖﻧﺃ ﻚﻧﺇ<br />

ﻡﻴﻅﻌﻟﺍ ﷲﺍ ﻕﺩﺼ<br />

"<br />

32<br />

ﺔﻴﻵﺍ<br />

-<br />

ﺓﺭﻘﺒﻟﺍ ﺓﺭﻭﺴ"<br />

"


This effort is dedicated to my<br />

Parents,<br />

Beloved husband&<br />

Sweet son, Ra'ed…….


CONTENTS<br />

List of Figures……………………………….………………….………..<br />

List of Tables...…………………………….……………………………..<br />

List of Schemes……………………………………….……….…………<br />

List of Abbreviations……………………………………………………..<br />

<strong>In</strong>troduction………………………………….…………………………...<br />

Aim of the Present Work…………………………………….…………..<br />

Materials, Reagents and Apparatus………………………………………<br />

PART І<br />

Macro- and Micromorphology of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Chapter 1: Macromorphological study of Phyllanthus atropurpureus<br />

Boj. Hort . Maurit<br />

The Leaf…………………………………………….……….……….…<br />

The stem…………………………………………………………...……<br />

The <strong>In</strong>florescence……..………………………………………………...<br />

The subterranean organs………………….……….……………………<br />

Chapter 2: Micromorphological study of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit<br />

The Leaf……………………………………………….……….……….<br />

The petiole……..………………………………………………………..<br />

The Powdered Leaf…………………………………………….……….<br />

The Stem……………………………………………….……….……....<br />

The Powdered Stem ……………………………………….……….…..<br />

The Flower………………………………………………………………<br />

The Pedicel ………………………………………….……….…………<br />

The Calyx …………………………………………….……….……......<br />

The Androecium ………………………………….……….……………<br />

The Gynaecium …………………………………….…………………..<br />

The Powdered Flower……………………………………………...........<br />

The Root & the Rhizome……………………………………………….<br />

The powdered Root……………………………………………………..<br />

I<br />

V<br />

VII<br />

VIII<br />

1<br />

39<br />

40<br />

45<br />

46<br />

46<br />

48<br />

55<br />

64<br />

68<br />

70<br />

79<br />

80<br />

80<br />

84<br />

89<br />

93<br />

98<br />

100<br />

107


PART Π<br />

Phytochemical <strong>In</strong>vestigation Of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Chapter 1: Preliminary phytochemical investigation of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit…………………………….<br />

Chapter 2: Successive extraction of the powdered Phyllanthus<br />

atropurpureus Boj. Hort. Maurit. with selective organic<br />

solvents and examination of the respective extracts………...<br />

Chapter 3: Extraction of the powdered Phyllanthus atropurpureus Boj.<br />

Hort. Maurit. and fractionation of the extract………………<br />

Chapter 4: <strong>In</strong>vestigation of light petroleum soluble fraction and<br />

analysis of the fatty acid constituents of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit………………………………<br />

Chapter 5: Isolation and characterization of three materials from light<br />

petroleum soluble fraction of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit……………………………………..………<br />

Chapter 6: Isolation and characterization of six materials from ethyl<br />

acetate soluble fraction of Phyllanthus atropurpureus Boj.<br />

Hort. Maurit………………………………………………….<br />

PART ΠІ<br />

Biological Activities of Phyllanthus atropurpureus Boj. Hort.<br />

Maurit.<br />

І- Antihepatotoxic Activity…....………………………….…………….<br />

Π- Anticancer activity…..………………………….……………….......<br />

ІΠ - Antimicrobial Activity …..………………………….…….............<br />

Summary……………………….……………………………<br />

References………………………….…………………………<br />

Arabic summary…………………………………………….<br />

108<br />

110<br />

113<br />

116<br />

122<br />

138<br />

195<br />

208<br />

213<br />

215<br />

219


ﷲ ﺭﻜﺸﻟﺍ ﻭ ﺩﻤﺤﻟﺍ<br />

ACKNOWLEDGEMENT<br />

First of all, my deepest gratitude to ALLAH, the source of all gifts and<br />

blessings.<br />

I would like to express my deep feeling of gratitude and sincere<br />

appreciation to Prof. Dr. Taha M. Sarg, Professor of <strong>Pharmacognosy</strong>, Faculty of<br />

Pharmacy, Zagazig University, for his kind supervision, valuable scientific<br />

guidance, directions, comments and revision. I am wholeheartedly appreciating<br />

his effort to complete this work.<br />

I am very grateful with sincere appreciation to Prof. Dr. Afaf El-Sayed<br />

Abdel-Ghani, Professor of <strong>Pharmacognosy</strong>, Zagazig University for her kind<br />

direct supervision, guidance, direction, comment, continuous help, direct<br />

encouragement and persistent help during practical work as well as continuous<br />

unlimited help during this work.<br />

I am greatly indebted and grateful with the deep thanks to Dr. Rawia<br />

Abdel-Hady Zayed, Assistant Professor of <strong>Pharmacognosy</strong>, Faculty of<br />

Pharmacy, Zagazig University for her kind supervision, directions and<br />

comments.<br />

I would like to express my deep feelings of gratitude to Prof. Dr. Ahmed<br />

Fahmy, Professor of Pharmacology, and Shimaa El-Shazly, Assistant Lecturer<br />

of Pharmacology, Faculty of Pharmacy, Zagazig University for carrying out the<br />

pharmacological screening.<br />

I would like to express my deep feelings of gratitude to Prof. Dr. Fathy<br />

Serry, Professor of Microbiology, and Ahmed Olwan, Assistant Lecturer of<br />

Microbiology, Faculty of Pharmacy, Zagazig University for carrying out the<br />

antimicrobial activity.<br />

My thanks also due to Dr. Dalia Hamdan, Lecturer of <strong>Pharmacognosy</strong>,<br />

Faculty of Pharmacy, Zagazig University for her kind help in carrying out the<br />

spectral analysis of some of the isolated compounds.<br />

I wish to express my cordial thanks to the staff members and my<br />

colleagues in Department of <strong>Pharmacognosy</strong>, Faculty of Pharmacy, Zagazig<br />

University, for their positive support, help and encouragement and to all who<br />

contributed by one way or another to the realization of this work.<br />

Finally, this work is dedicated to My Parents, My Precious Husband, My<br />

Son and My Family who helped and supported me throughout all the hard and<br />

exhausting times till this work comes out to light.<br />

MAY AHMED MOHAMED AHMED


Figure<br />

Fig. 1:<br />

Fig. 2:<br />

Fig. 3:<br />

Fig. 4:<br />

Fig. 5:<br />

Fig. 6:<br />

Fig. 7:<br />

Fig. 8:<br />

Fig. 9:<br />

Fig. 10:<br />

Fig. 11:<br />

Fig. 12:<br />

Fig. 13:<br />

Fig. 14:<br />

Fig. 15:<br />

Fig. 16:<br />

Fig. 17:<br />

Fig. 18:<br />

Fig. 19:<br />

Fig. 20:<br />

Fig. 21:<br />

Fig. 22:<br />

Fig. 23:<br />

Fig. 24:<br />

Fig. 25:<br />

LIST OF FIGURES<br />

I<br />

LIST OF FIGURES<br />

A Photograph of aerial part of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit………………………………………….<br />

A Photograph of female flowers of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit………………………….<br />

A Photograph of the root and rhizome of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit……………………………<br />

Sketch of Phyllanthus atropurpureus Boj. Hort Maurit……<br />

Sketch of the flower………………………………………..<br />

The leaf, diagrammatic and detailed transverse sections….<br />

The epidermal cells and some elements of the leaf……….<br />

The petiole, diagrammatic and detailed transverse sections.<br />

The old stem, diagrammatic and detailed transeverse<br />

section……………………………………………………….<br />

The young stem…………………………………………….<br />

The Pedicel, diagrammatic and detailed transeverse section..<br />

The calyx, diagrammatic and detailed transeverse section…<br />

The androecium…………………………………………….<br />

The gynoecium……………………………………………..<br />

The old root…………………………………………………<br />

The root and rhizome………………………………………..<br />

GLC of the fatty acids methyl esters of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit………………………<br />

GC spectrum of the unsaponifiable matter of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ………………………..<br />

IR spectrum of material "1" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit ………………………………………..…<br />

Mass spectrum of material "1" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …………………………...<br />

IR spectrum of material "2 "of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit ………………………………………..….<br />

Mass spectrum of material "2" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ………………………..…<br />

IR spectrum of material "3" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit ……………………………………..…….<br />

Mass spectrum of material "3" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …………………………...<br />

1<br />

H-NMR spectrum of material "3" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …………………………...<br />

Page<br />

50<br />

50<br />

50<br />

52<br />

54<br />

61<br />

63<br />

67<br />

74<br />

76<br />

83<br />

88<br />

92<br />

97<br />

104<br />

106<br />

121<br />

121<br />

126<br />

126<br />

130<br />

130<br />

135<br />

135<br />

136


LIST OF FIGURES<br />

Figure<br />

Fig. 26:<br />

Fig. 27:<br />

Fig. 28:<br />

Fig. 29:<br />

Fig. 30:<br />

Fig. 31:<br />

Fig. 32:<br />

Fig. 33:<br />

Fig. 34:<br />

Fig. 35:<br />

Fig. 36:<br />

Fig. 37:<br />

Fig. 38:<br />

Fig. 39:<br />

Fig. 40:<br />

Fig. 41:<br />

Fig. 42:<br />

Fig. 43:<br />

Fig. 44:<br />

Fig. 45:<br />

Fig. 46:<br />

13<br />

C-NMR spectrum of material "3" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit…………………………..<br />

IR spectrum of material "4" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit ……………………………………….<br />

Mass spectrum of material "4" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit<br />

………………………………………….<br />

1<br />

H-NMR spectrum of material "4" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ………………………....<br />

13<br />

C-NMR spectrum of material "4" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ……………………..…..<br />

DEPT 135 spectrum of material "4" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …..................................<br />

IR spectrum of material "5" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit ……………………………………….…<br />

UV spectrum of material "5" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit ……………………………………..….<br />

Mass spectrum of material "5" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …………………...........<br />

1<br />

H-NMR spectrum of material "5" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit……………………..…..<br />

UV spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit …………………………………………<br />

IR spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit …………………………………………<br />

EI-MS spectrum of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …………………….……<br />

FAB-MS spectrum of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …………………….…..<br />

1<br />

H-NMR spectrum of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …………………………..<br />

13<br />

C-NMR spectrum of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ……………..……….…<br />

1 1<br />

H- H COSY spectrum of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit…………………………<br />

DEPT 135 spectrum of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.………………………….<br />

APT spectrum of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit…………………………..<br />

gHSQCAD spectrum of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit……………………………<br />

gHMBC spectrum of material "6" of Phyllanthus<br />

II<br />

Page<br />

136<br />

147<br />

147<br />

148<br />

149<br />

149<br />

154<br />

154<br />

155<br />

155<br />

161<br />

161<br />

162<br />

162<br />

163<br />

163<br />

164<br />

164<br />

165<br />

166


Figure<br />

Fig. 49:<br />

Fig. 50:<br />

Fig. 51:<br />

Fig. 52:<br />

Fig. 53:<br />

Fig. 54:<br />

Fig. 55:<br />

Fig. 56:<br />

Fig. 57:<br />

Fig. 58:<br />

Fig. 59:<br />

Fig. 60:<br />

Fig. 61<br />

Fig. 62:<br />

Fig. 63:<br />

Fig. 64:<br />

Fig. 65:<br />

Fig.<br />

66&67:<br />

Fig.<br />

68&69<br />

III<br />

LIST OF FIGURES<br />

atropurpureus Boj. Hort. Maurit………………………….<br />

UV spectrum of material "7" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit…………………………………………..<br />

IR spectrum of material "7" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.………………………………………….<br />

Mass spectrum of material "7" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.…………………………<br />

1<br />

H-NMR spectrum of material "7" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.…………………………<br />

UV spectrum of material "8" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.…………… ………………………….....<br />

IR spectrum of material "8" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.……………………………………….<br />

Mass spectrum of material "8" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.…………………………<br />

1<br />

H-NMR spectrum of material "8" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.…………………………<br />

UV spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit…………………………………………..<br />

IR spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.…………….……………………………<br />

EI-MS spectrum of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit………………………….<br />

FAB-MS spectrum of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit………………….……….<br />

1<br />

H-NMR spectrum of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit……………………………<br />

13<br />

C-NMR spectrum of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit……………………..……<br />

1 1<br />

H- H Cosy spectrum of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit…………………………<br />

gHSQCAD correlation spectrum of material "9" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………………<br />

gHMBCAD correlation spectrum of material "9" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………..…..<br />

Effect of oral treatment with silymarin, ethanolic extract of<br />

aerial parts and total ethanolic extract of roots for 30 days<br />

on ALT and AST levels in adult male cirrhotic rats………<br />

Effect of oral treatment with silymarin, total ethanolic<br />

extract of aerial parts and total ethanolic extract of roots for<br />

30 days on total protein and albumin levels in adult male<br />

Page<br />

166<br />

172<br />

172<br />

173<br />

173<br />

181<br />

181<br />

182<br />

182<br />

189<br />

190<br />

190<br />

191<br />

191<br />

192<br />

192<br />

193<br />

193<br />

203<br />

203


LIST OF FIGURES<br />

Figure<br />

Fig.<br />

70& 71<br />

Fig. 72<br />

cirrhotic rats……………………………………………….<br />

Effect of oral treatment with silymarin, total ethanolic<br />

extract of aerial parts and total ethanolic extract of roots for<br />

30 days on malondialdehyde and glutathione levels in adult<br />

male cirrhotic rats…………………………………………...<br />

Anti-tumor activity of Phyllanthus atropurpureus Boj. Hort.<br />

Maurit. against hepatic cell line …………………………..<br />

IV<br />

Page<br />

204<br />

212


Table<br />

Table 1<br />

Table 2<br />

Table 3<br />

Table 4<br />

Table 5<br />

Table 6<br />

Table 7<br />

Table 8<br />

Table 9<br />

Table 10<br />

Table 11<br />

Table 12<br />

Table 13<br />

Table 14<br />

Table 15<br />

Table 16<br />

Table 17<br />

Table 18<br />

Table 19<br />

Table 20<br />

Table 21<br />

Table 22<br />

Table 23<br />

Table 24<br />

Table 25<br />

Table 26<br />

LIST OF TABLES<br />

V<br />

LIST OF TABLES<br />

Some of the oil plants of family Euphorbiaceae.…….……<br />

Some dyes present in family Euphorbiaceae ……….…….<br />

The sterols and terpenes isolated from genus Phyllanthus …<br />

Alkaloids of genus Phyllanthus…………………………...<br />

Lignans present in genus Phyllanthus……………………...<br />

Hydrolyzable (pyrogallol) tannins of genus Phyllanthus...<br />

Condensed tannins of genus Phyllanthus……………..….<br />

Flavonoids of genus Phyllanthus……………..…………..<br />

Oxygenated compounds present in genus Phyllanthus….<br />

Acids isolated from genus Phyllanthus………………..…<br />

Microscopical numerical values of the leaves of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit……….…….<br />

Phytochemical Screening of Powdered Phyllanthus<br />

atropurpureus Boj. Hort. Maurit…………………………<br />

Physical, Chromatographic and Chemical Characters of<br />

Successive Extractives of Aerial Parts ……………………<br />

Physical, Chromatographic and Chemical Characters of<br />

Successive Extractives of Subterranean Parts……………..<br />

The Results of Extraction and Fractionation of Air-Dried<br />

Powdered Plant Organs…………………………………<br />

TLC <strong>In</strong>vestigation of Light Petroleum Soluble Fraction….<br />

Results of GLC analysis of fatty acid methyl esters from<br />

the lipid fraction of Phyllanthus atropurpureus Boj. Hort.<br />

Maurit……………………………………………………….<br />

Results of GC analysis of the unsaponifiable matter of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit…………….<br />

Column Chromatographic Fractionation of light petroleum<br />

soluble fraction…………………………………………….<br />

TLC <strong>In</strong>vestigation of Ethyl Acetate Fractions using solvent<br />

system (9)………………………………………………….<br />

TLC <strong>In</strong>vestigation of Leaf Ethyl Acetate Fraction with<br />

different visualizing agents……………………………….<br />

Column Chromatography of Leaf Ethyl Acetate Fraction<br />

UV Spectral data of material "5" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit …………………………<br />

1 H-NMR spectral data of material "5" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ………………………..<br />

1 13<br />

HNMR and CNMR Spectral Data of Material "6" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit …………..<br />

1<br />

HNMR Spectral Data of Material "7" of Phyllanthus<br />

Page<br />

8<br />

9<br />

10<br />

15<br />

16<br />

21<br />

26<br />

28<br />

30<br />

31<br />

59<br />

108<br />

111<br />

112<br />

114<br />

116<br />

118<br />

120<br />

122<br />

138<br />

140<br />

141<br />

151<br />

152<br />

158<br />

169


LIST OF TABLES<br />

Table<br />

Table 27<br />

Table 28<br />

Table 29<br />

Table 30<br />

Table 31<br />

Table 32<br />

Table 33<br />

Table 34<br />

Table 35<br />

Table 36<br />

atropurpureus Boj. Hort. Maurit …………………………<br />

Comparison between robustaside A and material "7" data.<br />

TLC <strong>In</strong>vestigation of stem and Root Ethyl Acetate Fraction<br />

with different visualizing agents………………………….<br />

Column Chromatography of Ethyl Acetate Fraction of Root<br />

and Stem…………………………………………………..<br />

UV Spectral data of material "8" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ……………………….<br />

1<br />

H-NMR spectral data of material "8" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ………………………….<br />

UV Spectral data of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ………………………...<br />

1<br />

H-NMR (CD3OD, 500 MHz) and 13 C-NMR (CD3OD, 125<br />

MHz) spectral data of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit ………………………....<br />

Drugs and chemicals used in antihepatotoxic experiment…<br />

Effect of total extract of aerial parts and roots of<br />

Phyllanthus atropurpureus taken orally for 30 days on liver<br />

enzymes, plasma protein and antioxidant parameters in sub<br />

acute male cirrhotic rats…………………………………<br />

Antimicrobial activities of different fractions of P.<br />

atropurpureus Boj. Hort. Maurit …………………………<br />

VI<br />

Page<br />

170<br />

175<br />

176<br />

178<br />

179<br />

184<br />

185<br />

197<br />

202<br />

214


Scheme<br />

Scheme 1:<br />

Scheme 2:<br />

Scheme 3:<br />

Scheme 4:<br />

Scheme 5:<br />

Scheme 6:<br />

Scheme 7:<br />

Scheme 8:<br />

Scheme 9:<br />

LIST OF SCHEMES<br />

VII<br />

LIST OF SCHEME<br />

Extraction and Fractionation of Air-Dried Powdered<br />

Plant Organs of Phyllanthus atropurpureus Boj. Hort.<br />

Maurit………………………………………………….<br />

Mass fragmentation pattern of ß-sitosterol…………..…<br />

Mass fragmentation pattern of material "3" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………..<br />

Mass fragmentation pattern of material "4" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………..<br />

Mass fragmentation pattern of material "5" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………..…<br />

Mass fragmentation pattern of material "6" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………..…<br />

Mass fragmentation pattern of material "7" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………..<br />

Mass fragmentation pattern of material "8" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………..…<br />

Mass fragmentation pattern of material "9" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit………..…<br />

Page<br />

115<br />

131<br />

137<br />

150<br />

156<br />

167<br />

174<br />

183<br />

194


LIST OF ABBREVIATIONS<br />

AIDS<br />

ALT<br />

ANOVA<br />

APT<br />

AST<br />

ATCC<br />

BCG<br />

CCl4<br />

CDCl3<br />

COSY<br />

DEPT<br />

DMEM<br />

DMSO<br />

DNA<br />

EDTA<br />

EI-MS<br />

ELISA<br />

EtOAc<br />

eV<br />

FAB-MS<br />

FBS<br />

GSH<br />

gHMBCAD<br />

gHSQCAD<br />

HepG2<br />

HETCOR<br />

Hz<br />

IC50<br />

I.P.<br />

IR<br />

MS<br />

m/z<br />

nm<br />

LIST OF ABBREVIATIONS<br />

:Acquired immunodeficiency syndrome<br />

:Alanine aminotransferase<br />

:Analysis of variance<br />

:Attached Proton Test<br />

:Aspartate aminotransferase<br />

:American Type Culture Collection<br />

:Bromocresol green<br />

:Carbon tetrachloride<br />

:Deuterated chloroform<br />

:Correlation Spectroscopy<br />

:Destortionless Enhancement by Polarization Transfere<br />

:Dulbeco’s Modified Eagle’s Medium<br />

:Dimethyl sulphoxide<br />

:Deoxyribonucleic acid<br />

:Ethylene diamine tetra-acetic acid<br />

:Electron Impact Mass Spectrum<br />

:Enzyme Linked Immuno-Sorbent Analysis<br />

:Ethyl acetate<br />

:Electron volt<br />

:Fast atomic bombardment Mass Spectrum<br />

:Fetal bovine serum<br />

:Reduced glutathione<br />

:Heteronuclear Multiple Bond Correlation Spectroscopy<br />

:Heteronuclear Single Quantum Correlation Spectroscopy<br />

:Hepatocellular carcinoma cell line<br />

:Heteronuclear Correlation Spectroscopy<br />

: Hertz<br />

:half maximal inhibitory concentration<br />

:<strong>In</strong>traperitoneal<br />

:<strong>In</strong>frared<br />

:Mass Spectrum<br />

:Mass-to-charge ratio<br />

:Nanometers or 10 -9 meters<br />

VIII


NMR<br />

r.p.m.<br />

RPMI-1640<br />

ROS<br />

S.E.M<br />

SRB<br />

TCA<br />

TMS<br />

Tris<br />

:Nuclear Magnetic Resonance<br />

:Rotation per minute<br />

:Roswell Park Memorial <strong>In</strong>stitute medium<br />

:Reactive Oxygen Species<br />

:Standard Error of Mean<br />

: Sulphorhodamine-B<br />

: Trichloroacetic acid<br />

:Tetra methyl silane<br />

:Hydroxyl methyl amino methane<br />

IX<br />

LIST OF ABBREVIATIONS


<strong>In</strong>troduction<br />

- 1 -<br />

INTRODUCTION<br />

Family Euphorbiaceae (Spurge) represented all over the world by<br />

almost 326 genera and about 7750 species distributed mainly in both<br />

tropical and temperate regions except arctic regions. Over 60 genera<br />

and about 350 species have been reported from <strong>In</strong>dia (1) . Flora of<br />

Egypt comprises 7 genera and 52 species in this family (2) .<br />

Taxonomy<br />

Plants of family Euphorbiaceae are mostly trees or shrubs, rarely<br />

herbaceous or climber. Some are xerophytic or cactus-like or<br />

phylloclades; some are marshy; usually the plants contain milky sap,<br />

latex or acrid juice (1, 3-5) .<br />

The stems are herbaceous or woody; become cactus-like in<br />

several species of Euphorbia or phylloclades (4) .<br />

The leaves are usually simple, alternate, stipulate; often reduced<br />

or deciduous, sometimes palmetly lobed or deeply so. Leaves are<br />

rarely opposite or whorled . The stipules are present in the form of<br />

hairs, glands or thorns and the venation is pinnate or palmate (1, 6, 7) .<br />

The inflorescence is usually complex and varied from a raceme,<br />

a spike, a dichasium or even the flowers are solitary axillary but in<br />

majority of the cases, the inflorescence is a cyathium which appears<br />

like a single flower. Each cyathium contains terminally a single naked<br />

female flower, usually represented by a tricarpellary gynoecium. The<br />

female flower is surrounded by a cup-like involucre formed by 4 or 5<br />

connate sepaloid bracts; stamens in a scropioid manner; each stamen<br />

represented a naked male flower. On the rim of the cup-like involucres


- 2 -<br />

INTRODUCTION<br />

are present nectar-secreting glands, these glands are oval or crescent-<br />

shaped and often brightly coloured (1, 5) .<br />

The flowers are usually bracteate, bracteolate, actinomorphic,<br />

hypogynous, rarely perigynous and generally unisexual. The plant<br />

may be monoecious or dioecious (3, 6, 7) .<br />

Flower structure of Euphorbiaceae varies greatly from genus to<br />

genus. The most highly specialized type is that of Euphorbia, which<br />

has a single pistillate flower aggregated with a number of staminate<br />

flowers forming cyathium and enclosed in a cup-like structure with<br />

glands on its margins (3) .<br />

• The perianth is consisting of both calyx and corolla or only<br />

of corolla or sometimes both are absent; valvate or imbricate; calyx<br />

are composed of 3-6 free, sometimes united sepals; corolla of 0 to 6<br />

free or united petals but commonly 5 and usually none petals are<br />

present (1, 3, 6, 7) .<br />

• The androecium is of 1 to 100 or more but usually as many<br />

or twice as many as petals, free or monadelphous stamens forming a<br />

staminal column by the fusion of the filaments; anther bilocular, rarely<br />

3 to 4 locular; longitudinal or transversely dehiscent. The stamens<br />

have a jointed stalk, and the part below the joint is interpreted as a<br />

pedicel, with the filament above. Sometimes staminodes are present in<br />

pistillate flower. Pollen grains often tricolaporate or polyporate (1, 5, 7) .<br />

• The gynoecium is usually tricarpellary, rarely bicarpellary<br />

or pentacarpellary; syncarpus; superior, rarely semi-inferior; trilocular<br />

ovary with one or two anatropous ovule in each locule; of axial


- 3 -<br />

INTRODUCTION<br />

placentation. Styles are 3, each entire, bifid or bifurcating apically into<br />

2 feathery stigmas. A nectariferous disc is present at the base of the<br />

ovary. <strong>In</strong> staminate flowers; the gynoecium is sometimes present as a<br />

pistillode (1, 3, 6, 7) .<br />

The fruit is commonly capsule or schizocarpic, rarely<br />

indehiscent, berry or drupe (1, 5-7) .<br />

The seeds are sometimes arillate or showing a caruncle and<br />

usually with oily endosperm and straight to curved embryo (1, 6, 7) .<br />

General floral formula (1) :<br />

(A) Male flower:<br />

Br, ⊕, ♂, P3+3 or (3-5) or 0, A1-∞ or (3-∞ ) , G 0 or pistillode<br />

(B) Female flower:<br />

Br, ⊕, ♀, P 3+3 or (3-5) or (5), A0 or staminodes, G (3).<br />

The most fundamental division in Euphorbiaceae (8) is based on<br />

ovule number with a grouping of two biovulate subfamilies which<br />

lack latex and laticifers and three uniovulate ones.<br />

• Biovulate subfamilies:<br />

1. Phyllanthoideae.<br />

2. Oldfieldioideae.<br />

• Uniovulate subfamilies:<br />

1. Acalyphoideae.<br />

2. Crotonoideae.<br />

3. Euphorbioideae.


Genus Phyllanthus<br />

- 4 -<br />

INTRODUCTION<br />

Genus Phyllanthus is a widespread tropical genus and has been<br />

much employed in traditional medicine. It comprises 550 species. This<br />

genus name come from the Greek name Phyllan-thus which means<br />

leaf-flower; the flower of some species apparently born on the leaves<br />

(9, 10) . Plant of the genus Phyllanthus (10) are shrubs, trees or herbs.<br />

v The leaves are alternate and entire. It is arranged in opposite<br />

rows along the smaller branches as to give them the<br />

appearance of pinnate leaves.<br />

v The flowers are apetalous, in lateral panicles or solitary.<br />

Often pistillate and staminate flowers are together in axils of<br />

leaves.<br />

• The calyx:<br />

Imbricated and consisting of 4-6 sepals.<br />

• The androecium:<br />

Stamens are 3 or 4.<br />

• The gynoecium:<br />

Ovary consists of 3 to 4 locules with 2 ovules in each<br />

locule and each of the 3 styles usually bifid.<br />

v The fruit is usually berry or capsule.


- 5 -<br />

INTRODUCTION<br />

Taxonomical position of Phyllanthus atropurpureus Boj.<br />

Hort. Maurit.<br />

Taxonomically, Phyllanthus atropurpureus Boj. Hort. Maurit. is a<br />

species of Phyllanthus :<br />

Kingdom: Plant<br />

Subkingdom: Emprophyta-Siphonogama<br />

Phyllum: Angiospermeae<br />

Class: Dicotyledoneae<br />

Subclass: Archichlamydeae<br />

Order: Geraniales<br />

Family: Euphorbiaceae<br />

Subfamily: Phyllanthoideae<br />

Tribe: Phyllanthus<br />

Recent taxonomical study of subfamily Phyllanthoideae<br />

separates this subfamily giving it a new classification termed family<br />

Phyllanthaceae on the basis of molecular data and DNA sequence<br />

(internal transcribed spacer (ITS) regions of the nuclear ribosomal<br />

DNA and plastide matK gene sequences) (8, 11, 12) .


- 6 -<br />

INTRODUCTION<br />

Medicinal and Economical Importance of Family<br />

Euphorbiaceae (6)<br />

Family Euphorbiaceae has evidently provided many plants with<br />

economical and medicinal importance.<br />

The following are selected examples of pronounced values:-<br />

[A] Medicinally used plants:<br />

1. Jatropha gossypifolia leaves are used in eczema, while the roots<br />

are used in leprosy and snakebites (1) .<br />

2. Entire plant of Synadenium grantii is used as CNS stimulant (1) .<br />

3. Croton cascarilla and C. elateria bark are used as tonic (1) .<br />

4. Euphorbium, a drug obtained from latex of Euphorbia<br />

resinifera, is used as a purgative (1) .<br />

5. Twig of P. reticulates and P. muellerianus were used as diuretic<br />

in South Africa and Nigeria (1) .<br />

6. Phyllanthus emblica syn. Emblica officinalis (Amla) is used as<br />

diuretic, laxative, digestive, emetic, anti-inflammatory and<br />

antiscorbutic agent in treatment of scurvy as their tannin<br />

contents retards the oxidation of vit.C, in preparing shampoo,<br />

in making hair dyes, ophthalmic anti-inflammatory agent and<br />

in the treatment of colic and other abdominal illness due to the<br />

presence of tannins and vit.C (1, 13- 14) .<br />

7. P. niruri has positive antihepatotoxic properties (13) .<br />

8. P. acuminatus root has antitumor properties (13) .<br />

9. Mallotus philippensis (Kamela tree) fruits are used as cathartic,<br />

anthelmintic and oral contraceptive (1, 13) .<br />

10. Ricinus communis (Castor) oil is used as purgative (1) and<br />

antidote in food poisoning (1, 13) .


- 7 -<br />

INTRODUCTION<br />

11. P. urinaria and /or P. niruri are used as diuretic, expectorant,<br />

emmenagogue, and a remedy for colic and dysentery (14) .<br />

12. P. acidus is used as emetic, purgative, remedy for smallpox if<br />

accompanied by a cough (14) .<br />

13. P. elegans roots are used as antipyretic (14) .<br />

14. P. reticulates is used in treatment of bleeding gums, smallpox,<br />

syphilis, asthma, sore throat, dysentery (14) .<br />

15. Fruits of P. engleri are used as stomachic and in the treatment<br />

of constipation and cough (15) .<br />

16. Latex of many genera of Euphorbiaceae is used to treat<br />

toothache as it placed carefully in the hollow of carious teeth<br />

for relief (15) .<br />

Several Euphorbiaceae are poisonous, causing sickness or death<br />

if ingested, or dermatitis if juice contacts the skin (1) .<br />

[B] Economically important plants:<br />

(A) Source of Rubber:<br />

Euphorbiaceae trees are considered as the main source of latex,<br />

which is the main commercial source of rubber.<br />

Hevea brasiliensis and Manihot glaziovii are common and<br />

important species of latex yielding plants (1, 6) .<br />

(B) Ornamental plants:<br />

Euphorbia plucherrima ,Codiaeum variegatum and Phyllanthus<br />

(Otaheite gooseberry) is the famous ornamental plant (with red , pink<br />

or white floral leaves) (1, 5, 6) .


(C) Cassava or Manioc:<br />

- 8 -<br />

INTRODUCTION<br />

Tuberous root of Manihot esculents (cassava) are rich in starch<br />

(Arrowroot) and used for preparation of bread, biscuits and other<br />

foodstuff (1, 6) .<br />

(D) Oil plants (1, 6) :<br />

Table (1): Some of the oil plants of family Euphorbiaceae:<br />

Name of oil Source Uses of the oil<br />

Croton oil<br />

Castor oil<br />

Seeds of Croton tiglium<br />

(jamalghota)<br />

Seeds of Ricinus communis<br />

(Arandi)<br />

Jatropha oil Seeds of Jatropha curcas.<br />

Tung oil<br />

(E) Dyes (1) :<br />

Seeds of Aleurites fordii, A.<br />

moluccana and A. montana<br />

As powerful purgative<br />

1- As a vegetable oil.<br />

2- As purgative (13) .<br />

3- as lubricant.<br />

4- <strong>In</strong> paint, varnish and<br />

plastic industries.<br />

1- As purgative.<br />

2- <strong>In</strong> skin disease.<br />

3- <strong>In</strong> rheumatism.<br />

4- <strong>In</strong> manufacture of<br />

soaps , lubricants,<br />

candles,….etc<br />

1- <strong>In</strong> preparation of<br />

paints, varnishes,<br />

linoleum, <strong>In</strong>dia ink.<br />

2- <strong>In</strong> waterproofing the<br />

paper, wood,….etc<br />

Table (2): Some dyes present in plants of family Euphorbiaceae:<br />

Type of dye source uses<br />

Mallotus philippinensis<br />

Kamela dye<br />

fruits.<br />

For dyeing wool and silk.<br />

Blue dye Jatropha curcus bark For dyeing fishing nets.<br />

Purple dye<br />

Chrozophora tinctoria bark For dyeing in textile<br />

industry<br />

Red dye Kirganelia reticulate roots


(F) Timber plants (1) :<br />

- 9 -<br />

INTRODUCTION<br />

Timber used for packing cases, tea boxes, veneers, plywood, and<br />

match industry is from: Aporosa dioica, Bischofia javanica, Drypetes<br />

roxburghii, Gelonium multiflorum, Hemicyclia andamanica,<br />

Hemicyclia elata, Hura crepitans and Trewia nudiflora.


R= H;<br />

ß-Sitosterol<br />

Chemical Review on Genus Phyllanthus<br />

- 10 -<br />

INTRODUCTION<br />

Literature survey on genus Phyllanthus reveals the presence of<br />

sterols and/ or terpenes, flavonoids, lignans, alkaloids, polyphenolic<br />

compounds and tannins in addition to acids.<br />

These different classes can be presented as follows:<br />

1. Sterols and/or terpenes:<br />

The most common sterols and terpenes isolated from the genus<br />

Phyllanthus are represented in the following table:<br />

Table (3): The sterols and terpenes isolated from the genus<br />

Phyllanthus.<br />

Name of Compound Structure Species & ref.<br />

R= glu.;<br />

ß-Sitosterol-O- glucoside RO<br />

R= H;<br />

Stigmasterol<br />

R= glu.;<br />

Stigmasterol-O-glucoside<br />

Campesterol<br />

RO<br />

HO<br />

oxyphyllus (16)<br />

(17, 18)<br />

flexuosus<br />

muellerianus (19) .<br />

(20, 21)<br />

reticulatus<br />

watsonii (22)<br />

urinaria<br />

(23, 24)<br />

corcovadensis (25)<br />

(26, 27)<br />

sellowianus<br />

oligospermus (28)<br />

anisolobus (29)<br />

singmapattiana (30)<br />

debilis (31)<br />

niruri (32)<br />

flexuosus (18)<br />

reticulatus (21)<br />

urinaria (23)<br />

corcovadensis (25)<br />

(26, 27)<br />

sellowianus<br />

anisolobus (29)<br />

corcovodensis (25)<br />

sellowianus (27)


R= Me;<br />

Friedelin<br />

R= COOH;<br />

Polpunonic acid<br />

R= α- H;<br />

Epifriedelanol<br />

R= β- H;<br />

Friedelan-3ß-ol<br />

- 11 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

1ß ,22ß-dihydroxyfriedelin<br />

R1= R2= H, R3= OH;<br />

22 ß-hydroxyfriedel-1-ene<br />

R1= OH, R2= Me, R3= H;<br />

11ß-hydroxy-D:A-friedoolean-1-en-3one<br />

21α-hydroxyfriedelan-3-one<br />

21α-hydroxyfriedel-4(23)-en-3-one<br />

26- nor-D:A-friedoolean-14-en-3ß-ol<br />

R1= R3= OH, R2= Me;<br />

Olean-12-en-3ß,15α diol<br />

R1=OH, R2=CH2OH, R3=H;<br />

Olean-12-en-3ß, 24-diol<br />

R1= R3= OH, R2=CH2OH;<br />

Olean-12-en-3ß, 15α, 24-triol<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

R 1<br />

OH<br />

R 1<br />

R 2<br />

R2<br />

R<br />

R3<br />

R<br />

OH<br />

R 3<br />

OH<br />

OH<br />

oxyphyllus (16)<br />

flexuosus (18)<br />

reticulates (20)<br />

watsonii (22)<br />

urinaria (23)<br />

singampattiana (30)<br />

reticulatus (20)<br />

watsonii (22)<br />

muellerianus (19)<br />

flexuosus (17)<br />

muellerianus (19)<br />

reticulatus (21)<br />

reticulatus (20)<br />

watsonii (22)<br />

flexuosus<br />

watsonii (22)<br />

(17, 18, 33)


- 12 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

Oleana-9(11):12-diene-3ß-ol<br />

R= Me;<br />

Oleana-11:13(18)-diene-3ß-ol<br />

R= CH2OH;<br />

Oleana-11:13(18)-diene-3ß,<br />

24-diol<br />

R1= CH3, R2= H;<br />

α – amyrin<br />

R1= H, R2= CH3;<br />

ß - amyrin HO<br />

δ -amyrin acetate<br />

Phyllanthol<br />

Phyllanthone<br />

R=α- OH;<br />

Phyllanthosterol<br />

R=β- OH;<br />

Pyllanthostigmasterol<br />

Phyllanthosecosteryl ester<br />

O<br />

CO<br />

HO<br />

HO<br />

AcO<br />

HO<br />

R<br />

O<br />

OH<br />

(CH2)5 CH<br />

R<br />

(CH 2) 8<br />

R 1<br />

OH<br />

CH<br />

(CH 2) 7<br />

R 2<br />

CH 3<br />

flexuosus (18)<br />

flexuosus<br />

(19, 33)<br />

flexuosus (18)<br />

urinaria (24)<br />

singampattiana (30)<br />

acidus (34)<br />

polyanthus (35)<br />

acidus (34)<br />

polyanthus (35)<br />

sellowianus (36)<br />

polyanthus (35)<br />

fraternus (37)<br />

fraternus (37)


Fraternusterol<br />

- 13 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

29-nor-3,4-seco-friedelan-4(23),20(30)diene-3-oic<br />

acid<br />

R1= H, R2= OH, R3= Me;<br />

Lupeol<br />

R1= H, R2= OAc, R3= Me;<br />

Lupeol acetate<br />

R1=H, R2= OH, R3=CH2OH;<br />

Lup-20(29)-en-3ß, 24-diol<br />

R1= R2= β OH, R3= Me;<br />

Lup-20(29)-ene-1ß, 3ß-diol<br />

R= ═O;<br />

Lupenone<br />

R= CH3(CH2)14COO;<br />

Lupenyl palmitate<br />

R= CH2OH;<br />

Betulin<br />

R= COOH;<br />

Betulinic acid<br />

R= H;<br />

Glochidone<br />

R= OH;<br />

Glochidonol<br />

Glochidiol<br />

HO<br />

R2<br />

O<br />

HO<br />

HO<br />

O<br />

COOH<br />

R 1<br />

R<br />

OH<br />

R 3<br />

O<br />

R<br />

fraternus (37)<br />

oxyphyllus (16)<br />

oxyphyllus (16)<br />

flexuosus (18)<br />

watsonii (22)<br />

urinaria (24)<br />

sellowianus (26)<br />

flexuosus (33)<br />

watsonii (22)<br />

polyanthus (35)<br />

reticulatus (20)<br />

flexuosus (33)<br />

flexuosus (18)<br />

reticulates (20)<br />

watsonii (22)<br />

sellowianus<br />

toxodiifolius (39)<br />

virgatus (40)<br />

sellwoianus (26)<br />

(26, 27, 38)


- 14 -<br />

INTRODUCTION<br />

Name of Compound<br />

R=α OAc;<br />

Structure Species & ref.<br />

(20 S)-3α-acetoxy-24-methylene<br />

dammaran-20-ol<br />

HO<br />

R= ß OAc;<br />

(20 S)-3ß -acetoxy-24-methylene<br />

dammaran-20-ol<br />

β- daucosterol<br />

5-hydroxy-6,9-epoxy-guaiane<br />

R1= R2= OH;<br />

phyllaemblic acid B<br />

R1=H, R2= OH;<br />

phyllaemblic acid C<br />

R1= H, R2= O-glu.;<br />

phyllaemblicin D<br />

R= H;<br />

Spruceanol<br />

R= OH;<br />

Cleistanthol<br />

Trans phytol<br />

(2Z,6Z,10Z,14E,18E)-farnesyl farnesol<br />

HO<br />

R<br />

HO<br />

O<br />

OH<br />

OH<br />

O<br />

HO<br />

Bisabolane-type sesquiterpenoids<br />

R 1<br />

HOOC<br />

H<br />

OH<br />

OH<br />

O<br />

H O<br />

O HO<br />

Cleistanthane diterpenes<br />

R<br />

HO<br />

Acyclic diterpenes<br />

HO<br />

Acyclic triterpene<br />

OH<br />

OH<br />

R2<br />

polyanthus (35)<br />

emblica (41)<br />

oxyphyllus (16)<br />

emblica (42)<br />

oxyphyllus (16)<br />

niruri (43)<br />

niruri (44)


2. Alkaloids:<br />

- 15 -<br />

INTRODUCTION<br />

Alkaloids are widely distributed through different species of the<br />

genus Phyllanthus; they are represented in the following table:<br />

Table (4): Alkaloids of genus Phyllanthus.<br />

Phyllanthimide<br />

R= H;<br />

Securinine<br />

R= OMe;<br />

Phyllanthine<br />

Dihydrosecurinine<br />

R= α- OH;<br />

Isobubbialine<br />

R= β- OH;<br />

Epibubbialine<br />

R= H;<br />

Norsecurinine<br />

Name of Compound Structure Species & ref.<br />

R= OMe;<br />

4-methoxy-nor- securinine<br />

R= H;<br />

14,15-dihydroallo-securinin-15ß-ol<br />

R= OMe;<br />

Simplexine<br />

Viroallosecurinine<br />

R<br />

R<br />

R<br />

CH 2CH 2<br />

N<br />

N<br />

N<br />

N<br />

O<br />

N<br />

O<br />

O<br />

O<br />

N<br />

O<br />

H O<br />

N<br />

H<br />

O<br />

O<br />

O<br />

R<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

N(CH3)2<br />

sellowianus (45)<br />

discoideus (46)<br />

amarus (47)<br />

simplex (48)<br />

niruri (49)<br />

discoideus (46)<br />

amarus (47)<br />

discoideus (46)<br />

amarus (47)<br />

niruri (49)<br />

discoideus (46)<br />

simplex (48)<br />

discoideus (46)


Niruroidine<br />

- 16 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

3. Lignans:<br />

H<br />

N<br />

H<br />

O<br />

O<br />

H<br />

H H<br />

OH<br />

niruroides (50)<br />

The literature survey of the genus Phyllanthus reveals the<br />

presence of large number of lignans that are summarized in the<br />

following table:<br />

Table (5): Lignans present in genus Phyllanthus:<br />

Name of Compound Structure<br />

A- Diarylbutane type:<br />

Species & ref.<br />

R1= R2= OMe, R3= H;<br />

Phyllanthin<br />

R1 CH2OMe urinaria (23)<br />

R1= R2= OH, R3= OMe;<br />

Demethylenedioxyniranthin<br />

R= H;<br />

5-demethoxyniranthin<br />

R= OMe;<br />

Niranthin<br />

R1= H, R2= ═O;<br />

Hinokinin<br />

R1= ═O, R2= H;<br />

Heliobuphthalmin lactone<br />

(+)-8-(3,4-(methylenedioxy) benzyl)-8'-<br />

(3',4'-dimethoxy-benzyl) butyrolactone<br />

R 2<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

R 3<br />

R<br />

OMe<br />

CH2OMe<br />

OMe<br />

CH 2 OMe<br />

OMe<br />

OMe<br />

O<br />

OMe<br />

CH 2OMe<br />

O<br />

R 1<br />

O<br />

R 2<br />

O<br />

O<br />

OMe<br />

debilis (31)<br />

(32, 51- 59)<br />

niruri<br />

amarus (60)<br />

niruri<br />

urinaria<br />

virgatus (63)<br />

(32, 51, 52, 56)<br />

urinaria<br />

niruri (56)<br />

virgatus (63)<br />

virgatus (63)<br />

(23, 61, 62)<br />

(23, 61, 62)


Dextrobursehernin<br />

- 17 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

R1= R2 = R3 = OH, R4= CH2OH;<br />

Seco-isolariciresinol<br />

R1= R2 = R3 = OMe, R4= CH2OMe;<br />

Seco-isolariciresinol trimethyl ether<br />

Linnanthin<br />

R= H;<br />

Hydroxyniranthin<br />

R= OMe;<br />

7'- hydroxyl-3',4',5,9,9'-pentamethoxy-3,<br />

4-methylenedioxy lignan<br />

Nirphyllin<br />

Hypophyllanthin<br />

R1=H, R2=R3= OMe;<br />

Phyltetralin<br />

R1=O-glu., R2=OH, R3=H;<br />

Phyllamyricoside C<br />

MeO<br />

MeO<br />

R 1<br />

R 2<br />

MeO<br />

MeO<br />

O<br />

O<br />

O<br />

O<br />

R<br />

OMe<br />

OMe<br />

R 3<br />

OMe<br />

OH<br />

OMe<br />

O<br />

R 4<br />

O<br />

O<br />

O<br />

CH 2OH<br />

OMe<br />

CH 2OMe<br />

CH 2OMe<br />

OMe<br />

CH 2 OMe<br />

CH 2 OMe<br />

OMe<br />

CH 2 OMe<br />

MeO OMe<br />

OH<br />

B- Aryltetralin type:<br />

MeO<br />

O<br />

MeO<br />

MeO<br />

O<br />

MeO<br />

R 1<br />

R 2<br />

CH2OMe<br />

CH 2 OMe<br />

CH 2OMe<br />

OMe<br />

CH 2R 2<br />

CH 2R 3<br />

OMe<br />

urinaria<br />

(23, 61, 62)<br />

oxyphyllus (16)<br />

niruri (64)<br />

niruri (59)<br />

niruri (64)<br />

urinaria (65)<br />

niruri (66)<br />

debilis (31)<br />

(32, 51, 52, 54-58, 67,<br />

niruri<br />

68)<br />

amarus (60)<br />

virgatus (63)<br />

(23, 61, 62)<br />

urinaria<br />

(32, 51, 52)<br />

niruri<br />

urinaria<br />

virgatus (63)<br />

myrtifolius (69)<br />

(23, 61, 62)


- 18 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

R1= OMe, R2= Me;<br />

Nirtetralin<br />

R1= H, R2= Me;<br />

Isolintetralin<br />

R1= H, R2= H;<br />

2,3-desmethoxy seco-isolintetralin<br />

R1= H, R2= COMe;<br />

2,3-desmethoxy seco-isolintetralin<br />

diacetate<br />

Neonirtetralin<br />

R1= H, R2= R3= OMe;<br />

Lintetralin<br />

R1= R3= H, R2= OH;<br />

Phyllamyricin F<br />

R1= O-β-Glu, R2= OH, R3= H;<br />

Phyllamyricoside A<br />

R1= O-β-Glu, R2= R3= OH;<br />

Phyllamyricoside B<br />

Urinatetralin<br />

Seco-4-hydroxylintetralin<br />

Virgatusin<br />

O<br />

O<br />

O<br />

O<br />

MeO<br />

MeO<br />

R 1<br />

OMe<br />

C- Seco-lignan type:<br />

O<br />

O<br />

MeO<br />

MeO<br />

CH 2OR 2<br />

CH 2OR 2<br />

OMe<br />

OMe<br />

OMe<br />

O<br />

R 1<br />

O<br />

OH<br />

D- Tetrahydrofuran type:<br />

O<br />

O<br />

MeO<br />

O<br />

O<br />

CH 2 OMe<br />

CH 2OMe<br />

OMe<br />

O<br />

CH 2 R 2<br />

O<br />

CH2R3<br />

CH 2 OMe<br />

CH 2OMe<br />

CH 2OMe<br />

CH 2OMe<br />

O<br />

OMe<br />

OMe<br />

OMe<br />

urinaria<br />

niruri<br />

(23, 32, 61, 62)<br />

(54, 56, 59)<br />

virgatus (63)<br />

niruri (55)<br />

urinaria<br />

niruri<br />

(23, 61, 62)<br />

( 56, 64)<br />

myrtifolius (69)<br />

urinaria<br />

niruri (64)<br />

urinaria<br />

(23, 61, 62)<br />

(23, 61, 62)


Urinaligran<br />

Pinoresinol<br />

R1= ═O, R2=H;<br />

Retrojusticidin B<br />

R1= OH, R2= ═O;<br />

Piscatorin<br />

R1= R2= OH;<br />

Haplomyrtin<br />

R1 = OH, R2= OMe;<br />

Diphyllin<br />

R1 = R2= OMe;<br />

Justicidin A<br />

R1 = H, R2 = OMe;<br />

Justicidin B<br />

Phyllanthusmin A<br />

R= COOMe;<br />

Phyllanthusmin B<br />

R= OH;<br />

Phyllanthusmin C<br />

- 19 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

O<br />

O<br />

MeO<br />

E- Furofuran type:<br />

HO<br />

OMe<br />

F- Arylnaphthalene type:<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

R 2<br />

MeO<br />

MeO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

R 1<br />

O<br />

OMe<br />

O<br />

O<br />

O<br />

O<br />

OMe<br />

O<br />

O<br />

O<br />

R 1<br />

O<br />

R 2<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

OMe<br />

H H<br />

OH<br />

O O H<br />

OH<br />

H<br />

R<br />

urinaria<br />

(23, 61, 62)<br />

oxyphyllus (16)<br />

anisolobus (29)<br />

piscatorum (70)<br />

oligospermus (28)<br />

oligospermus (28)<br />

oligospermus (28)


- 20 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

G- Arylnaphthalide lignan type:<br />

R1= R3= OMe, R2=H;<br />

Phyllamyricin D<br />

R1= R2= H, R3= OMe;<br />

Phyllamyricin E<br />

R= OH;<br />

Cleistanthin A<br />

R= OMe;<br />

Cleistanthin A methyl ester<br />

R= OH;<br />

Cleistanthoside A<br />

R=OAc;<br />

Taxodiifoloside<br />

Phyllnirurin<br />

Virgatyne<br />

4. Tannins:<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

O<br />

R<br />

O<br />

O<br />

H-Neolignan type :<br />

O<br />

O<br />

O<br />

O<br />

I- Norlignan type:<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

OMe<br />

CH 2OH<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

R<br />

O<br />

O<br />

OH<br />

OH<br />

O<br />

OH<br />

O<br />

myrtifolius (69)<br />

taxodiifolius (39)<br />

taxodiifolius (39)<br />

niruri (66)<br />

virgatus (40)<br />

Tannins are reported to be widely distributed through different<br />

species of the genus Phyllanthus; they are presented in the following<br />

tables:<br />

MeO<br />

MeO<br />

R 1 R2 R 3<br />

O<br />

O<br />

O<br />

O


- 21 -<br />

INTRODUCTION<br />

Table (6): Hydrolyzable (pyrogallol) tannins of genus Phyllanthus.<br />

Name of Compound Structure Species & ref.<br />

1- Gallotannins<br />

R1= H, R2= COOH;<br />

Protocatechuic acid<br />

R1= OH, R2= H;<br />

Pyrogallol<br />

R1= OH, R2= COOH;<br />

Gallic acid<br />

R1= OH, R2= COOMe;<br />

Methyl gallate<br />

R1= OH, R2= COOCH2CH3;<br />

Gallic acid ethyl ester<br />

R1= O-glu., R2= COOH;<br />

Gallic acid 3-O-glucoside<br />

m-digallic acid<br />

1,6-digalloylgluco-pyranose<br />

3,6-di-O-galloylglucose<br />

HO<br />

HO<br />

HO<br />

CO<br />

O<br />

R 1<br />

OH<br />

OH<br />

COOH<br />

OH<br />

O<br />

OH<br />

O<br />

HO<br />

O<br />

R 2<br />

OH<br />

HO<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

O<br />

C OH<br />

O OH<br />

Gallic acid 3-O-(6'-O-galloyl)-ß-D-<br />

HO<br />

HO<br />

glucoside O<br />

HO<br />

HO<br />

HO<br />

HO<br />

OH<br />

CO<br />

CO<br />

OH<br />

O<br />

C<br />

HO<br />

O<br />

OH<br />

OH<br />

HO HO<br />

OH<br />

COOH<br />

O<br />

OH<br />

OH<br />

OH<br />

reticulates (21)<br />

sellowianus<br />

(27, 38)<br />

virgatus (40)<br />

(67, 68, 71, 72)<br />

niruri<br />

emblica<br />

tenellus (75)<br />

amarus (76)<br />

urinaria (77)<br />

emblica (78)<br />

emblica<br />

virgatus (40)<br />

amarus (76)<br />

(41, 73, 74)<br />

(74, 78)<br />

emblica (74)<br />

emblica (74)


Bergenin<br />

Virganin<br />

Furosin<br />

- 22 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

Phyllanthusiin A<br />

Phyllanthusiin B<br />

Phyllanthusiin C<br />

HO<br />

MeO<br />

HO<br />

HOOC<br />

O<br />

OH<br />

H<br />

CH2OH O<br />

OH<br />

O<br />

O<br />

O<br />

HO HO<br />

HO<br />

O<br />

HO<br />

HO<br />

HO<br />

HO<br />

HO<br />

O<br />

CO CO<br />

O<br />

O<br />

O<br />

O<br />

O O<br />

CO CO<br />

OH<br />

O<br />

HOOC<br />

HO<br />

HO<br />

CO<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

CO<br />

CO<br />

O<br />

CO<br />

COOH HO<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

CO<br />

HO<br />

HOOC<br />

CO<br />

OH<br />

H<br />

O<br />

CO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

CO<br />

HO<br />

HO<br />

O<br />

O<br />

CO<br />

H<br />

O<br />

CH 2OH<br />

O<br />

H<br />

OH<br />

OH<br />

O<br />

O OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

O<br />

C OH<br />

OH<br />

OH<br />

HO OH<br />

OH<br />

OH<br />

OH<br />

CO<br />

O<br />

C OH<br />

OH<br />

OH<br />

HO OH<br />

OH<br />

OH<br />

OH<br />

CO<br />

O<br />

C OH<br />

OH<br />

OH<br />

HO OH<br />

OH<br />

OH<br />

CO<br />

OH<br />

O<br />

C OH<br />

OH<br />

OH<br />

OH<br />

flexuosus<br />

virgatus (40)<br />

(18, 79)<br />

emblica (74)<br />

amarus (80)<br />

virgatus (40)<br />

sellowianus (27)<br />

flexuosus (79)<br />

flexuosus (79)<br />

flexuosus (79)


- 23 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

Phyllanthusiin D<br />

Phyllanthusiin F<br />

Phyllanthusiin G<br />

Amariin<br />

Geraniinic acid B<br />

HO<br />

O<br />

HO<br />

CO<br />

O<br />

O<br />

HO<br />

CO<br />

O<br />

O<br />

O<br />

CO O<br />

CO<br />

H<br />

HO<br />

HO<br />

CH2 CO<br />

O<br />

HO<br />

O<br />

CH3<br />

OH<br />

O<br />

HO CO<br />

HO<br />

HO<br />

HO<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

CO<br />

OH<br />

OH<br />

OH<br />

OH<br />

HO OH<br />

OH<br />

O<br />

C OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

O<br />

O<br />

HOH2C<br />

O<br />

C OH<br />

OH<br />

O<br />

O<br />

OH<br />

CO<br />

O<br />

CH 2<br />

OH<br />

OH<br />

O<br />

O<br />

HO<br />

HO<br />

HO<br />

O<br />

HO<br />

HO<br />

O<br />

CO<br />

OC<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

O CO OH<br />

OH<br />

OH<br />

OH<br />

O O<br />

C<br />

O O<br />

OH<br />

O<br />

O<br />

O<br />

H<br />

CO CO<br />

CO O<br />

CO<br />

HO<br />

H<br />

CO<br />

O<br />

O<br />

HOOC<br />

OH<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

CO<br />

O<br />

CO O<br />

CO<br />

H<br />

H<br />

OH<br />

O<br />

OH<br />

O<br />

O CO<br />

HO<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

flexuosus (79)<br />

urinaria (81)<br />

urinaria (82)<br />

amarus (80)<br />

amarus (80)<br />

flexuosus (79)


G = OOC<br />

HO O<br />

OH<br />

- 24 -<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

R= OH;<br />

Pinocembrin-7-O-[4'',6''-(S)-hexahydroxyldiphenoyl]-<br />

ß-D-glucose<br />

R= G;<br />

Pinocembrin-7-O-[3"-O-galloyl-<br />

4'',6''-(S)-hexahydroxydiphenoyl]<br />

-ß-D-glucose<br />

Chebulanin<br />

R= H;<br />

Chebulagic acid<br />

R= OH;<br />

Amariinic acid<br />

Neochebulagic acid<br />

Elaeocarpusin<br />

HO<br />

HO<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

CO<br />

H<br />

CO<br />

H<br />

HOOC<br />

HO<br />

OH<br />

O OH<br />

HO<br />

O<br />

OH HO OH<br />

HO<br />

OH<br />

OH<br />

CO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

CO CO<br />

R<br />

HOOC<br />

HO<br />

OH<br />

O OH<br />

HO<br />

O<br />

OH HO OH<br />

HO<br />

CO CO<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

CO<br />

O<br />

C OH<br />

OH<br />

O O HO<br />

HO OH<br />

HOOC H<br />

H<br />

OH<br />

H<br />

HOOC<br />

O<br />

HO OH<br />

O<br />

HO OH<br />

HO<br />

H<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

C O<br />

O<br />

C O<br />

CO<br />

O<br />

O OH<br />

R<br />

O<br />

CO<br />

O<br />

O<br />

O<br />

O CO<br />

O<br />

H<br />

CH 2<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

CO<br />

CO<br />

O O<br />

OH<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

tenellus (75)<br />

emblica (74)<br />

emblica (74)<br />

amarus (80)<br />

flexuosus (79)<br />

emblica (74)<br />

emblica (74)<br />

amarus (80)


- 25 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

Putranjivain A<br />

R= OH;<br />

Ellagic acid<br />

R=OMe;<br />

2,7-di-O- methylellagic acid<br />

Geraniin<br />

Corilagin<br />

Isocorilagin<br />

Phyllanemblinin a<br />

HO<br />

OH<br />

O<br />

HO<br />

HO OH<br />

O<br />

O<br />

CO<br />

O<br />

HO<br />

O CO<br />

O<br />

O<br />

O O<br />

CO CO<br />

H<br />

OH<br />

O<br />

OH<br />

2-Ellagitannins<br />

HO<br />

HO<br />

HO<br />

O<br />

HO<br />

R<br />

CO<br />

HO HO<br />

HO<br />

HO<br />

HO<br />

CO<br />

HO<br />

OH<br />

O CH 2<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OO<br />

O<br />

CO CO<br />

H<br />

HO OH<br />

O<br />

CO<br />

OH<br />

O OH<br />

HO OH<br />

CO<br />

OH<br />

OH<br />

OH<br />

R<br />

OH<br />

OH<br />

OH<br />

OH<br />

CO OH<br />

OH<br />

OH HO OH<br />

CO CO<br />

O<br />

O CH 2<br />

OH<br />

O<br />

OH<br />

OH<br />

OH<br />

O<br />

O CO OH<br />

O<br />

OH<br />

OH OH<br />

OHHO<br />

OH<br />

HO OH O<br />

CO<br />

OH<br />

OH<br />

OH<br />

O<br />

O CO OH<br />

O<br />

O O<br />

CO<br />

CO<br />

CO<br />

HO OH<br />

HO<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

emblica<br />

(74, 78)<br />

flexuosus (79)<br />

reticulates (21)<br />

emblica (41)<br />

(71, 72)<br />

niruri<br />

urinaria (83)<br />

sellowianus (27)<br />

virgatus (40)<br />

niruri (72)<br />

emblica<br />

tenellus (75)<br />

(74, 84)<br />

(76, 80)<br />

amarus<br />

flexuosus (79)<br />

urinaria (85)<br />

reticulates (21)<br />

virgatus (40)<br />

(67, 68, 71, 86)<br />

niruri<br />

emblica<br />

tenellus (75)<br />

amarus (76)<br />

flexuosus (79)<br />

niruri<br />

(73, 74)<br />

(67, 68)<br />

emblica (84)<br />

emblica (74)


- 26 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

Phyllanemblinin B<br />

Phyllanemblinin C<br />

R1= A, R2= R3= OH;<br />

Phyllanemblinin D<br />

R1= R3= OH, R2= A;<br />

Phyllanemblinin E<br />

R1= R2= OH, R3= A;<br />

Phyllanemblinin F<br />

HO<br />

HO<br />

HO<br />

HO<br />

CO<br />

O<br />

O<br />

HO OH<br />

HO<br />

CO<br />

O<br />

OH HO<br />

OH HO<br />

O<br />

CO<br />

HOOC<br />

HO<br />

HOOC<br />

R2 R1 R 3<br />

HOOC<br />

HOOC<br />

O O CO<br />

CO<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

CO<br />

O CO OH<br />

O<br />

O<br />

OH<br />

H<br />

O<br />

CO<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

O CO<br />

Table (7): Condensed tannins of genus Phyllanthus:<br />

A =<br />

COO<br />

HO<br />

H<br />

H<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

emblica (74)<br />

emblica (74)<br />

emblica (74)<br />

Name of Compound Structure Species& ref.<br />

R1= OH, R2= H;<br />

(-)- Epiafzelechin<br />

R1= β- OH, R2= OH;<br />

(+)-Catechin<br />

R1= α- OH, R2= OH;<br />

(-)-Epicatechin<br />

R1= α- G, R2= OH;<br />

(-)-Epicatechin-3- O- gallate<br />

(±) -Gallocatechin<br />

HO<br />

OH<br />

G = COO<br />

HO<br />

OH<br />

O<br />

O<br />

R 1<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

R2<br />

OH<br />

OH<br />

emblica<br />

emblica<br />

(73, 74)<br />

(73, 74)<br />

amarus (76)


- 27 -<br />

INTRODUCTION<br />

Name of Compound Structure Species& ref.<br />

R= OH;<br />

(-)-Epigallocatechin<br />

R= G;<br />

(-)-Epigallocatechin 3-O-gallate<br />

Epicatechin (4ß→8)epigallocatechin<br />

3-O- gallate<br />

R1= H, R2= OH;<br />

Epicatechin (4ß→8)-gallocatechin<br />

R1= R2= OH;<br />

Prodelphinidin B-1<br />

R1= OH, R2= G;<br />

Prodelphinidin B-2-3'-O-gallate<br />

Prodelphinidin A-1<br />

5. Flavonoids:<br />

HO<br />

HO<br />

HO<br />

HO<br />

G =<br />

HO<br />

G =<br />

OH<br />

OH<br />

OH<br />

HO<br />

COO<br />

OH<br />

HO<br />

HO<br />

O<br />

COO<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

OH<br />

O<br />

R<br />

OH<br />

OH<br />

OH<br />

OH<br />

O<br />

OH<br />

OH<br />

OH<br />

R1<br />

OH<br />

OH<br />

OH<br />

OH<br />

R 2<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH OH<br />

O<br />

OH<br />

OH<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

emblica<br />

emblica (73)<br />

emblica<br />

emblica (73)<br />

(73, 74)<br />

(73, 74)<br />

Flavonoidal compounds are reported in many different species of<br />

genus Phyllanthus; they are represented in the following table:


Luteolin<br />

R= H;<br />

Kaempferol<br />

R= glu.;<br />

Astragalin<br />

Table (8): Flavonoids of genus Phyllanthus:<br />

- 28 -<br />

INTRODUCTION<br />

Name of Compound Structure Species & ref.<br />

R= rham-glu.;<br />

Kaempferol-3-O- rutinoside<br />

5,7-dihydroxy-4'-methoxy<br />

flavonol<br />

R= H;<br />

Quercetin<br />

R= rham. ;<br />

Quercetrin<br />

R= glu.;<br />

Isoquercitrin<br />

R=glu-glu.;<br />

Quercetin-3-O-ß-D-glucosyl-(1→6)-ß-<br />

D-glucoside<br />

R= glu-rham.;<br />

Quercetin-3-O-ß-D-glucopyranosyl<br />

(1→4)-α- rhamnopyranoside<br />

R= rham-glu.;<br />

Rutin<br />

Myricitrin<br />

HO<br />

HO<br />

HO<br />

HO<br />

HO<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

R<br />

OH<br />

R<br />

OH<br />

OH<br />

Rhamnose<br />

OH<br />

OH<br />

OCH 3<br />

OH<br />

OH<br />

OH<br />

singampattiana (30)<br />

reticulates (21)<br />

virgatus (40)<br />

( 53)<br />

niruri<br />

tenellus (75)<br />

emblica<br />

niruri (87)<br />

(78, 84)<br />

virgatus (40)<br />

reticulates (21)<br />

sellowianus<br />

virgatus (40)<br />

tenellus (75)<br />

amarus (76)<br />

emblica<br />

niruri<br />

(27, 38 )<br />

(41, 78, 84)<br />

(67, 68, 87)<br />

tenellus (75)<br />

virgatus (40)


- 29 -<br />

INTRODUCTION<br />

Name of Compound<br />

R1= R2= R3= R4= H;<br />

8-(3-methyl-but-2-enyl)-2-phenylchroman-4-one<br />

Structure Species & ref.<br />

R1= R2= R3= H, R4= OH;<br />

2-(4-hydroxyphenyl)-8-(3-methylbut-2-enyl)-chroman-4-one<br />

R2= R3=R4= OH, R1= rham-glu.;<br />

Nirurin<br />

R1= OH, R2= H;<br />

Galangin-8-sulfonate<br />

R1=O-glu., R2= H;<br />

Galangin-3-O-ß-D-glucoside-8sulfonate<br />

R1= R2= OH;<br />

Kaempferol-8-sulfonate<br />

Niruriflavone<br />

3,5,7-trihydroxyflavonol-4'-O-α-<br />

rhamnopyranoside<br />

Eriodictyl-7- rhamnopyranoside<br />

R= H;<br />

Eriodictyol-7-O-glucoside<br />

R= A;<br />

(S)-Eriodictyol-7-O-(6"-O-trans-pcoumaroyl)-β-D-<br />

glucopyranoside<br />

R= G;<br />

(S)-Eriodictyol-7-O-6"-O-galloyl)β-D-glucopyranoside<br />

HO<br />

R 3<br />

R 2<br />

HO<br />

HO<br />

HO3S<br />

OH<br />

rhamnose<br />

HO<br />

HO<br />

RO<br />

A =<br />

O<br />

O<br />

O<br />

OH<br />

G =<br />

R1<br />

SO 3Na<br />

OH<br />

OH<br />

CH 2<br />

O<br />

O<br />

C<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

COO<br />

OH<br />

R 1<br />

O<br />

O<br />

O<br />

O<br />

C<br />

H 2<br />

OH<br />

OH<br />

R 4<br />

R2<br />

OMe<br />

O rhamnose<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

niruri<br />

(87, 88)<br />

virgatus (40)<br />

(67, 68)<br />

niruri<br />

niruri (89)<br />

niruri (89)<br />

emblica (90)


6. Other oxygenated compounds:<br />

- 30 -<br />

INTRODUCTION<br />

The literature survey of genus Phyllanthus reveals the presence<br />

of large number of oxygenated non-phenolic compounds that are<br />

summarized in the following table:<br />

Table (9): Oxygenated compounds present in genus Phyllanthus:<br />

Name of Compound Structure Species & ref.<br />

Descinnamoylphyllanthocindiol<br />

O<br />

Niruriside O<br />

R1= R3= OAc, R2= OH;<br />

Phyllanthoside<br />

R1= R2= R3= OH;<br />

Didesacetylphyllanthoside<br />

R1= OH, R2= R3= OAc;<br />

Phyllanthostatin 1<br />

R1= R2= OAc;<br />

Phyllanthostatin 2<br />

R1= R2= OH;<br />

Phyllanthostatin 6<br />

R1= OAc, R2= OH;<br />

Phyllanthostatin 4<br />

R1= OH, R2= OAc;<br />

Phyllanthostatin 5<br />

R= OH;<br />

Didesacetyl-phyllanthostatin 3<br />

R= OAc;<br />

Phyllanthostatin 3<br />

O<br />

O<br />

OH<br />

HO<br />

CH3 O<br />

CH2 CH 3<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

O<br />

HO<br />

O<br />

O<br />

OH<br />

O H2C O<br />

O<br />

CH2 OH<br />

O<br />

CH 3<br />

O<br />

O<br />

O<br />

O<br />

CH O<br />

3<br />

O<br />

R2 R1 O<br />

HO<br />

O<br />

CH2OH<br />

O<br />

O<br />

HO<br />

R1 O<br />

HO<br />

O<br />

O<br />

O<br />

CH O<br />

3<br />

R2 R1 O<br />

HO<br />

O<br />

O<br />

OH<br />

O<br />

CH 2OH<br />

O<br />

HO<br />

R O<br />

HO<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

R 3<br />

R 2<br />

OH<br />

R<br />

CH 3<br />

OH<br />

CH 3<br />

OH<br />

CH 3<br />

OAc<br />

CH 3<br />

OH<br />

acuminatus (91)<br />

niruri<br />

( 53)<br />

acuminatus (91-93)<br />

acuminatus<br />

(91, 92)<br />

acuminatus (91)<br />

acuminatus (91)


- 31 -<br />

INTRODUCTION<br />

Name of Compound<br />

R= glu.;<br />

Phyllaemblicin A<br />

Structure Species & ref.<br />

R= glu-glu.;<br />

Phyllaemblicin B<br />

R= glu-glu-glu.;<br />

Phyllaemblicin C<br />

7. Acids:<br />

R<br />

O<br />

O<br />

HO<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

emblica (73)<br />

Acids have been found to be widely distributed through different<br />

species of the genus Phyllanthus; they are represented in the following<br />

table:<br />

Table (10): Acids isolated from genus Phyllanthus.<br />

Name of Structure Structure Name of the plant<br />

Ricinoleic acid<br />

Linoleic acid<br />

Cinnamic acid<br />

Trephthalic acid mono-[2-(4carboxy-phenoxycarbonyl)<br />

-vinyl ]ester<br />

(E)-3-(5'-hydroepoxy-2,2'dihydroxy[1,1'-biphenyl]-4yl)-2-propenoic<br />

acid<br />

3,4,5-trihydroxybenzoic acid<br />

(gallic acid)<br />

2,3,4,5,6pentahydroxybenzoic<br />

acid<br />

OH<br />

O<br />

OH<br />

niruri (94)<br />

HOOC niruri (94)<br />

O<br />

HO<br />

HO<br />

MeO<br />

O<br />

HO<br />

HO<br />

HO<br />

H<br />

C C H<br />

O<br />

O O<br />

HO<br />

COOH<br />

OH<br />

COOH<br />

OH<br />

COOH<br />

OH<br />

OH<br />

OH<br />

O<br />

OH<br />

O<br />

OH<br />

emblica (41)<br />

urinaria (95)<br />

urinaria (95)<br />

urinaria (95)<br />

urinaria (95)


- 32 -<br />

INTRODUCTION<br />

Name of Structure Structure Name of the plant<br />

4-O-galloylquinic acid<br />

R= COOH;<br />

<strong>In</strong>dol-3-carboxylic acid<br />

R= CHO;<br />

<strong>In</strong>dol-3-carboxaldehyde<br />

HO<br />

HO COOH<br />

O<br />

O<br />

OH<br />

OH<br />

H<br />

N<br />

OH<br />

R<br />

OH<br />

amarus (80)<br />

virgatus<br />

(40, 63)


- 33 -<br />

INTRODUCTION<br />

The Biological Activities of Genus Phyllanthus<br />

Reviewing the current literature concerning the biological<br />

activities of genus Phyllanthus, the following findings were<br />

abstracted:<br />

1. Antioxidant effect :<br />

• Extract of Phyllanthus emblica (syn. Emblica officinalis)<br />

( 84, 96-<br />

100) , P. niruri (67, 101-103) , P. simplex (104) , P. oxyphyllus (16) , P.<br />

ussurensis (105) and P. reticulatus (106, 107) show strong antioxidant<br />

activity as they have direct free radical scavenging role and they<br />

protect the antioxidant enzyme like superoxide dismutase enzyme<br />

required for cellular defence (96) .<br />

2. Antihepatotoxic activity:<br />

• Phyllanthus amarus (108) have antiviral activity against hepatic<br />

damage caused by HBV (i.e. cause hepatitis B and C), woodchuck and<br />

aflatoxin B1 through antioxidant activity which is associated with<br />

phyllanthin and hypophyllanthin lignans (109) .<br />

• Phyllanthus emblica (110, 111) , P. maderaspatensis (112, 113) , P.<br />

fraternus (114, 115) , P. rheedii (116) , P. niruri (101-103, 117- 120) and P. amarus<br />

(108, 121- 123) show antihepatotoxic activity against different models of<br />

hepatic rats. This protective activity is quite similar to silymarin (111,<br />

122) , a standard hepatoprotective herbal drug, or it found to be better<br />

than silymarin in certain cases (113) , with the possible mechanisms of<br />

antioxidation (103, 111, 112, 116, 118, 119, 122) or the lipid lowering activity of<br />

the herb (102) which might be related to the high contents of<br />

polyphenolic compounds (123) .


3. Anticancer effect:<br />

- 34 -<br />

INTRODUCTION<br />

It was reported that extracts of Phyllanthus amarus (124-127) ,<br />

P. emblica (128, 129) , P. urinaria (65, 126) , P. oligospermus, P.<br />

acuminatus, P. flexuosus , P. toxodiifolius (26, 39, 91, 130) and P.<br />

polyphyllus (131) exhibit significant antitumor activity without toxic<br />

side effects on normal cells against skin tumorigenesis (129) ,<br />

hepatocellular carcinoma (121, 125, 126) , KB (human epidermal<br />

carcinoma), P-388 (the mouse leukaemia), murine P-388<br />

lymphocytic leukemia and mammalian cancer cell lines<br />

(28, 39, 91, 130,<br />

131) and Ehrlich ascites carcinoma (131) . This activity is attributed to<br />

many varieties of mechanisms (124, 126, 127) .<br />

4. Anti-diabetic effect:<br />

• Extract of Phyllanthus emblica (97, 132 ) , P. amarus ( 133 ) , P.<br />

sellowianus (134 ) , P. fraternus (135) and P. niruri ( 136) produced a<br />

significant reduction in blood glucose level in model diabetic rats with<br />

no harmful side effects and this activity is more effective than that<br />

observed with glibenclamide or similar to it which was used as a<br />

reference for the hypoglycemic activity.<br />

• Phyllanthus emblica and P. niruri used in the management of<br />

diabetic complication such as cataract and this anticataract effect (71)<br />

was proved to be due to inhibition of sugar-induced osmotic changes<br />

and Aldose Reductase enzyme which prevents aggregation and<br />

insolubilization of lens proteins caused by hyperglycemia (137) .


5. Effect on respiratory system:<br />

- 35 -<br />

INTRODUCTION<br />

• Phyllanthus emblica has antitussive activity which is less<br />

effective than shown by classical narcotic antitussive drug codeine,<br />

but more effective than the non-narcotic antitussive agent<br />

dropropizine. This action may be due to antispasmolytic, antioxidant<br />

efficiency effects and its effect on mucus secretion in the airways (145)<br />

also it contains natural vitamin C which is used in treatment of<br />

pulmonary tuberculosis (139) .<br />

• Phyllanthus urinaria cause graded and complete relaxation of<br />

guinea pig trachea pre-contracted by carbachol (140) or by histamine<br />

(141) . This effect may be used for the antinociceptive effect toward<br />

neurogenic pain (142) .<br />

6. Effect on urinary tract:<br />

Phyllanthus amarus, P. niruri, P. fraternus, P. urinaria, P.<br />

maderaspatensis and P. sellowianus have diuretic action (143) as it may<br />

have a direct action on smooth muscle of urinary bladder (144) .<br />

7. Effect on GIT:<br />

Phyllanthus amarus (145) and P. emblica (146, 147) have anti-<br />

diarrhoeal, gastro-intestinal protective effect and anti-ulcer activity.<br />

They significantly inhibited gastric lesions in different acute gastric<br />

ulcer models in rats (146, 147) with different mechanisms (146- 149) .<br />

8. Effect on cardiovascular system (150- 152) :<br />

• Extracts of Phyllanthus emblica and P. amarus showed a<br />

cardioprotective activity through reduction of the blood pressure,<br />

level of serum cholesterol and triglycerides or elevation of HDL


- 36 -<br />

INTRODUCTION<br />

cholesterol level which indicates the usefulness of this drug in<br />

coronary artery diseases.<br />

• Phyllanthus emblica has a significant antiatherogenic effect<br />

through inhibition oxidized LDL-induced vascular smooth muscle<br />

cells proliferation.<br />

9. Hypolipidemic effect:<br />

Phyllanthus emblica and P. amarus are effective hypolipidemic<br />

agents without any reported side effects through antioxidant activity<br />

(99, 153, 154) and other different mechanisms (102, 154-157) .<br />

10. Antimutagenic effect:<br />

Extract of Phyllanthus orbicularis (158- 160) and P. emblica<br />

(161, 162)<br />

produced a significant antimutagenic activity (163) against many<br />

promutagenic agents (159- 164) .<br />

11. Antinociceptive activity:<br />

Extract of Phyllanthus amarus, P. orbicularis, P. fraternus,<br />

P.stipulatus, P. urinaria, P. corcovadensis, P. niruri and P.<br />

sellowianus given intraperitoneally or orally, produced significant<br />

antinociceptive action against different models of abdominal<br />

constrictions or pains (25, 27, 77, 165, 166) .<br />

12. Anti-inflammatory, antipyretic and immunomodulatory effects<br />

(148, 167- 169 ) :<br />

Different extracts of Phyllanthus emblica (170- 172) , P. amarus (148,<br />

167, 168, 173, 174) and P. polyphyllus (169) have been used widely for its


- 37 -<br />

INTRODUCTION<br />

anti-inflammatory, antipyretic and immunomodulatory effects through<br />

different mechanisms (148, 170-173) .<br />

13. Effect on enzymes:<br />

• Phyllanthus maderaspatensis has mild α-amylase inhibitory<br />

activity which may be used in control of obesity and diabetes (175) .<br />

• Phyllanthus niruri is glucosyltransferase inhibitor which is<br />

suitable for use in a food, feed or dentifrice compounds for prevention<br />

of dental plaque formation and periodontal disease (176) .<br />

14. Effect on HIV (53, 78, 177, 178) :<br />

Extracts of Phyllanthus niruri (1, 53, 179) , P. myrtifolius and P.<br />

emblica (78, 177) show strong inhibitory effect on HIV (virus caused<br />

human immunodeficiency disease).<br />

15. Antisnake venom activity (99) :<br />

Methanolic root extract of Phyllanthus emblica has potent<br />

antisnake venom activity as it significantly antagonize snake venom-<br />

induced lethal activity as haemorrhage, coagulant, defibrinogenating<br />

and inflammatory activities (99, 180) . While P. niruri and P. urinaria<br />

cause a protection against snake bite (181) .<br />

16. Effect on brain (182) :<br />

Phyllanthus amarus reversed successfully the amnesia induced<br />

by scopolamine and diazepam so it has a therapeutic potential in the<br />

management of Alzheimer patients as it improved the memory of both<br />

young and old mice through lowering serum cholesterol level,<br />

inhibition of acetylcholinesterase enzyme and elevation of<br />

acetylcholine concentration in brain.


17. Effect on sexual organs (183) :<br />

- 38 -<br />

INTRODUCTION<br />

• Phyllanthus amarus extract was used in traditional medicine in<br />

<strong>In</strong>dia and China as a tool for birth control as it is at a dose of 100 mg/<br />

kg showed antifertility (contraceptive) effect in female mice while at<br />

a dose of 500 mg/kg induce functional sterility as it causes gradual<br />

inhibition of fertility potential. <strong>In</strong> the quest for the search for male<br />

contraceptive, more research light may be focused on P. amarus in<br />

order to discover its full potential. This means that appropriate dose<br />

that will not expose the testes to toxic injury should be determined.<br />

Further searchlight should be shed on the effect of this plant on the<br />

testosterone.


AIM OF THE PRESENT WORK<br />

- 39 -<br />

INTRODUCTION<br />

The previously mentioned literature survey reveals that many<br />

plants belonging to genus Phyllanthus were phytochemically studied<br />

and the occurrence of several active compounds such as lignans,<br />

flavonoids, tannins, polyphenolic compounds, sterols and terpenes<br />

were reported. These compounds are characterized by their<br />

physiological and medicinal values such as antioxidant, anticancer,<br />

antihepatotoxic, antitussive, antidiabetic, antiatherogenic, antiulcer,<br />

antimutagenic, antinociceptive, anti-inflammatory, antipyretic,<br />

diuretic, cardioprotective and hypolipidemic effects.<br />

As there is almost no report on the chemistry and botanical<br />

study of Phyllanthus atropurpureus Boj. Hort. Maurit. cultivated in<br />

Egypt as well as biological screening of this plant. It was deemed of<br />

interest and importance to carry out a pharmacognostical study on this<br />

plant.<br />

The proposed study of this plant presented in this thesis includes:<br />

1. A macro- and micromorphology of the leaf, stem, root and<br />

flower to help in the identification of the plant and these organs<br />

in both entire and powdered forms.<br />

2. A phytochemical investigation of different extracts of the plant<br />

and isolation of the major constituents whenever possible which<br />

may have a potential pharmacological activity.<br />

3. Physical, chemical and spectral characterization of the isolated<br />

compounds and hence identifying them if possible.<br />

4. A biological study of different extracts as well as the major<br />

compound including antihepatotoxic, antioxidant, anticancer<br />

activities and microbiological screening to reveal the medicinal<br />

value of this plant.


I- Materials:<br />

1. Plant material:<br />

Materials, Reagents and Apparatus<br />

- 40 -<br />

INTRODUCTION<br />

The plant material used in this work, Phyllanthus<br />

atropurpureus Boj. Hort. Maurit. family Euphorbiaceae (spurge), was<br />

collected in the flowering stage on June 2004 from the plant cultivated<br />

in medicinal plants garden of Faculty of Science, Ain Shams<br />

University.<br />

The identification was kindly verified by Dr. Hesham abdel-<br />

Aal Elshamy, Assistant Professor of medicinal, aromatic and<br />

ornamental plants, Horticulture Department, Faculty of Agriculture,<br />

Zagazig University, Egypt.<br />

A voucher specimen is deposited in Department of<br />

<strong>Pharmacognosy</strong>, Faculty of Pharmacy, Zagazig University, Egypt.<br />

The plant was shade dried and ground by electric mill to<br />

moderately fine powder and extracted by maceration in ethyl alcohol<br />

75%.<br />

The material used for macro- and micromorphological study<br />

was either fresh or preserved in glycerin-alcohol mixture (1:1).<br />

2. Solvents and chemicals:<br />

The solvents used in this work viz.: Light petroleum (60-80<br />

o C), diethyl ether, chloroform, ethyl acetate, benzene, methanol and<br />

ethanol (95%) were of the analytical grade for chromatography and<br />

crystallization. Solvents for 1 H- and 13 C-NMR determination viz.:<br />

deuterated chloroform (CD3Cl3) and deuterated methanol (CD3OD)<br />

were of spectroscopic grade for spectral analysis.


- 41 -<br />

INTRODUCTION<br />

These solvents and chemicals were prepared according to the<br />

procedures described by Vogel (184) .<br />

3. Reagents:<br />

A. Qualitative test reagents and solutions:<br />

The reagents and test solutions used in this work viz.:<br />

diluted acids, diluted alkalies, alcoholic α– naphthol, Fehling's<br />

solution, ferric chloride, Iodine solution, Mayer's and Wagner's<br />

reagents were prepared according to E.p (185) .<br />

B. Spray reagents (186) :<br />

• Anisaldehyde-sulphuric acid reagent.<br />

• Ammonium hydroxide.<br />

• Ferric chloride.<br />

• Modified Dragendorff's reagent.<br />

• 50 % aqueous sulphuric acid.<br />

C. Reagents for U.V. spectroscopic analyses (187) :<br />

• Sodium methoxide, 2.5% in methanol.<br />

• Aluminium chloride, 5% in methanol.<br />

• Hydrochloric acid, 18% aqueous solution.<br />

• Anhydrous sodium acetate "El Nasr <strong>Pharmaceutical</strong><br />

Chemicals".<br />

• Anhydrous boric acid "El Nasr <strong>Pharmaceutical</strong><br />

Chemicals".<br />

4. Materials for chromatography (adsorbents):<br />

• Silica gel for column (Merck) 60-230 mesh.<br />

• Silica gel for thin-layer chromatography, 60 GF254


• Precoated TLC sheets, silica gel 60 GF254 (Merck).<br />

5. Apparatus and equipments:<br />

1. Chromatographic equipments:<br />

- 42 -<br />

INTRODUCTION<br />

Glass jars for TLC, capillaries for spotting, precoated<br />

layers for TLC and chromatographic glass column.<br />

2. BÜCHI rotary evaporator.<br />

3. Melting point apparatus, Digital, electro-thermal LTD<br />

(England).<br />

4. U.V. lamp for TLC visualization U.V.P., GL-58(λ max 254<br />

and 365 nm).<br />

5. Circulating hot air oven, W.T-binder 7200, (Germany).<br />

6. Heraeus Sepatech centrifuge (Labofuge 200)<br />

7. Shimadzu U.V.-1700 spectrophotometer (Japan) for U.V.<br />

spectral analysis.<br />

8. <strong>In</strong>frared spectral analysis were recorded in potassium<br />

bromide disks on a pye Unicam SP 3000 and carried out on<br />

IR spectrophotometer, Jasko, FT/IR-460 plus.<br />

9. Mass spectra were carried on:<br />

• Shimadzu GC-MS-QP 1000 EX mass spectrometer at<br />

70 e.v.<br />

• VG- Quattro II waters, Masslynx V40 SP4, 508, Copy<br />

rights© 2004 Micromass Ltd.<br />

10. 1 H- and 13 C-NMR spectra were obtained using JEOL and<br />

Varian MAT 500, 300, 125 and 75 MHz respectively,<br />

chemical shifts were given in ppm with the TMS as internal<br />

standard.


- 43 -<br />

INTRODUCTION<br />

11. GLC analysis of methyl ester of the total fatty acids were<br />

carried out on GC V pye Unicam gas chromatograph under<br />

the following operating conditions:<br />

• Detector Dual flame ionization detector<br />

• Temp. of detector 300 o C<br />

• Recorder Dual channel recorder<br />

• Temp. of injector 250 o C<br />

• Column temp. 70 to 190 o C (8 o C/min)<br />

• Column package Diatomite C (100-120 mesh)<br />

• Liquid phase 10 % polyethylene glycol adipate (PEGA)<br />

• Column dimensions 1.5m × 4mm<br />

• Hydrogen flow rate 33 ml / min.<br />

• Chart speed 1 cm / min<br />

6. Authentics:<br />

Authentic sample of β – sitosterol and stigmasterol mixture and<br />

quercetin-7-O-glucoside were obtained from Department of<br />

<strong>Pharmacognosy</strong>, Faculty of Pharmacy, Zagazig University, Egypt.<br />

Authentic sample of Ampicillin and Gentamycin as well as<br />

Nystatin were obtained from Department of Microbiology, Faculty of<br />

Pharmacy, Zagazig University, Egypt.<br />

Silymarin for determination of antihepatotoxic activity was<br />

supplied by Unipharma <strong>Pharmaceutical</strong> Company, Egypt<br />

Authentic sample of fatty acids methyl esters were obtained from<br />

Central Research Laboratory, Faculty of Agriculture, Cairo<br />

University, Egypt.<br />

7. Kits:<br />

Kits for determination of ALT and AST were supplied by<br />

Plasmatek (Germany) while that of total protein and serum albumin<br />

supplied by Biocon (Germany).


8. Chromatographic Solvent Systems:<br />

- 44 -<br />

INTRODUCTION<br />

1. Ethyl acetate: Light Petroleum 30: 70<br />

2. Methanol: Chloroform 2: 98<br />

3. Methanol: Chloroform 5: 95<br />

4. Methanol: Chloroform 10: 90<br />

5. Methanol: Chloroform 15: 85<br />

6. Methanol: Chloroform 20: 80<br />

7. Methanol: Chloroform 30: 70<br />

8. Methanol: Ethyl acetate<br />

15:85<br />

9. Ethyl acetate: Acetic acid: Formic acid: H2O 100: 11: 11: 27<br />

10. Ethyl acetate: Benzene 14: 86<br />

11. Light petroleum: Chloroform: Methanol 15: 15: 1<br />

12. Ethyl acetate: Light Petroleum 15: 10<br />

13. Benzene: Ethyl acetate: Formic acid: H2O 30: 50: 14: 6<br />

14. Light petroleum: chloroform: glacial acetic acid 75: 25: 0.5


- 45 -<br />

PART I<br />

Phyllanthus atropurpureus Boj. Hort. Maurit. (Fig.1) is a perennial<br />

monoecious shrub. The plant shows a brownish to purple monopodially<br />

branched stem and measures 0.5 to 1.5 m in height. It carries simple<br />

alternate ovate leaves with dark olive green surfaces showing red or<br />

purple, occasionally white coloration; the young leaves are purplish in<br />

colour. The plant shows green or purple axillary flowers (Fig. 2& 4A).<br />

Female flowers are present at the top while male flowers are present<br />

below. The plant flowers from June to November and is cultivated by<br />

cutting and sucker divisions.<br />

The leaf:<br />

The leaves (Fig. 1, 2, 4A& 4B) are simple, shortly petiolate,<br />

stipulate, with obtuse apex showing epiculus, entire margin and<br />

symmetric base. The leaves have greenish smooth glabrous surfaces,<br />

mottled with whitish, pale pink or purple coloration, and reticulate<br />

pinnate venation. The midrib and the big veins are prominent on the<br />

lower surface only. The leaf measures 1.5 to 5.5 cm in length and 1 to 4<br />

cm in breadth.<br />

Two stipules are present, each on both sides of the leaf base. They<br />

are triangular in shape with entire margin, acute apex, smooth green<br />

surfaces and measure 1.6 mm in length and 0.4 mm in breadth.<br />

The petiole of the leaf (Fig. 4B) is short cylindrical, solid with dark<br />

green to purple smooth surface and measures 0.8 to 1.3 mm in length<br />

and 0.5 to 0.8 mm in diameter.<br />

The leaves have faint characteristic odour and a slightly bitter taste.


The stem:<br />

- 46 -<br />

PART I<br />

The old stem is rigid, solid, monopodially branched and cylindrical<br />

with brownish rough surface. The internodes measure 2.5 to 3.5 cm in<br />

length and 1.5 to 3.5 mm in diameter<br />

The young stem and small branches (Fig. 1& 4A) have dark purple<br />

smooth glabrous surface. The stem is flexible when fresh, hard and<br />

rigid when dry, broken with fibrous fracture exposing greenish- white<br />

interior. The stem has slight odour and slightly bitter taste.<br />

The inflorescence:<br />

The flowers occur either single or in small inflorescences. The<br />

inflorescences are axillary fascicles of unisexual flowers, being<br />

pistillate at the top of branches, and staminate below.<br />

• The pedicel:<br />

The pedicel of the flower (Fig. 2, 5B& 5D) is short cylindrical,<br />

solid with purple smooth surface and measures 2.5 to 5 mm in length<br />

and 0.5 to 1 mm in diameter.<br />

• The flower:<br />

The flowers (Fig. 2, 5B& 5D) are small, green or purple in colour.<br />

They are unisexual and the plant is monoecious. They are shortly<br />

pedicelate and have no petals.<br />

The male flowers (Fig. 5B) are small measuring 4 to 7 mm in<br />

length and 0.5 to 2 mm in diameter at the widest part while female<br />

flowers measure 3 to 5 mm in length and 2 to 7 mm in diameter. The<br />

female flower (Fig. 2& 5D) shows a calyx with 6, occasionally 5,<br />

spreaded lobes while those of male flower are unspreaded.<br />

The flowers have slight characteristic odour and bitter taste.


• The calyx:<br />

- 47 -<br />

PART I<br />

The calyx (Fig. 5D) is persistent cupuliform gamosepalous,<br />

consists of 6, occasionally 5 united sepals with free apical lobes. The<br />

apical lobe has entire margin and rounded apex showing fine epiculus.<br />

The calyx of female flower is bell-shaped with six apical spreaded<br />

lobes, green or purple smooth surfaces and shows pinnately- reticulate<br />

venation; the main veins are six, occasionally 5, with small lateral ones.<br />

The apical lobes of the female flowers measure 0.2 to 0.8 mm in<br />

length and 2.5 to 3.5 mm in breadth while the tubular part measures 3 to<br />

4.2 mm in length and 0.5 to 2 mm in diameter at its widest part.<br />

The calyx of male flower is funnel-shaped with six small<br />

unspreaded lobes which measure 1 to 1.4 mm in length and 0.1 to 0.4<br />

mm in diameter.<br />

• The androecium:<br />

The androecium is present in the male flower only (Fig. 5C) and<br />

consists of six monodelphous stamens with 6 free anthers arranged in<br />

one whorl.<br />

The filaments are united into solid, cylindrical, whitish staminal<br />

column measuring 1 to 1.2 mm in length and 0.1 to 0.3 mm in diameter.<br />

The anther (Fig. 5C) is more or less oblong, pale yellow in colour,<br />

dorsifixed and bilobed, each lobe shows one pollen sac. It measures<br />

0.55 to 0.65 mm in length and 0.13 to 0.18 mm in diameter.


• The Gynaecium:<br />

- 48 -<br />

PART I<br />

The gynaecium of the female flower (Fig. 5E) is tricarpellary,<br />

syncarpous and consists of superior ovoid trilocular ovary, gynobasic<br />

style and trifid ligulate stigma.<br />

The ovary is ovoid, three-sided and trilocular; each locule contains<br />

two axile placented ovules. It has light green smooth glabrous surface<br />

and measures 0.85 to 1 mm in length and 0.45 to 0.8 mm in diameter.<br />

The style is solid cylindrical, gynobasic with light green smooth<br />

surface. It is branched into three separated parts just above the ovary;<br />

each is traversed longitudinally by one small vascular strand. It<br />

measures 0.3 to 0.5 mm in length and 0.15 to 0.23 mm in diameter.<br />

The stigma is trifid; each lobe is ligulate obtriangular, with entire<br />

margin, pale yellowish surfaces and slightly emarginated papillosed<br />

apex. Each lobe measures 0.3 to 0.45 mm in length and 0.34 to 0.64<br />

mm in breadth at its widest part.<br />

The subterranean organs:<br />

The plant has well developed highly branched underground part. It<br />

comprises a vertical rhizome gives on its lower end three to four roots.<br />

The rhizome (Fig. 3) is vertical showing two to three internodes, dark<br />

reddish-brown rough, longitudinally wrinkled outer surface. It breaks<br />

with fibrous fracture showing reddish-brown narrow outer bark, wide<br />

yellowish-white wood and a wide pith in the center. The rhizome<br />

measures 1.5 to 3 cm in length and 1 to 1.5 cm in diameter.


- 49 -<br />

PART I<br />

The root (Fig. 3) is cylindrical, teret and gives few wiry secondary<br />

roots and numerous rootlets. The main root measures 10 to 25 cm in<br />

length and 0.2 to 0.4 cm in diameter while the secondary root measures<br />

10 to 15 cm in length and 1 to 1.5 mm in diameter. The root and its<br />

branches have rough, reddish-brown outer surface and breaks with a<br />

fibrous fracture exposing a reddish bark and a yellowish wood.<br />

The rhizome and root have a characteristic bitter taste and a<br />

characteristic dusty odour.


Fig. 1: A photograph of aerial parts of<br />

Phyllanthus atropurpureus Boj. Hort.<br />

Maurit. (x 0.25)<br />

- 50 -<br />

PART I<br />

Fig. 3: A photograph of the root and rhizome of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit. (x 0.5)<br />

Fig. 2: A photograph of female<br />

flowers of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit. (x 1.92)


Fig. (4): Sketch of Phyllanthus atropurpureus Boj. Hort Maurit.<br />

A. A flowering branch<br />

B. A leaf.<br />

C. A stipule.<br />

- 51 -<br />

(x 0.58)<br />

(x 3.80)<br />

(x 36.6)<br />

F.fl., female flower; m. midrib; m.fl., male flower; pet., petiole; st.,<br />

stem.<br />

PART I


B<br />

A<br />

m<br />

.<br />

pet.<br />

- 52 -<br />

st.<br />

f.fl<br />

.<br />

m.fl<br />

.<br />

PART I<br />

C


Fig. (5): The flower.<br />

A. Two lobes of dissected calyx. (x 30.6)<br />

B. Male flower. (x 22.75)<br />

C. Androecium. (x 45)<br />

D. Female flower. (x 20.1)<br />

E. Gynaecium (x 26.7)<br />

An., anther; cal., calyx; ov., ovary; ped., pedicel; sep., sepal; stg.,<br />

stigma; stm.col., staminal column; sty., style.<br />

- 53 -<br />

PART I


D<br />

B<br />

ped.<br />

A<br />

stg.<br />

sep.<br />

sty.<br />

ov.<br />

cal.<br />

ped.<br />

- 54 -<br />

an.<br />

stm.col.<br />

E<br />

C<br />

PART I


THE LEAF<br />

- 55 -<br />

PART I<br />

A transverse section of the leaf (Fig. 6A) shows a dorsiventral,<br />

heterogenous mesophyll with one row of palisade below the upper<br />

epidermis and is interrupted by collenchyma in the midrib region.<br />

The midrib is more prominent on the lower surface and shows a<br />

parenchymatous cortex with peripheral collenchyma and is transversed<br />

longitudinally by a crescent-shaped vascular tissue with a<br />

collenchymatous pericycle above and below the vascular bundle.<br />

The Upper Epidermis of The Lamina:<br />

The upper epidermis (Fig. 6B& 7A) is formed of polygonal<br />

isodiametric cells with thin straight anticlinal walls and is covered with<br />

thin smooth cuticle. They measure 16 to 35 µ in length, 16 to 43 µ in<br />

breadth and 10 to 16 µ in height.<br />

Many cells have short conical-shaped papillae measuring 17 to 21µ<br />

in height.<br />

Many cells contain mucilage and transparent secretions which<br />

appear as transparent dots.<br />

The Upper Epidermis of The Midrib:<br />

The upper epidermal cells (Fig.6C& 7C) are polygonal axially<br />

elongated cells containing mucilage. They have thin straight anticlinal<br />

walls and are covered with moderately thick smooth cuticle and<br />

measure 33 to 62 µ in length, 10 to 21µ in breadth and 14 to 16 µ in<br />

height.


The Lower Epidermis of The Lamina:<br />

- 56 -<br />

PART I<br />

The lower epidermal cells (Fig. 6B& 7B) are isodiametric,<br />

polygonal, with thin slightly wavy anticlinal walls and covered with<br />

thin smooth cuticle; numerous cells show short conical-shaped papillae<br />

and most of them contain mucilage. They measure 17to 41 µ in length,<br />

10 to 41 µ in breadth and 8 to 12 µ in height.<br />

The Lower Epidermis Over The Midrib:<br />

The lower epidermis (Fig. 6C&7D) is formed of polygonal axially<br />

elongated cells containing mucilage, with moderately thick beaded<br />

anticlinal walls and covered with smooth cuticle. They measure 27 to<br />

58 µ in length, 10 to 23 µ in breadth and 10 to 14µ in height.<br />

Stomata:<br />

The stomata (Fig.7B) are numerous and present on the lower<br />

surface only, being absent on neural regions. They are of paracytic type;<br />

each is surrounded by two cells, oval in shape and in the same level of<br />

the epidermal cells measuring 19 to 35 µ in length and 10 to 19 µ in<br />

breadth.<br />

Trichomes:<br />

Both glandular and covering trichomes are completely absent.<br />

Mesophyll:<br />

The mesophyll (Fig. 6A &6B) is dorsiventral with an upper<br />

palisade discontinuous in the midrib region and a wide spongy tissue.<br />

The palisade (Fig. 6B) consists of one row of cylindrical columnar<br />

and radially elongated cells with straight anticlinal walls. The cells<br />

measure 47 to 70 µ in length and 8 to 16 µ in diameter.


- 57 -<br />

PART I<br />

The spongy tissue (Fig. 6B) consists of few rows of more or less<br />

polygonal parenchymatous cells with thin walls and wide intercellular<br />

spaces. They measure 29 to 35 µ in length and 19 to 45 µ in breadth.<br />

The mesophyll cells contain scattered cluster crystals of calcium<br />

oxalate measuring 16 to 21µ in diameter. <strong>In</strong> addition, the mesophyll<br />

contains few irregular lignified idioblast measuring 14 to 31µ in length<br />

and 16 to 21 µ in breadth.<br />

The Midrib:<br />

The Cortical Tissue:<br />

The cortical tissue of the midrib (Fig. 6A& 6C) is<br />

parenchymatous with two collenchymatous hypodermal bands, one row<br />

below each epidermis. The collenchymatous cells are more or less<br />

rounded with thick cellulosic walls, and measure 8 to 17 µ in diameter.<br />

The parenchyma is formed of more or less rounded, isodiametric cells<br />

with thin cellulosic walls and small intercellular spaces, and measure 8<br />

to 33 µ in diameter. Scattered cluster crystals of calcium oxalate<br />

measuring 10 to 29 µ in diameter and very few prisms of calcium<br />

oxalate measuring 6 to 19 µ in diameter are present in the cortical<br />

parenchyma.<br />

The endodermis is not differentiated.<br />

The Pericycle:<br />

The pericycle (Fig. 6C) is collenchymatous present below and<br />

above the vascular bundle. Below the vascular stele the arc is 3 to 6<br />

cells wide; the cells are isodiametric with moderately thick cellulosic<br />

walls and measure 6 to 16 µ in diameter. Above the vascular stele the<br />

band is more or less hemispherical formed of 10 to 12 cell wide and 2


- 58 -<br />

PART I<br />

to 4 cells high; the cells have moderately thin cellulosic walls and<br />

measure 8 to 16 µ in diameter.<br />

The Vascular Tissue:<br />

The vascular tissue (Fig. 6C) consists of upper radiated xylem<br />

with a phloem band underneath.<br />

The xylem (Fig. 6C & 7G) is formed of polygonal cellulosic<br />

wood parenchyma in addition to lignified spiral and annular vessels<br />

measuring 12 to 21µ in diameter.<br />

The phloem (Fig. 6C) is formed of polygonal moderately thin-<br />

walled cellulosic elements. Many phloem parenchyma contain starch<br />

granules which are more or less rounded with indistinct hilum and no<br />

striations measuring 2 to 4 µ in diameter, the cells measure 6 to 12 µ in<br />

diameter.<br />

The medullary rays (Fig.6C) are uni- to biseriate, the cells are<br />

rectangular, radially elongated in xylem region and polygonal<br />

isodiametric in the phloem region; they have moderately thin cellulosic<br />

walls and measure 8 to 17 µ in length and 6 to 12 µ in breadth.<br />

The Microscopical Numerical Values of The Leaf:<br />

The numerical values of the leaf as a mean of four determinations<br />

are presented in table (10).


- 59 -<br />

PART I<br />

Table (10): Microscopical numerical values of the leaves of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit.<br />

1-Stomatal <strong>In</strong>dex<br />

Lower Epidermis<br />

2-Vein-Islet Number<br />

The numerical value Recorded value<br />

3-Veinlet-Termination Number<br />

4-Palisade Ratio<br />

The Upper Epidermis of Stipule:<br />

THE STIPULE<br />

64- 86<br />

3.63<br />

4.86<br />

3.0- 3.8<br />

The upper epidermis (Fig.7E) is formed of papillosed cells which<br />

are polygonal axially elongated with straight anticlinal walls and<br />

covered with thin smooth cuticle, the outer periclinal walls of the cells<br />

are prolonged into cylindrical or conical-shaped papillae with rounded<br />

apices; they measure 29 to 49 µ in length and 12 to 19 µ in breadth.<br />

The Lower Epidermis of Stipule:<br />

The lower epidermis (Fig.7F) is formed of polygonal isodiametric<br />

cells with thin straight anticlinal walls and is covered with smooth<br />

cuticle showing paracytic stomata measuring 8 to 12 µ in length and 4<br />

to 6 µ in breadth.<br />

The cells measure 10 to 19 µ in length and 10 to 25 µ in breadth.


Fig. (6): The Leaf.<br />

- 60 -<br />

PART I<br />

A. Diagrammatic transverse section of the leaf. (x 91.7)<br />

B. Detailed transverse section of the lamina. (x 430)<br />

C. Detailed transverse section of the midrib (x 364)<br />

C.cr., cluster crystal of calcium oxalate; col., collenchyma ; col.p.,<br />

collenchymatous pericycle; l.ep., lower epidermis; lig.i., lignified<br />

idioblast; m.r., medullary ray; pa., papilla; pal., palisade; ph.,<br />

phloem; pr.cr., prismatic crystal of calcium oxalate; sp.t., spongy<br />

tissue; u.ep., upper epidermis; v., vessels; xy., xylem.


A<br />

B<br />

pr.cr.<br />

- 61 -<br />

u.ep.<br />

col.<br />

pal.<br />

lig.i.<br />

xy.<br />

c.cr.<br />

ph.<br />

l.ep.<br />

col.p.<br />

col.<br />

v.<br />

m.r.<br />

ph.<br />

u.ep.<br />

pal.<br />

lig.i.<br />

col.<br />

sp.t.<br />

l.ep.<br />

l.ep.<br />

pa.<br />

PART I<br />

C


Fig. (7): The epidermal cells and some elements of the Leaf.<br />

A. Upper epidermal cells of the lamina. (x 253)<br />

B. Lower epidermal cells of the lamina. (x 284)<br />

C. Upper neural epidermal cells. (x 270)<br />

D. Lower neural epidermal cells. (x 253)<br />

E. Upper epidermal cells of the stipule. (x 344)<br />

F. Lower epidermal cells of the stipule. (x 505)<br />

- 62 -<br />

PART I<br />

G. Some elements of the leaf. (pr.cr. x 344, lig.i. x<br />

332, c.cr.& v.x 317)<br />

C.cr., cluster crystal of calcium oxalate; lig.i., lignified idioblast;<br />

pa., papilla; pr.cr., prismatic crystal of calcium oxalate; sec.,<br />

secretion; v., vessel.


A<br />

E<br />

C<br />

F<br />

- 63 -<br />

pa.<br />

sec.<br />

Pr.cr.<br />

c.cr.<br />

G<br />

D<br />

B<br />

PART I<br />

lig.i.<br />

v.


THE PETIOLE<br />

- 64 -<br />

PART I<br />

A transverse section of the petiole (Fig. 8A& 8B) is semicircular in<br />

outline. It consists of epidermis surrounding a wide parenchymatous<br />

cortex showing a complete layer of sub-epidermal collenchyma. The<br />

vascular system consists of a large crescent -shaped vascular tissue,<br />

consists of a radiated xylem with phloem underneath, and a<br />

collenchymatous pericycle.<br />

The Upper Epidermis:<br />

The cells of the upper epidermis (Fig. 8B& 8C) are axially<br />

elongated cells with straight thick beaded anticlinal walls and covered<br />

with thick smooth cuticle. They contain mucilage and measure 29 to 58<br />

µ in length, 19 to 29µ in breadth and 10 to 17 µ in height.<br />

The Lower Epidermis:<br />

The lower epidermal cells (Fig. 8B& 8D) are polygonal,<br />

isodiametric with thin straight anticlinal walls and covered with thin<br />

smooth cuticle. The cells measure 12 to 21µ in length, 6 to 17µ in<br />

breadth and 10 to 25 µ in height.<br />

Stomata:<br />

The stomata are absent on both upper and lower epidermis.<br />

Trichomes:<br />

Both glandular and covering trichomes are completely absent on<br />

the epidermis of the petiole.<br />

The Cortical Tissue:<br />

The cortical tissue (Fig. 8A& 8B) is parenchymatous with a<br />

continuous layer of 2 to 4 rows of collenchyma below the epidermis.<br />

The collenchymatous cells are oval or polyhedral with moderately thick<br />

cellulosic walls and measure 10 to 35 µ in diameter.


- 65 -<br />

PART I<br />

The rest of the cortex is parenchymatous consisting of 8 to10 rows<br />

of rounded, somewhat elongated cells with small intercellular spaces.<br />

They measure 14 to 39µ in diameter.<br />

Scattered cluster crystals of calcium oxalate measuring 6 to 19 µ in<br />

diameter, and starch granules measuring 2 to 4µ in diameter are found<br />

in the cells of the cortical tissue.<br />

The endodermis is indistinct.<br />

The Pericycle:<br />

The pericycle is collenchymatous formed of 4 to 6 rows of<br />

polygonal cells with thick cellulosic walls and measure 4 to 16 µ in<br />

length and 6 to 17 µ in width.<br />

The Vascular Tissue:<br />

The vascular tissue (Fig. 8A& 8B) is formed of an upper<br />

radiating xylem and lower cellulosic phloem.<br />

The xylem (Fig. 8B & 8E) is formed of polygonal cellulosic<br />

wood parenchyma and lignified spiral and annular vessels, measuring 6<br />

to 26 µ in diameter.<br />

The phloem (Fig. 8B) is formed of polygonal, moderately thin-<br />

walled cellulosic elements.<br />

The medullary rays are uni- to biseriate; the cells are rectangular,<br />

radially elongated in xylem region and polygonal isodiametric in the<br />

phloem region; they have moderately thin cellulosic walls and measure<br />

16 to 23 µ in length and 6 to 14 µ in breadth.


Fig. (8): The petiole.<br />

- 66 -<br />

PART I<br />

A. Diagrammatic transverse section of the petiole. (x 87)<br />

B. Detailed transverse section of the petiole. (x 273)<br />

C. Upper epidermal cells of the petiole. (x 333)<br />

D. Lower epidermal cells of the petiole. (x 469)<br />

E. Some elements of the petiole. (x 319)<br />

C.col., cortical collenchyma; c.cr.; cluster crystal of calcium oxalate;<br />

c.par., cortical parenchyma; col.p., collenchymatous pericycle; ep.,<br />

epidermis; m.r., medullary rays; ph., phloem; pr.cr., prismatic<br />

crystal of calcium oxalate; v., vessels; xy., xylem.


C<br />

c.cr.<br />

A<br />

E<br />

D<br />

pr.cr.<br />

v.<br />

ep.<br />

c.col<br />

xy.<br />

c.par.<br />

ph.<br />

col.<br />

p.<br />

v.<br />

m.r.<br />

ph.<br />

col.<br />

p.<br />

c.par.<br />

c.cr.<br />

c.col.<br />

- 67 -<br />

B<br />

PART I


THE POWDERED LEAF<br />

- 68 -<br />

PART I<br />

The powdered leaf is yellowish green in colour with slight<br />

characteristic odour and slightly bitter taste. It is characterized<br />

microscopically by the following features:<br />

1. Fragments of the upper epidermis of the lamina; the cells are<br />

polygonal with thin straight anticlinal walls and thin smooth<br />

cuticle showing transparent secretion which appear as<br />

transparent dots and many cells have short conical-shaped<br />

papillae.<br />

2. Fragments of the lower epidermis of the lamina; the cells are<br />

polygonal with thin slightly wavy anticlinal walls and thin<br />

smooth cuticle showing paracytic stomata and many cells have<br />

short conical-shaped papillae.<br />

3. Fragments of the upper epidermis of the midrib; the cells are<br />

axially elongated with thin straight anticlinal walls and covered<br />

with thin smooth cuticle showing no stomata.<br />

4. Fragments of the lower epidermis of the midrib; the cells are<br />

axially elongated with thick beaded anticlinal walls and covered<br />

with thin smooth cuticle showing no stomata.<br />

5. Fragments of the upper epidermis of the petiole; the cells are<br />

axially elongated with thick straight beaded anticlinal walls and<br />

covered with thick smooth cuticle showing no stomata.<br />

6. Fragments of the lower epidermis of the petiole; the cells are<br />

polygonal isodiametric with thin straight anticlinal walls and<br />

covered with thin smooth cuticle showing no stomata.<br />

7. Fragments of cortical collenchyma and parenchyma.


- 69 -<br />

PART I<br />

8. Fragments of the lamina showing dorsiventral structure with one<br />

layer of palisade and numerous cluster crystals of calcium<br />

oxalate.<br />

9. Fragments of lignified spiral vessels.<br />

10. Numerous cluster crystals of calcium oxalate and very few<br />

prisms of calcium oxalate.<br />

11. Fragments of the lamina showing lignified irregular idioblasts<br />

with very thick walls.<br />

12. Fragments of the upper epidermis of the stipule; the cells are<br />

papillosed, polygonal axially elongated with straight anticlinal walls<br />

and covered with thin smooth cuticle showing no stomata.<br />

13. Fragments of the lower epidermis of the stipule; the cells are<br />

polygonal isodiametric with thin straight anticlinal walls and<br />

covered with thin smooth cuticle showing paracytic stomata.


THE STEM<br />

- 70 -<br />

PART I<br />

A transverse section of the young stem (Fig. 10 A) is more or less<br />

circular in outline and show an outer epidermis followed by a<br />

collenchymatous hypodermis and parenchymatous cortex. The<br />

pericycle is collenchymatous. The vascular tissue is formed of a<br />

complete ring of 16 to 20 vascular bundles each with an outer phloem<br />

and inner xylem surrounding wide parenchymatous pith.<br />

The transverse section of the old stem (Fig. 9A) is circular in<br />

outline. It shows an outer cork arising below the epidermal layer, then<br />

the parenchymatous cortex occupying one-tenth of the diameter. The<br />

pericycle is parenchymatous and showing batches of non-lignified<br />

pericyclic fibres. The vascular tissue forms a complete ring of an outer<br />

phloem and inner xylem (which occupy two-third of the diameter) and<br />

is transversed by numerous medullary rays. The pith is narrow and<br />

parenchymatous.<br />

The Cork:<br />

The cork (Fig. 9B1& 10D) consists of 6 to 7 rows of radially<br />

arranged polygonal to rectangular cells with moderately thick lignified<br />

walls and brown contents. They measure 37 to 41 µ in length, 31 to 35<br />

µ in breadth and 9 to 11 µ in height.<br />

The Phellogen:<br />

The phellogen arises in the subepidermal layer and is<br />

indistinguished.


The Epidermis:<br />

- 71 -<br />

PART I<br />

The epidermal cells of the young stem (Fig. 10B& 10C) are<br />

polygonal, slightly axially elongated with straight anticlinal walls and<br />

covered with thin smooth cuticle.<br />

They measure 27 to 31µ in length, 14 to 18 µ in breadth and 5 to 7<br />

µ in height.<br />

Stomata:<br />

The epidermis of the young stem (Fig. 10C) shows very few<br />

stomata of paracytic type, measuring 17 to 21 µ in length and 19 to 23 µ<br />

in breadth.<br />

Trichomes:<br />

Both glandular and covering trichomes are completely absent in<br />

the young stem.<br />

The Cortex:<br />

The cortex (Fig. 9B1) is formed of 5 to 7 rows of more or less<br />

rounded parenchymatous cells with narrow intercellular spaces; they<br />

measure 19 to 33 µ in length and 17 to 58µ in breadth. The cortex show<br />

tangentially elongated lacunae which measure 21 to 28µ in length and<br />

21 to 30µ in breadth.<br />

The endodermis is formed of tangentially elongated rectangular<br />

parenchymatous cells, which measure 18 to 20 µ in length and 66 to<br />

70µ in breadth.<br />

<strong>In</strong> young stem, the cortex (Fig. 10B) is formed of one row of more<br />

or less rounded collenchymatous hypodermal cells with moderately<br />

thick walls measuring 15 to 20 µ in diameter followed by 6 to 8 rows of<br />

rounded parenchymatous cells with narrow intercellular spaces. They


- 72 -<br />

PART I<br />

measure 17 to 24 µ in length and 20 to 29 µ in breadth. The endodermis<br />

is formed of tangentially elongated rectangular parenchymatous cells,<br />

which measure 14 to 20 µ in length and 25 to 33 µ in breadth.<br />

Numerous cluster crystals of calcium oxalate are scattered in the<br />

cortical cells. They measure 10 to 16 µ in diameter.<br />

The Pericycle:<br />

The pericycle of old stems (Fig. 9B1) is formed of an interrupted<br />

ring formed of groups of non-lignified pericyclic fibres, separated by<br />

tangentially elongated rectangular parenchymatous cells measuring 15<br />

to 17µ in length and 37 to 41 µ in breadth. Each group of pericyclic<br />

fibres consists of 3 to 5 rows of non-lignified fibres. Fibres (Fig.10D)<br />

are spindle-shaped with smooth thick non-lignified walls, moderately<br />

narrow lumens and blunt apices; they measure 385 to 395 µ in length<br />

and 18 to 21µ in diameter. The pericyclic parenchyma is formed of<br />

polygonal or rounded cells with thin cellulosic walls and measure 10 to<br />

25 µ in length, 14 to 39 µ in breadth.<br />

Between the pericyclic fibres, there are some tangentially<br />

elongated lacunas that measure 14 to 18 µ in length and 37 to 41 µ in<br />

breadth.<br />

<strong>In</strong> the young stem (Fig.10B), the pericycle is formed of an<br />

interrupted ring of 3 to 5 rows of collenchymatous cells. The cells are<br />

polygonal with thin cellulosic walls, and measure 6 to 14 µ in length, 4<br />

to 16 µ in breadth.


Fig. (9): The old stem.<br />

- 73 -<br />

PART I<br />

A. Diagrammatic transverse section of the old stem. (x 31.3)<br />

B1 & B2. Detailed transverse section of the old stem. (x 307)<br />

C.par., cortical parenchyma; ck., cork; end., endodermis; lac., lacuna;<br />

m.r., medullary rays; p., pith; p.f., pericyclic fibre; p.par., pericyclic<br />

parenchyma; ph., phloem; pt.par., pitted parenchyma; v., vessel; w.f.,<br />

wood fibre; w.p., wood parenchyma; xy., xylem.


B1<br />

- 74 -<br />

ck.<br />

p.f.<br />

ph.<br />

xy.<br />

m.r.<br />

c.par.<br />

p.<br />

end.<br />

p.f.<br />

p.par.<br />

m.r.<br />

ph.<br />

p.<br />

v.<br />

w.f.<br />

pt.par.<br />

w.par.<br />

B2<br />

PART I<br />

A


Fig. (10): The young stem.<br />

- 75 -<br />

PART I<br />

A. Diagrammatic transverse section of the young stem. (x 61)<br />

B. Detailed transverse section of the young stem. (x 345)<br />

C. Epidermal cells of the young stem. (x 364)<br />

D. Some elements of the old stem. (ck. x 239, p.f.& w.f. x 148,<br />

c.cr.x 369, w.par., m.r.&<br />

v. x 322.5and pt.par. x 284)<br />

C.cr., cluster crystal of calcium oxalate; c.par., cortical parenchyma;<br />

ck., cork; col., collenchyma; col.p., collenchymatous pericycle; end.,<br />

endodermis; ep., epidermis; m.r., medullary ray; p., pith; p.f.,<br />

pericyclic fibre; ph., phloem; pt.par., pitted parenchyma; v., vessels;<br />

w.f., wood fibre; w.par., wood parenchyma; xy., xylem.


ck.<br />

w.par.<br />

D<br />

m.r.<br />

A<br />

C<br />

p.f.<br />

pt.par.<br />

c.cr.<br />

w.f.<br />

v.<br />

p.<br />

- 76 -<br />

ep.<br />

col.<br />

c.cr.<br />

p.<br />

c.par.<br />

end.<br />

col.p.<br />

ph.<br />

xy.<br />

m.r.<br />

v.<br />

PART I<br />

B


The Vascular Tissue:<br />

- 77 -<br />

PART I<br />

The vascular tissue (Fig. 9A & 9B 1, 2) is formed of a complete<br />

ring of an outer phloem and inner xylem and transversed by medullary<br />

rays.<br />

The Phloem:<br />

The phloem (Fig. 9B1) consists of wide band of soft tissue<br />

composed of large moderately thick walled polygonal cellulosic<br />

elements. The phloem contains scattered elongated lacuna containing<br />

tannin, measuring 7 to 9 µ in length and 10 to 13 µ in diameter.<br />

The Xylem:<br />

The xylem (Fig. 9B1, 2& 10D) is wholly lignified and mainly<br />

consists of numerous wood fibres with scattered wood parenchyma and<br />

vessels. Vessels are spiral and annular, they measure 19 to 23 µ in<br />

diameter.<br />

The wood fibres (Fig. 10D) are spindle-shaped with thick or thin<br />

lignified walls, narrow or wide lumens and acute or blunt apices. They<br />

measure 19 to 22 µ in length and 10 to 13 µ in diameter.<br />

The wood parenchyma (Fig. 10D) are diffused and consist of<br />

polygonal, usually axially elongated cells with slightly lignified, thick<br />

pitted walls, showing simple pits and measuring 27 to 31 µ in length<br />

and 14 to 18 µ in diameter.<br />

The Medullary Rays:<br />

The medullary rays (Fig. 9A, 9B&10D) are mostly uniseriate rarely<br />

biseriate. The cells are rectangular radially elongated with lignified<br />

thick pitted walls in the xylem and rectangular parenchymatous with<br />

cellulosic walls in phloem. The cells measure 33 to 37 µ in length and 8<br />

to 12 µ in breadth.


- 78 -<br />

PART I<br />

<strong>In</strong> young stem (Fig. 10A & 10 B), the vascular tissue is formed of<br />

a complete ring of 16 to 20 vascular bundles, each with an outer phloem<br />

of cellulosic elements and inner xylem showing lignified spiral and<br />

annular vessels and cellulosic wood parenchyma. The vessels measure<br />

10 to 19 µ in diameter.<br />

The Pith:<br />

The pith (Fig. 9A& 9B2) is narrow, composed of somewhat<br />

rounded cells. At the periphery, the cells are rounded, small in size and<br />

with thin cellulosic walls. Becoming larger in size, with slightly thick<br />

pitted walls in the centre (i.e. pitted parenchyma), cluster crystals of<br />

calcium oxalate and starch granules are present in the parenchyma of<br />

pith. The cluster crystal measure 21 to 25 µ in diameter. The starch<br />

granules are simple, without hilum or striations and measuring 2 to 4 µ<br />

in diameter.<br />

<strong>In</strong> young stem (Fig. 10A& 10B), the pith is formed of more or less<br />

rounded thin-walled small cellulosic cells at premedullary zone<br />

measuring 10 to 14 µ in diameter, followed by more larger rounded<br />

cells with wide intercellular spaces. The cells measure 43 to 47 µ in<br />

diameter.<br />

Cluster crystals of calcium oxalate measuring 19 to 27 µ in diameter<br />

and rounded or oval-shaped simple starch granules measuring 6 to 8 µ<br />

in diameter are present in the parenchyma of pith.


THE POWDERED STEM<br />

- 79 -<br />

PART I<br />

The powdered stem is greenish-brown in color with slight<br />

characteristic odour and faint characteristic taste. It is characterized<br />

microscopically by the following fragments:<br />

1. Fragments of polygonal to rectangular cork cells with moderately<br />

thick lignified straight walls and brown contents.<br />

2. Fragments of epidermis consisting of polygonal elongated cells<br />

with straight anticlinal walls and covered with thin smooth<br />

cuticle, and shows few stomata of paracytic type.<br />

3. Numerous cluster crystals of calcium oxalate free or in<br />

parenchymatous cells.<br />

4. Fragments of non-lignified pericyclic fibres, being spindle-<br />

shaped with narrow lumens and straight, thick walls and blunt or<br />

pointed apices.<br />

5. Fragments of lignified vessels, having spiral and annular<br />

thickenings.<br />

6. Fragments of lignified wood parenchyma with simple pits.<br />

7. Fragments of wood fibres with thin or thick lignified pitted walls,<br />

wide or narrow lumens and blunt apices.<br />

8. Fragments of parenchymatous cortical cells, sometimes<br />

containing cluster crystal of calcium oxalate.<br />

9. Numerous simple starch granules which are more or less rounded<br />

with indistinct hilum.


THE FLOWER<br />

1-THE PEDICEL<br />

- 80 -<br />

PART I<br />

A transverse section of the flower stalk (Fig. 11A& 11B) is almost<br />

circular in outline. It shows an outer epidermis surrounding a wide<br />

cortex formed of an outer collenchymatous hypodermis and inner<br />

parenchyma. The vascular tissue is formed of a complete ring of 8 to 12<br />

separated collateral vascular bundles surrounding narrow<br />

parenchymatous pith. The pericycle is formed of collenchyma abutting<br />

each vascular bundle.<br />

The Epidermis:<br />

The epidermal cells of the pedicel (Fig. 11B& 11C) are polygonal<br />

and slightly axially elongated with straight anticlinal walls and covered<br />

with thin smooth cuticle. They measure 21 to 48 µ in length, 10 to 17 µ<br />

in breadth and 8 to 12 µ in height.<br />

Stomata and trichomes are completely absent on the surface of the<br />

pedicel.<br />

The Cortex:<br />

The cortex (Fig. 11B) is formed of a single layer of<br />

collenchymatous hypodermis and 5 to 7 rows of parenchymatous cells.<br />

The hypodermal cells are large polyhedral collenchymatous with thin<br />

walls and measure 12 to 17 µ in diameter. The rest of the cortex is<br />

formed of rounded, irregular parenchymatous cells with thin cellulosic<br />

walls and small intercellular spaces; they measure 16 to 27 µ in<br />

diameter. Scattered cluster crystals of calcium oxalate measuring 14 to<br />

17 µ in diameter are present in the cortical parenchyma.<br />

The endodermis is undifferentiated.


The Pericycle:<br />

- 81 -<br />

PART I<br />

The pericycle (Fig. 11B) is formed of small groups of 1 to 3 rows<br />

of polygonal collenchymatous cells present abutting the vascular<br />

bundle. The pericyclic collenchyma have moderately thick walls and<br />

measure 6 to 14 µ in diameter.<br />

The Vascular Tissue:<br />

The stele (Fig. 11A& 11B) is formed of a ring of 8 to 12 vascular<br />

bundles separated by narrow medullary rays; each composed of an outer<br />

phloem and inner xylem.<br />

The Phloem:<br />

The phloem (Fig.11B) consists of polygonal moderately thin-<br />

walled cellulosic elements.<br />

The Xylem:<br />

The xylem (Fig. 11B & 11E) is formed of lignified spiral and<br />

annular vessels measuring 4 to 10 µ in diameter and cellulosic wood<br />

parenchyma.<br />

The Medullary Rays:<br />

The primary medullary rays (Fig. 11A& 11B) are multiseriate, the<br />

cells are rectangular, radially elongated and cellulosic. The secondary<br />

medullary rays are uni- to biseriate, radially elongated in xylem region<br />

and polygonal isodiametric in the phloem region. They have moderately<br />

thin cellulosic walls and measure 6 to 14 µ in length and 6 to 10 µ in<br />

breadth.<br />

The Pith:<br />

The pith (Fig. 11A& 11B) is narrow and composed of somewhat<br />

rounded parenchymatous cells with thin cellulosic walls and small<br />

intercellular spaces. The cells measure 16 to 23 µ in diameter.


Fig (11): The Pedicel:<br />

- 82 -<br />

PART I<br />

A. Diagrammatic transverse section of the pedicel. (x 96.5)<br />

B. Detailed transverse section of the pedicel. (x 722.5)<br />

C. Epidermal cells of the pedicel. (x 500.6)<br />

D. Cluster crystals of calcium oxalate. (x 322.5)<br />

E. Xylem vessels. (x 451.5)<br />

C., cortex; c.cr, cluster crystals of calcium oxalate; c.par., cortical<br />

parenchyma; col., collenchyma; ep.,epidermis; m.r., medullary<br />

rays; p., pith; p.col., pericyclic collenchyma; ph., phloem; v., vessel;<br />

w.p., wood parenchyma; xy., xylem.


C<br />

A<br />

D<br />

E<br />

ep.<br />

col.<br />

c.<br />

xy.<br />

p.<br />

c.cr.<br />

c.par.<br />

p.col.<br />

ph.<br />

w.p.<br />

m.<br />

r. v.<br />

p.<br />

- 83 -<br />

B<br />

PART I


2-THE CALYX<br />

- 84 -<br />

PART I<br />

A transverse section of the sepal (Fig. 12A& 12B) shows an outer<br />

and inner epidermis enclosing a parenchymatous mesophyll with one<br />

row of a hypodermal layer formed of rectangular collenchymatous cells<br />

below outer and inner epidermis. It is traversed longitudinally by few<br />

vascular bundles and contains red contents that are localized mainly in<br />

outer epidermis and the hypodermal layer.<br />

The Outer Epidermis:<br />

The outer epidermis of the sepal consists of polygonal cells with<br />

straight occasionally beaded anticlinal walls and smooth cuticle.<br />

At the lobe and at the tube (Fig. 12C& 12D); the cells have<br />

straight occasionally beaded anticlinal walls, smooth cuticle and show<br />

paracytic stomata. They measure 8 to 25 µ in length, 6 to 33 µ in<br />

breadth and 8 to 10 µ in height.<br />

Some cells show papilla, which measure 6 to 10 µ in height.<br />

Over the vein (Fig. 12E), the cells are axially elongated with<br />

straight occasionally beaded anticlinal walls and smooth cuticle. The<br />

cells measure 25 to 56 µ in length and 8 to 17 µ in breadth.<br />

The <strong>In</strong>ner Epidermis:<br />

The inner epidermis of the sepal consists of polygonal cells with<br />

straight occasionally beaded anticlinal walls and smooth cuticle.<br />

It shows no stomata, papillosed cells or trichomes.<br />

At the lobe (Fig. 12F); the cells are small isodiametric with very<br />

thin straight anticlinal walls and smooth cuticle. They measure 10 to 25<br />

µ in length and 12 to 25 µ in breadth.


- 85 -<br />

PART I<br />

The epidermal cells show cluster crystals of calcium oxalate<br />

measuring 12 to17 µ in diameter and other cell contents which are not<br />

affected by strong alkalis or acids.<br />

Of the tubular part (Fig. 12G); the cells are axially elongated<br />

with thick straight anticlinal walls and smooth cuticle. They measure 23<br />

to 39 µ in length and 14 to 23 µ in breadth.<br />

Over the veins of the lobe (Fig. 12 H), the cells are axially<br />

elongated with thick straight occasionally beaded anticlinal walls and<br />

smooth cuticle. They measure 27 to 45 µ in length and 10 to 16 µ in<br />

breadth.<br />

It shows cluster crystals of calcium oxalate measuring 8 to 12 µ in<br />

diameter and other cell contents which are not affected by strong alkalis<br />

or acids.<br />

Over the veins at the tubular part (Fig. 12I), the cells are<br />

axially elongated with thick straight occasionally beaded anticlinal<br />

walls and smooth cuticle. They measure 19 to 35 µ in length and 10 to<br />

17 µ in breadth.<br />

It shows cluster crystals of calcium oxalate measuring 10 to 14 µ<br />

in diameter and other cell contents which are not affected by strong<br />

alkalis or acids.<br />

Stomata:<br />

Stomata are present only on the outer epidermis (Fig.12C& 12D),<br />

they are of paracytic type and measure 12 to 16 µ in diameter.


Trichomes:<br />

Trichomes are completely absent.<br />

The Mesophyll:<br />

- 86 -<br />

PART I<br />

The mesophyll (Fig.12B) consists of one row of a hypodermal<br />

layer formed of rectangular collenchymatous cells below outer and<br />

inner epidermis; the cells measure 12 to 23 µ in length and 14 to 27 µ in<br />

breadth. The rest of the mesophyll is formed of almost rounded<br />

parenchymatous cells with small intercellular spaces. They measure 16<br />

to 33 µ in diameter. Many of the parenchymatous cells of the mesophyll<br />

contain cluster crystals of calcium oxalate which measure 8 to 16 µ in<br />

diameter.<br />

The Vascular Tissue:<br />

The pericycle is parenchymatous formed of moderately thick-<br />

walled cells. They measure 8 to 12 µ in length and 10 to 16µ in breadth.<br />

The vascular bundles are fifteen to eighteen, each consists of an<br />

upper xylem showing lignified spiral vessels measuring 6 to 10 µ in<br />

diameter and a lower phloem formed of moderately thick-walled<br />

cellulosic elements.


Fig. (12): The calyx.<br />

- 87 -<br />

PART I<br />

A. Diagrammatic transverse section of the calyx. (x 105)<br />

B. Detailed transverse section of the calyx. (x 352)<br />

C. Outer epidermis of calyx- lobe. (x 352)<br />

D. Outer epidermis of calyx - tube. (x 307)<br />

E. Outer epidermis of calyx over the vein. (x 322.5)<br />

F. <strong>In</strong>ner epidermis of calyx - lobe. (x 288.5)<br />

G. <strong>In</strong>ner epidermis of calyx - tube. (x 405)<br />

H. <strong>In</strong>ner epidermis of calyx - lobe over the vein. (x 288.5)<br />

I. <strong>In</strong>ner epidermis of calyx - tube over the vein. (x 322.5)<br />

C.cr, cluster crystal of calcium oxalate; col.hy., collenchymatous<br />

hypodermis; i.ep., inner epidermis; m., mesophyll; o.ep., outer<br />

epidermis; pap., papilla; ph., phloem; v.b., vascular bundle; xy.,<br />

xylem.


C<br />

F<br />

A<br />

pap.<br />

G<br />

i.ep<br />

.<br />

col.hy.<br />

c.cr.<br />

m.<br />

D<br />

xy.<br />

ph.<br />

v.b.<br />

col.hy.<br />

o.ep.<br />

- 88 -<br />

H<br />

B<br />

E<br />

PART I<br />

I


3-THE ANDROECIUM<br />

- 89 -<br />

PART I<br />

The androecium (Fig.13A) consists of six monodelphous stamens<br />

with 6 free anthers arranged in one whorl.<br />

1- Anther:<br />

A transverse section of the anther (Fig.13A) consists of two lobes<br />

separated by the connective; each lobe consists of one pollen sac<br />

containing pollen grains.<br />

The anther wall (Fig.13B) is thin and formed of an outer epidermis<br />

followed by a single row of fibrous layer and the remaining of tapetum.<br />

Epidermis:<br />

The epidermal cells (Fig. 13B) of the anther-lobes are polygonal<br />

with straight anticlinal walls and covered with thin smooth cuticle.<br />

They measure 10 to 14µ in length, 17 to 23 µ in width and 6 to 10 µ in<br />

height. The epidermis of the anther is devoid of stomata and trichomes.<br />

Fibrous layer:<br />

The fibrous layer of the anther (Fig.13B) is formed of one row of<br />

polygonal axially elongated cells with straight anticlinal walls showing<br />

lignified bar-like thickening appear beaded in surface view (Fig.13E).<br />

They measure 10 to 17µ in length, 31 to 41µ in breadth and 35 to 39µ<br />

in height.<br />

Tapetum:<br />

Tapetum (Fig.13B) is formed of collapsed cells.


Pollen grains:<br />

- 90 -<br />

PART I<br />

The pollen grains (Fig.13 F) are yellow in colour, spherical with<br />

three germ pores, three germinal furrows and finely granular exine.<br />

They measure 19 to 23 µ diameter.<br />

2-Staminal column (Filaments):<br />

A transverse section of the staminal column (Fig.13 C) is nearly<br />

rounded in outline and formed of an outer epidermis surrounding a<br />

ground tissue formed of one or two rows of moderately thick-walled<br />

rectangular collenchymatous cells followed by 7 to 9 rows of thin-<br />

walled rounded parenchymatous cells. The hypodermal cells measure<br />

12 to 18 µ in length and 10 to 16 µ in breadth while the<br />

parenchymatous cells measure 10 to 19µ in diameter. It is traversed<br />

longitudinally by three small vascular bundles. The vascular strand is<br />

formed of few delicate spiral vessels measuring 4 to 6µ in diameter and<br />

cellulosic elements of the phloem.<br />

Few cluster crystals of calcium oxalate measuring 8 to 16 µ in<br />

diameter and many reddish contents are present in the cells of the<br />

ground tissue.<br />

Epidermis:<br />

The epidermal cells of staminal column at the apex (Fig.13D&<br />

13G) are polygonal isodiametric to rectangular axially elongated cells<br />

with straight thin anticlinal walls and covered with thin smooth cuticle.<br />

They measure 16 to 25µ in length, 12 to 20 µ in breadth and 8 to 12 µ<br />

in height.<br />

At the base, (Fig.13D& 13H) the epidermal cells are rectangular<br />

axially elongated and measure 35 to 48µ in length, 8 to 19µ in breadth<br />

and 8 to 14µ in height.


Fig. (13): The Androecium:<br />

- 91 -<br />

PART I<br />

A. Diagrammatic transverse section of androecium in anthers<br />

region. (x 117)<br />

B. Detailed transverse section of anther wall.<br />

C. Diagrammatic transverse section of the staminal column<br />

(x 495.5)<br />

below the anthers.<br />

D. Detailed transverse section of the staminal column below<br />

(x 143.5)<br />

the anthers. (x 660)<br />

E. Fibrous layer in surface view. (x 279)<br />

F. Pollen grains. (x 436.6)<br />

G. Epidermal cells of the staminal column at apex. (x 383)<br />

H. Epidermal cells of the staminal column at base. (x 279)<br />

C., connective; c.cr., cluster crystals of calcium oxalate; col.hy.,<br />

collenchymatous hypodermis; c.par., cortical parenchyma; ep.,<br />

epidermis; f.l., fibrous layer; g.t., ground tissue; ph., phloem; tap.,<br />

tapetum; v., vessels; v.st., vascular strand.


E<br />

A<br />

C<br />

G<br />

F<br />

ep.<br />

ep.<br />

f.l.<br />

c.<br />

tap<br />

.<br />

ph.<br />

v.<br />

v.st.<br />

col.hy.<br />

v.st.<br />

g.t<br />

.<br />

c .par.<br />

c.cr.<br />

H<br />

- 92 -<br />

B<br />

D<br />

PART I


1- The ovary:<br />

4-THE GYNAECIUM<br />

- 93 -<br />

PART I<br />

A transverse section of the tricarpellary ovary (Fig.14A& 14B) is<br />

almost rounded or three-sided in outline. It is formed of an outer and<br />

inner epidermis enclosing a parenchymatous mesophyll in between.<br />

The mesophyll (Fig. 14B) shows one row of collenchymatous cells<br />

under outer epidermis; measuring 10 to 14 µ in height. The rest of the<br />

mesophyll is formed of rounded, moderately thin-walled parenchyma<br />

with small intercellular spaces and traversed by three main vascular<br />

strands. Each vascular strand is composed of a xylem showing few<br />

spiral vessels and a phloem formed of thin-walled cellulosic elements.<br />

Many cluster crystals of calcium oxalate are scattered in the<br />

mesophyll cells, measuring 8 to 12 µ in diameter.<br />

Epidermis:<br />

The outer epidermal cells of the ovary at the apex (Fig. 14B& 14C)<br />

are polygonal axially elongated cells with thin straight occasionally<br />

beaded anticlinal walls and covered with thin smooth cuticle. They<br />

measure 27 to 45µ in length, 14 to 19 µ in breadth and 6 to 10 µ in<br />

height.<br />

At the base, the epidermal cells of the ovary (Fig.14D) are polygonal<br />

isodiametric to axially elongated cells with thin straight anticlinal walls<br />

and thin smooth cuticle. They measure 23 to 35 µ in length, 10 to 23 µ<br />

in breadth and 4 to 8 µ in height.<br />

Red contents are present in outer epidermal cells.<br />

Stomata and trichomes are completely absent.


2- The style:<br />

- 94 -<br />

PART I<br />

A transverse section of the style (Fig.14E& 14F) is nearly<br />

lenticular in outline with a notched on the middle of the inner side and<br />

formed of an epidermis surrounding a parenchymatous ground tissue<br />

traversed longitudinally by one vascular strand.<br />

Epidermis:<br />

The epidermis of the style (Fig.14G) is formed of polygonal<br />

isodiametric cells with straight anticlinal moderately thick walls and<br />

covered with thin smooth cuticle. They measure 10 to 17 µ in length, 10<br />

to 19 µ in breadth. The epidermal cells of the style over the vein<br />

(Fig.14G) measure 10 to 21µ in length, 12 to 15µ in breadth.<br />

Some epidermal cells contain transparent secretions which appear as<br />

transparent dots. Stomata and trichomes are completely absent.<br />

The outer parenchymatous cells of the ground tissue (Fig. 14F)<br />

are polygonal cells with thin cellulosic walls, narrow intercellular<br />

spaces and contain few calcium oxalate cluster crystals which measure<br />

12 to 14µ in diameter. Near the vascular strand, the cells are polygonal<br />

isodiametric to rectangular, axially elongated cells with thin walls and<br />

narrow intercellular spaces. Near the inner side (below the vascular<br />

bundle) the cells are polygonal isodiametric and small with thin<br />

cellulosic walls, narrow intercellular spaces and many cells have red<br />

contents.<br />

The vascular strand shows few lignified spiral vessels of the xylem<br />

and thin walled cellulosic elements of the phloem.


3- The stigma:<br />

- 95 -<br />

PART I<br />

The epidermis of the stigma (Fig.14H) is composed of papillosed<br />

cells which are polygonal axially elongated with straight anticlinal<br />

walls and covered with smooth cuticle, the outer periclinal walls of the<br />

cells are prolonged into cylindrical or conical-shaped papillae with<br />

rounded apices; they measure 10 to 17µ in length, 8 to 14µ in breadth.<br />

Stomata and trichomes are completely absent.


Fig. (14): The gynaecium:<br />

A. Diagrammatic transverse section of the ovary. (x 81)<br />

B. Detailed transverse section of ovary wall. (x 421)<br />

- 96 -<br />

PART I<br />

C. Outer epidermis of the ovary wall at the apex. (x 303.5)<br />

D. Outer epidermis of the ovary wall at the base. (x 283)<br />

E. Diagrammatic transverse section of the style. (x 81)<br />

F. Detailed transverse section of the style. (x 536)<br />

G. Epidermis of the style. (x 317.5)<br />

H. Epidermis of the stigma. (x 368.5)<br />

C.cr, cluster crystal of calcium oxalate; col., collenchyma; ep.,<br />

epidermis; g.t., ground tissue; i.ep., inner epidermis; m., mesophyll;<br />

o.ep, outer epidermis; ph., phloem; v.st., vascular strand; xy.,<br />

xylem.


C<br />

G<br />

E<br />

A<br />

D<br />

o.ep.<br />

col.<br />

m<br />

c.cr .<br />

. Ph.<br />

xy.<br />

i.ep.<br />

ep.<br />

c.cr<br />

v.st.<br />

ph.<br />

xy.<br />

H<br />

ep.<br />

g.t.<br />

g.t<br />

- 97 -<br />

B<br />

F<br />

PART I


THE POWDERED FLOWER<br />

- 98 -<br />

PART I<br />

The powdered flower is reddish-brown in colour with slight odour<br />

and slightly bitter taste. It is characterized microscopically by the<br />

following features:<br />

1. Numerous cluster crystals of calcium oxalate free or in<br />

parenchymatous cells.<br />

2. Fragments of the epidermal cells of the pedicel which are<br />

polygonal and slightly axially elongated with straight anticlinal<br />

walls, occasional paracytic stomata and covered with thin smooth<br />

cuticle.<br />

3. Fragments of the epidermal cells of sepals formed of polygonal<br />

cells with straight occasionally beaded anticlinal walls and smooth<br />

cuticle.<br />

4. Fragments of the epidermal cells of the anther which are polygonal<br />

with straight anticlinal walls and covered with thin smooth cuticle.<br />

5. Fragments of the fibrous layer of the anther, the cells are<br />

polygonal, axially elongated having lignified beaded anticlinal<br />

walls.<br />

6. Fragments of the epidermis of the staminal column formed of<br />

polygonal isodiametric to rectangular axially elongated cells with<br />

straight thin anticlinal walls and covered with thin smooth cuticle.<br />

7. Numerous spherical yellow pollen grains with three germ pores,<br />

three germinal furrows and finely granular exine.<br />

8. Fragments of the epidermal cells of the ovary formed of<br />

polygonal, axially elongated or isodiametric cells with straight<br />

occasionally beaded anticlinal walls and covered with thin smooth<br />

cuticle.


- 99 -<br />

PART I<br />

9. Fragments of the epidermal cells of the style formed of<br />

polygonal, isodiametric cells with straight anticlinal moderately<br />

thick walls and covered with thin smooth cuticle.<br />

10. Fragments of the epidermal cells of the apical part of the stigma<br />

lobes formed of papillosed cells which are polygonal axially<br />

elongated with straight anticlinal walls and covered with smooth<br />

cuticle.<br />

11. Fragments of lignified spiral vessels.


THE ROOT<br />

- 100 -<br />

PART I<br />

The transverse section of the root (Fig. 15A& 15B) is almost<br />

circular in outline. It is formed of an outer brownish cork followed by a<br />

wide parenchymatous phelloderm, surrounding a cylinder of vascular<br />

tissue comprises a narrow outer phloem and a wide inner xylem with<br />

cambium in between and a central diarch primary xylem.<br />

The transverse section of the rhizome (Fig.16B) is almost circular<br />

showing an outer brown cork, somewhat wide phelloderm, interrupted<br />

bands of sclerides in the pericycle and a wide cylinder of vascular<br />

strand traversed longitudinally by the medullary rays and surrounding a<br />

central narrow parenchymatous pith.<br />

The Cork:<br />

The cork (Fig. 15B1& 16 C) consists an outer tangentially<br />

elongated cells arranged in 2 to 3 rows of lignified, polygonal,<br />

moderately thick-walled cells, followed by a band of 3 to 4 rows of<br />

polygonal, moderately thick-walled, suberized cells. The cells are<br />

polygonal, tangentially elongated and arranged in radial rows. They<br />

measure 21 to 48µ in length, 16 to 39µ in breadth and 8 to 16µ in<br />

height.<br />

The Phelloderm:<br />

The Phelloderm (Fig. 15B1) is wide and parenchymatous, formed of<br />

5 to 6 rows of thin-walled polygonal cellulosic cells with narrow<br />

intercellular spaces; few mucilage cavities are present. The cells<br />

measure 16 to 39µ in length and 39 to 77µ in breadth. Many of these<br />

cells contain brownish granular contents which give bluish black


- 101 -<br />

PART I<br />

colour with ferric chloride (T.S) and a yellow colour with caustic alkali.<br />

Numerous cluster crystals of calcium oxalate measuring 14 to 25 µ in<br />

diameter are present in some of these parenchymatous cells.<br />

More or less rounded or polyhedral starch granules with indistinct<br />

hilum and no striations measuring 2 to 4µ in diameter are present in the<br />

phelloderm cells.<br />

The Vascular Tissue:<br />

The vascular tissue (Fig. 15A& 15B1, 2) is formed of a cylinder<br />

consists of an outer narrow phloem and a wide inner xylem with<br />

cambium in between and transversed by uni- or biseriate medullary<br />

rays.<br />

The phloem (Fig. 15B1) consists of polygonal, thin-walled<br />

cellulosic elements. Many cells of phloem parenchyma show brownish<br />

granular contents which give bluish black colour with ferric chloride<br />

(T.S) and a yellow colour with caustic alkali. Few starch granules are<br />

present which is more or less rounded or polyhedral with indistinct<br />

hilum and no striations measuring 2 to 4 µ in diameter. The phloem<br />

shows no fibres.<br />

The cambium (Fig. 15B1) consists of 3 to 4 rows of thin-walled<br />

tangentially elongated rectangular meristematic cells.<br />

The xylem (Fig. 15B1) is wide, lignified and consists mainly of<br />

wood fibres, xylem vessels with few tracheides and wood parenchyma.<br />

It is transversed radially by moderately thick-walled cellulosic<br />

medullary rays. <strong>In</strong> the center of the young root (Fig. 16A) there is a<br />

diarch primary xylem formed of few spiral vessels.


- 102 -<br />

PART I<br />

• Wood fibres (Fig. 16C) are spindle-shaped with moderately thick<br />

lignified walls with slit-like pits, wide lumen and acute apices. They<br />

measure 291 to 330µ in length and 8 to 29µ in diameter.<br />

• Xylem vessels (Fig. 16C) are diffused and occur either isolated<br />

or in radial rows of 2 to 6 vessels. They have pitted lignified walls with<br />

oval or rounded bordered pits and measure 12 to 48µ in diameter.<br />

• Few tracheides (Fig.16C) are present showing blunt apices and<br />

moderately thick lignified walls showing rounded bordered pits. They<br />

measure 126 to 136 µ in length and 10 to 23 µ in breadth.<br />

• The wood parenchyma (Fig. 15B1, 15B2 & 16C) is either<br />

metatracheal or vasocentric and formed of polygonal, axially elongated<br />

cells. They have moderately thick lignified walls showing simple pits<br />

and measure 39 to 64 µ in length and 17 to 31µ in breadth. Most of<br />

these cells contain brownish granular contents, which give bluish black<br />

colour with ferric chloride (T.S). They also contain starch granules<br />

which are more or less rounded with indistinct hilum and no striations<br />

and measure 2 to 4 µ in diameter.<br />

The medullary rays (Fig. 15B1& 16C) are usually uni- or<br />

biseriate and formed of radially elongated rectangular cellulosic cells<br />

with moderately thick walls in the xylem region and of subrectangular<br />

parenchymatous cells with cellulosic walls in the phloem region; few<br />

cells show brownish granular contents which give bluish black colour<br />

with ferric chloride (T.S) and a yellow colour with caustic alkali. The<br />

cells measure 12 to 29 µ in length and 21 to 33 µ in breadth in the<br />

phloem region and 17 to 31 µ in length and 16 to 25 µ in breadth in the<br />

xylem region.


Fig. (15): The old root:<br />

- 103 -<br />

PART I<br />

A. Diagrammatic transverse section of the old root. (x 30.5)<br />

B1 &B2. Detailed transverse section of the old root. (x 307)<br />

B.gr., brown granules; c.cr., cluster crystals of calcium oxalate;<br />

cb., cambium; lig.ck., lignified cork; m.r., medullary rays; pd.,<br />

phelloderm; ph., phloem; sub.ck., suberized cork; w.f., wood<br />

fibre; w.p., wood parenchyma; v., vessels.


.gr.<br />

A<br />

B2<br />

lig.ck.<br />

sub.ck.<br />

Pd.<br />

Ph.<br />

cb.<br />

c.cr.<br />

m.r.<br />

pd.<br />

b.gr.<br />

w.p.<br />

v.<br />

cb.<br />

w.f.<br />

v.<br />

m.r.<br />

w.p.<br />

- 104 -<br />

ph.<br />

b.gr.<br />

B1<br />

PART I


Fig. (16): The root and rhizome:<br />

- 105 -<br />

PART I<br />

A. Diagrammatic transverse section of the young root. (x 85)<br />

B. Diagrammatic transverse section of the rhizome. (x 26)<br />

C. Some elements of the root and rhizome. (ck.x 315, c.cr.x 561,<br />

w.f., tra. & v. x 383 and<br />

scl., w.p. & m.r. x 360)<br />

C.cr., cluster crystals of calcium oxalate; cb., cambium; ck., cork;<br />

end., endodermis; m.c.; mucilage cavity; m.r., medullary rays; p.l.,<br />

piliferous layer; pd., phelloderm; ph., phloem; pr., pericycle; scl.,<br />

scleride; tra., tracheid; w.f., wood fibres; w.p., wood parenchyma; v.,<br />

vessels; xy., xylem.


ck.<br />

w.f.<br />

A<br />

scl.<br />

tra.<br />

p.l.<br />

pr.<br />

end.<br />

ph.<br />

xy.<br />

m.c<br />

v.<br />

v.<br />

- 106 -<br />

ck.<br />

c.cr.<br />

scl.<br />

ph.<br />

cb.<br />

m.r.<br />

w.p.<br />

v.<br />

p.<br />

C<br />

w.p.<br />

c.cr.<br />

PART I<br />

B<br />

B<br />

m.r.


THE POWDERED ROOT AND RHIZOME<br />

- 107 -<br />

PART I<br />

The powdered root and rhizome (Fig. 16C) is reddish-brown in<br />

colour with faint characteristic dusty odour and a bitter taste. It is<br />

characterized microscopically by the following fragments:<br />

1. Fragments of polygonal thick-walled lignified or suberized cork<br />

cells.<br />

2. Lignified sclerides isolated or in groups with moderately wide<br />

lumen and thin lignified walls.<br />

3. Fragments of lignified xylem vessels with pitted moderately<br />

thick walls showing rounded or oval bordered pits.<br />

4. Fragments of lignified wood fibres .each with moderately thick,<br />

lignified walls with slit-like pits, wide lumen and acute apices.<br />

5. Fragments of wood parenchyma. The cells have thick, lignified<br />

pitted walls and may contain brownish contents or starch grains.<br />

6. Fragments of the phelloderm parenchymatous cells containing<br />

starch granules, cluster crystals of calcium oxalate and/or<br />

brownish granular contents.<br />

7. Cluster crystals of calcium oxalate, scattered or in the<br />

phelloderm cells.<br />

8. More or less rounded starch granules with indistinct hilum and<br />

no striations measuring 2 to 4 µ in diameter in the phelloderm<br />

cells.


PART II<br />

The air-dried powdered plant material of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit. collected in flowering stage was<br />

subjected to the following experiment and the result were recorded in<br />

table (12).<br />

Table (12): Phytochemical Screening of Powdered Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.<br />

Test & ref. Result Conclusion<br />

1-Steam distillation (185) No oily residue was observed There is no volatile oil.<br />

2-For carbohydrate and/ or<br />

glycoside (188) :<br />

• Molisch's test.<br />

• Fehling test.<br />

3-For flavonoids (187) :<br />

• NaOH (T. S)<br />

• AlCl3 (0.1M)<br />

• Amyl alcohol.<br />

4-For isoflavones (187)<br />

(HNO3) Durham's test.<br />

5-For tannins (189) :<br />

• FeCl3 (T. S).<br />

6-For Saponin (190) :<br />

• Froth test.<br />

• Haemolysis of (RBCS)<br />

7-For alkaloids and/ or basic<br />

nitrogenous substances (188)<br />

(Mayer's & Wagner tests)<br />

8-For mucilage (188)<br />

(Rhuthenium red).<br />

9- For Sterols and/ or<br />

triterpenes.<br />

• Libermann's test (191) .<br />

• Salkowski's test (192) .<br />

It gave violet ring at the junction.<br />

Reduction of Fehling's solution<br />

Yellow colour.<br />

Yellow colour.<br />

Faint yellow colour.<br />

Deep red colour.<br />

Bluish black colour.<br />

No Froth.<br />

No Haemolysis of (RBCS)<br />

No colour or precipitate<br />

Red colour was produced<br />

<strong>In</strong>tense reddish brown colour was<br />

produced changing to dark green.<br />

Reddish brown colour was produced<br />

at the junction of two layers<br />

- 108 -<br />

The presence of<br />

carbohydrate and/ or<br />

glycosides<br />

The presence of<br />

flavonoids<br />

The presence of<br />

isoflavonoides<br />

The presence of pyrogallol<br />

tannins<br />

The absence of saponins.<br />

Absence of alkaloid or<br />

basic nitrogenous<br />

compound.<br />

The presence of mucilage.<br />

The presence of sterols<br />

and/ or triterpenes.<br />

The presence of sterols<br />

and/ or triterpenes


CONCLUSION<br />

- 109 -<br />

PART II<br />

From the previous preliminary chemical tests, it could be<br />

suggested that Phyllanthus atropurpureus Boj. Hort. Maurit. contains<br />

the following constituents:<br />

• Carbohydrates and/ or glycosides<br />

• Sterols and/ or triterpenes.<br />

• Flavonoids and isoflavonoids.<br />

• Tannins.<br />

• Mucilage.<br />

Determination of the moisture content and ash contents:<br />

A. Moisture Content (185) :<br />

The air dried powdered plant material was used for this<br />

determination according to the method described in the Egyptian<br />

Pharmacopoeia, the mean of three determinations for aerial parts of<br />

the plant was 15% , while that of root was 10%.<br />

B. Total Ash and Acid <strong>In</strong>soluble Ash (185) :<br />

The mean of three determinations for the total ash and acid<br />

insoluble ash were found to be 8.5% and 1.1 % respectively for the<br />

aerial part of the plant, while that for the root of the plant, it found to<br />

be 6.81% and 1.3% respectively.


PART II<br />

Successive Extraction of Powdered<br />

Phyllanthus atropurpureus Boj. Hort. Maurit.<br />

and Examination of the Respective Extracts.<br />

Successive Extraction:<br />

The air dried powdered aerial part (50 g) and root (35 g) of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit. plant materials were<br />

successively extracted till exhaustion in a hot continuous extraction<br />

apparatus (soxhlet) with the following solvents:<br />

1. Light petroleum (b.r. 60-80 o C).<br />

2. Diethyl ether.<br />

3. Chloroform.<br />

4. Ethyl alcohol (95%).<br />

The powder, after each extraction, was freed from the solvent<br />

before the next extraction. The extract was filtered, the solvent was<br />

distilled off from each extract under reduced pressure (45 o C) and the<br />

respective residue was dried at 100 o C to constant weight then<br />

examined. The average of three determinations for each extraction<br />

was concluded and the percentage of weight, physical properties, TLC<br />

screening and chemical properties of the extracts are summarized in<br />

table (13 & 14).<br />

- 110 -


Table (13): Physical, Chromatographic and Chemical Characters of Successive Extractives of Aerial Parts.<br />

Items Light Petroleum Extract Diethyl Ether Extract Chloroform Extract Ethyl Alcohol Extract<br />

I- Percentage 0.3 % 0.11 % 0.07 % 13.27 %<br />

II- Physical<br />

Characters<br />

III- TLC<br />

Screening<br />

Dark green residue with greasy<br />

touch, characteristic odour and<br />

no characteristic taste, soluble in<br />

chloroform and ether but<br />

slightly soluble in alcohol.<br />

Rf (11)*<br />

0.97 (m) blue<br />

0.88 (m) blue<br />

0.87 (m) violet<br />

0.83 (m) brown<br />

0.79 (j) violet<br />

0.61 (j) purple<br />

0.48 (m) blue<br />

0.45 (j) violet<br />

0.37 (m) brown<br />

0.30 (m) brown<br />

0.17 (m) brown<br />

Greenish black residue, faint<br />

odour and slightly bitter taste,<br />

soluble in chloroform, ether,<br />

ethyl acetate and to less extent<br />

in alcohol.<br />

Rf (4)*<br />

0.97 (j) green<br />

0.92 (m) yellow<br />

0.89 (j) purple<br />

0.84 (m) pink<br />

0.46 (m) purple<br />

0.34 (m) brown<br />

0.33 (m) blue<br />

0.24 (m) brown<br />

0.20 (j) greenish yellow<br />

0.13 (m) pink<br />

0.11 (m) yellow<br />

0.07 (m) brown<br />

Dark greenish brown residue<br />

with faint odour and slightly<br />

bitter taste, soluble in<br />

chloroform, ethyl acetate and<br />

insoluble in light petroleum.<br />

Rf (12)*<br />

0.96 (j) green<br />

0.92 (m) green<br />

0.91 (j) yellow<br />

0.86 (m) greenish yellow<br />

0.84 (j) pink<br />

0.66 (j) pink<br />

0.53 (j) dark violet<br />

0.47 (j) pink<br />

0.46 (m) pink<br />

0.34 (m) pink<br />

0.33 (m) brown<br />

0.32 (j) brown<br />

0.24 (m) brown<br />

0.13 (m) brown<br />

0.12 (m) greenish yellow<br />

0.07 (m) brown<br />

Dark brown residue with<br />

characteristic odour and slightly<br />

bitter taste, soluble in methanol<br />

and insoluble in benzene and<br />

light petroleum.<br />

Rf (9)**<br />

0.97 (m) brown<br />

0.95 (m) yellow<br />

0.92 (j) brownish orange<br />

0.90 (m) violet<br />

0.89 (j) brown<br />

0.87 (m) yellow<br />

0.86 (m) yellow<br />

0.84 (j) brownish orange<br />

0.74 (j) yellowish brown<br />

0.67 (m) greenish yellow<br />

0.52 (m) yellow<br />

0.48 (m) yellow<br />

0.35 (m) yellowish brown<br />

0.33 (m) yellowish brown<br />

IV- Chemical Tests<br />

1- For sterols and/<br />

or triterpenes<br />

+<br />

+ - -<br />

2- For alkaloids - - - -<br />

3- For flavonoids - - + +<br />

4- For glycoside - - - +<br />

-System (4) Methanol: Chloroform (1: 9) -System (9) Ethyl acetate: Acetic acid: Formic acid: H2O (100: 11: 11: 27)<br />

-System (11) Light petroleum: Chloroform: Methanol (15: 15: 1) -System (12) Ethyl acetate: Light Petroleum (1.5: 1)<br />

* Anisaldehyde Sulphuric Acid ** 50 % Aqueous Sulphuric Acid m = minor; j = major


Table (14): Physical, Chromatographic and Chemical Characters of Successive Extractives of Subterranean Parts.<br />

Items Light Petroleum Extract Diethyl Ether Extract Chloroform Extract Ethyl Alcohol Extract<br />

I- Percentage 0.18% 0.02% 0.01% 4.86%<br />

II- Physical<br />

Characters<br />

III- TLC<br />

Screening<br />

IV- Chemical<br />

Tests<br />

1- For sterols<br />

and/ or<br />

Yellowish brown residue with<br />

greasy touch, characteristic<br />

odour and no characteristic<br />

taste, soluble in chloroform<br />

and ether but slightly soluble<br />

in alcohol.<br />

Rf (11)*<br />

0.97 (m) blue<br />

0.88 (m) blue<br />

0.87 (m) violet<br />

0.83 (m) brown<br />

0.79 (j) violet<br />

0.61 (j) purple<br />

0.48 (m) blue<br />

0.45 (j) violet<br />

0.37 (m) brown<br />

0.30 (m) brown<br />

0.17 (m) brown<br />

Dark brown residue, faint<br />

odour and slightly bitter taste,<br />

soluble in chloroform, ether,<br />

ethyl acetate and to less<br />

extent in alcohol.<br />

Rf (4)*<br />

0.84 (m) pink<br />

0.70 (m) pink<br />

0.59 (m) brown<br />

0.55 (m) blue<br />

0.53 (m) brown<br />

0.46 (j) pink<br />

0.43 (m) pink<br />

0.39 (m) yellow<br />

0.36 (m) greenish yellow<br />

0.32 (j) purple<br />

0.20 (j) greenish yellow<br />

Dark brown residue with faint<br />

odour and slightly bitter taste,<br />

soluble in chloroform, ethyl<br />

acetate and insoluble in light<br />

petroleum.<br />

Rf (12)*<br />

0.96 (j) green<br />

0.91 (j) yellow<br />

0.33 (m) brown<br />

0.24 (m) brown<br />

0.12 (m) greenish yellow<br />

Dark brown residue with<br />

characteristic odour and<br />

slightly bitter taste, soluble in<br />

methanol and insoluble in<br />

benzene and light petroleum.<br />

Rf (9)**<br />

0.99 (m) violet<br />

0.97 (m) violet<br />

0.92 (m) brownish orange<br />

0.88 (m) violet<br />

0.86 (j) yellow<br />

0.84 (m) brownish orange<br />

0.60 (j) yellow<br />

0.48 (m) yellow<br />

0.43 (m) yellow<br />

0.33 (m) yellowish brown<br />

0.30 (m) yellow<br />

+<br />

+ - -<br />

2- triterpenes For alkaloids - - - -<br />

3- For flavonoids - - + +<br />

4- For glycoside - - - +<br />

System (4) Methanol: Chloroform (1: 9) -System (9) Ethyl acetate: Acetic acid: Formic acid: H2O (100: 11: 11: 27)<br />

-System (11) Light petroleum: Chloroform: Methanol (15: 15: 1) -System (12) Ethyl acetate: Light Petroleum (1.5: 1)<br />

* Anisaldehyde Sulphuric Acid ** 50 % Aqueous Sulphuric Acid m = minor; j = major


- 113 -<br />

PART II<br />

The air-dried powdered leaves of Phyllanthus atropurpureus Boj.<br />

Hort. Maurit. (575g) was extracted by cold maceration with 75%<br />

ethanol (4 L.) till complete exhaustion. The combined extract was<br />

evaporated under reduced pressure at 50 o C to give 65.6 g of greenish<br />

brown residue.<br />

To the concentrated ethanolic leaves extract about 500 ml of<br />

MeOH: H2O mixture (9:1) was added to dissolve it then extracted with<br />

light petroleum (b.r 60-80 o C) till exhaustion (4 x 250 ml). The<br />

combined light petroleum fractions were washed with distilled water,<br />

dried over anhydrous sodium sulphate and then distilled off under<br />

reduced pressure at 45 o C to afford 0.56 g of light petroleum soluble<br />

fraction.<br />

The aqueous layer was then extracted with chloroform (4 x<br />

250ml). The combined fractions were washed with distilled water,<br />

dried over anhydrous sodium sulphate and then distilled off under<br />

reduced pressure at 45 o C to afford 0.5 g of chloroform soluble<br />

fraction.<br />

Finally, the remainder aqueous layer was extracted with ethyl<br />

acetate (6 x 250). The combined ethyl acetate fractions were then<br />

washed with distilled water, dried over anhydrous sodium sulphate<br />

and then the solvent was distilled off under reduced pressure at 50 o C<br />

to afford 6.5 g of ethyl acetate soluble fraction. The fractionation<br />

process was summarized in Scheme (1).


PART II<br />

The air-dried powdered stem and subterranean organs of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit. were extracted with<br />

75% ethanol and the extracts were fractionated in the same manner as<br />

that of leaf. The weights in grams are presented in table (15)<br />

The results of extraction and fractionation carried out on the<br />

air-dried powdered leaves, stems and roots of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit. are summarized in table (15).<br />

Table (15): The Results of Extraction and Fractionation of Air-Dried<br />

Powdered Plant Organs.<br />

Organ (g)<br />

Total Ethanolic<br />

Extract<br />

%<br />

Petroleum<br />

Ether<br />

Fraction %<br />

- 114 -<br />

Chloroform<br />

Fraction<br />

%<br />

Ethyl Acetate<br />

Fraction<br />

%<br />

Leaves 575 11.41 0.10 0.10 1.13<br />

Stems 1270 5.91 0.11 0.07 0.22<br />

Roots 241 10.86 0.05 0.03 0.52


Air – Dried Powdered organs<br />

Total Ethanolic Extract of<br />

- 115 -<br />

PART II<br />

Scheme (1): Extraction and Fractionation of Air-Dried Powdered<br />

Plant Organs of Phyllanthus atropurpureus Boj. Hort.<br />

Maurit.<br />

1- 75% Ethanol<br />

2- Concentration<br />

1- Methanol: Water (4:1) (500ml)<br />

2- Light petroleum<br />

Aqueous phase Light Petroleum Soluble<br />

Chloroform<br />

Fraction of<br />

Aqueous phase<br />

Ethyl Acetate<br />

Aqueous phase<br />

Chloroform Soluble<br />

Fraction of<br />

Leaves<br />

(0.5g)<br />

Leaves<br />

(0.56g)<br />

Ethyl Acetate Soluble Fraction of<br />

Leaves<br />

(6.5 g)<br />

Stems<br />

(0.91g)<br />

Stems<br />

(2.75g)<br />

Roots<br />

(0.072g)<br />

Roots<br />

(1.25g)<br />

leaves (65.6 g)<br />

stem (75 g)<br />

root (26.17 g)<br />

Stems<br />

(1.33g)<br />

Roots<br />

(0.31g)


PART II<br />

Chromatographic <strong>In</strong>vestigation of Leaf, Stem and Root<br />

Light Petroleum Soluble Fraction:<br />

A. TLC Screening of Leaf, Stem and Root Light Petroleum<br />

Soluble Fraction.<br />

Thin layer chromatographic screening of the light petroleum<br />

soluble fraction of leaf, stem and root was carried out using silica gel<br />

GF245 chromatoplates and solvent system (1, 10 and 11). The<br />

developed plates were visualized by anisaldehyde-sulfuric acid spray<br />

reagent. The chromatoplates revealed that light petroleum extract of<br />

leaf, stem and root showed the same spots. These fractions were<br />

collected together and designated as the light petroleum extract of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit.<br />

The chromatoplates of the light petroleum extract of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit. revealed the presence of three major<br />

and eight minor spots. Results of TLC investigation are illustrated in<br />

table (16).<br />

Table (16): TLC <strong>In</strong>vestigation of Light Petroleum Soluble Fraction.<br />

Spot n<br />

Rf value using system<br />

o<br />

1 10 11<br />

The Isolated<br />

Materials<br />

1 0.98 (blue) 0.93 (blue) 0.97 (blue) --<br />

2 0.95 (blue) 0.82 (blue) 0.88 (blue) --<br />

3 0.89 (violet) 0.77 (violet) 0.87 (violet) --<br />

4 0.85 (brown) 0.69 (brown) 0.83 (brown) --<br />

5 0.83* (violet) 0.67* (violet) 0.79* (violet) Material 1<br />

6 0.78*(purple) 0.47* (purple) 0.61* (purple) Material 2<br />

7 0.56 (blue) 0.33 (blue) 0.48 (blue) --<br />

8 0.52*(violet) 0.30* (violet) 0.45* (violet) Material 3<br />

9 0.45 (brown) 0.23 (brown) 0.37 (brown) --<br />

10 0.35 (brown) 0.18 ( brown) 0.30 ( brown) --<br />

11 0.25 (brown) 0.12 (brown) 0.17 (brown) --<br />

*major spot<br />

- 116 -


I. Saponification of Light Petroleum Soluble Fraction (193, 194) :<br />

- 117 -<br />

PART II<br />

About 1 g of light petroleum soluble fraction was refluxed with<br />

16 ml alcoholic potassium hydroxide (10%) for 5 hours, and then<br />

diluted with distilled water .The alcohol was distilled off and the<br />

obtained residue was diluted with water (10 ml) and extracted with<br />

ether (5 × 50 ml). The combined ethereal extract was washed several<br />

times with water (to remove any alkalinity), dried over anhydrous<br />

sodium sulphate and evaporated to give 0.57 g of the unsaponifiable<br />

matter (USM).<br />

The alkaline aqueous layer remained after extraction of the<br />

unsaponifiable matter with the ether was acidified with concentrated<br />

hydrochloric acid and extracted with successive portions of ether (5 ×<br />

50 ml). The combined ethereal extract was washed several times with<br />

water, dried over anhydrous sodium sulphate and distilled off to afford<br />

0.43 g of fatty acid contents.<br />

II. Preparation of Fatty Acid Methyl Esters (195, 196) :<br />

About 0.2 g of fatty acids residue was dissolved in 15 ml. of<br />

methanol / sulphuric acid (5% v/v) and left at room temperature (25 o<br />

C) overnight, then refluxed for four hours. Methanol was distilled off<br />

under reduced pressure and 15 ml of brine solution was added to the<br />

residue. The solution was extracted with successive portions of<br />

mixture of (1: 1) light petroleum: ether (3 ×50 ml). The combined<br />

ethereal extract was washed several times with distilled water, dried<br />

over anhydrous sodium sulphate, and evaporated to afford about 0.21<br />

g of fatty acids methyl esters.


PART II<br />

III. GLC Analysis of Fatty Acid Methyl Esters:<br />

Gas liquid chromatography analysis of fatty acids methyl esters<br />

was carried out (adapting conditions mentioned in page 43) against<br />

references of methyl esters of many fatty acids including caprylic,<br />

capric, lauric, myristic , palmitic, palmiteolic, margaric, stearic, oleic<br />

and linoleic.<br />

Identification of fatty acids methyl esters (Fig. 17) was carried out<br />

by comparison of the retention times of the fatty acid methyl esters<br />

with that of the authentic samples. The quantitative estimation was<br />

carried out by the peak area measurements and the results were<br />

recorded in table (17).<br />

Table (17): Results of GLC analysis of fatty acid methyl esters from<br />

the light petroleum fraction of Phyllanthus atropurpureus Boj. Hort.<br />

Maurit.<br />

Retention<br />

Time<br />

Conc. %<br />

No .of Carbon:<br />

Double Bond<br />

- 118 -<br />

Systematic Name Trivial<br />

Name<br />

16.517 0.200 8 : 0 Octanoic Caprylic<br />

17.417 0.098 10 : 0 Decanoic Capric<br />

19.617 1.322 12 : 0 Dodecanoic Lauric<br />

22.767 2.909 14 : 0 Tetradecanoic Myristic<br />

25.083 0.647 unidentified -------------- ----------<br />

26.083 59.318 16 : 0 Hexadecanoic Palmitic<br />

28.800 1.464 16 : 1 Cis-9hexadecanoic<br />

Palmitoleic<br />

31.983 0.367 17 : 0 Heptadecanoic Margaric<br />

39.467 5.397 18 : 0 Octadecanoic Stearic<br />

41.417 14.221 18 : 1 Cis-9octadecanoic<br />

Oleic<br />

46.267 11.600 18 : 2 9,12-<br />

Octadecadienoic Linoleic


Results and conclusion:<br />

- 119 -<br />

PART II<br />

From the results shown in table (17) it could be concluded that:<br />

• Eleven fatty acid methyl esters were observed in Phyllanthus<br />

atropurpureus Boj. Hort. Maurit. plant; constituting about 97.5435%<br />

of its fatty acids content.<br />

• Ten fatty acids were identified and constitute 96.897%.<br />

• Seven fatty acids (Caprylic, Capric, Layric, Myristic, Palmitic,<br />

Margaric, and Stearic) represent the saturated fatty acids which<br />

comprise about 69.611% of the total amount of the analyzed fatty acid<br />

of the plant.<br />

• The monounsaturated fatty acid (Palmiteolic& oleic)<br />

represents 15.686% of the total fatty acid contents.<br />

• The diunsaturated fatty acid (Linoleic) represents 11.6 % of<br />

the total fatty acid contents.<br />

• Palmitic (59.32%), Oleic (14.22%), Linoleic (11.6%) are the<br />

major fatty acids.<br />

• Palmitic acid has an antioxidant activity while Linoleic acid is<br />

required for the biosynthesis of prostaglandin hormones that<br />

responsible of the anti-inflammatory and analgesic activities ( 197, 198) .<br />

IV. GC Analysis of The Unsaponifiable Matter<br />

Gas chromatography analysis of unsaponifiable matter was<br />

carried out against references following conditions mentioned in page<br />

43. Identification of the unsaponifiable matter (Fig.18) was carried out<br />

by comparison of the retention times with that of the authentic samples.<br />

The quantitative estimation was carried out by the peak area<br />

measurements and the results were recorded in table (18).


PART II<br />

Table (18): Results of GC analysis of the unsaponifiable matter<br />

of Phyllanthus atropurpureus Boj. Hort. Maurit.<br />

Retention time<br />

Area<br />

%<br />

No. of Carbon<br />

26.962 1.455 19<br />

Results and conclusion:<br />

From the results shown in table (18) it could be concluded that:<br />

• Twelve compounds were detected in unsaponifiable matter of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit. plant; constituting about<br />

77.569 % of its contents.<br />

• β -sitosterol and stigmasterol were identified; constituting<br />

about 3.061% of unsaponifiable matter of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

28.882 56.117 20<br />

29.522 1.325 21<br />

33.437 1.074 22<br />

33.995 8.913 23<br />

35.118 0.596 24<br />

37.967 1.288 25<br />

39.058 2.689 26<br />

40. 260 0.699 27<br />

43.573 0.352 28<br />

44.728 1.310 29 (β- sitosterol)<br />

45.023 1.751 29 (Stigmasterol)<br />

- 120 -


Retention time<br />

- 121 -<br />

PART II<br />

Fig. 17: GLC of the fatty acids methyl esters of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Retention time<br />

Fig. 18: GC spectrum of the unsaponifiable matter of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

B- Column Chromatography of Light Petroleum Soluble Fraction:<br />

About 2 g of the light petroleum soluble fraction of leaf, stem and<br />

root was dissolved in the least amount of chloroform, adsorbed on 5g<br />

silica gel and the solvent was completely evaporated at low temperature.<br />

The resulted dry powder was placed on the top of silica gel column (3×85<br />

cm, 100 g silica). The column (A) packed by wet method using benzene.<br />

The elution of the column (A) was carried out starting with benzene then<br />

the polarity was increased gradually using chloroform then methanol. The<br />

eluate was collected in fractions each of 250 ml, concentrated under<br />

reduced pressure, monitored by TLC using solvent systems (100%<br />

chloroform, system 4) and similar fractions were combined. Column<br />

chromatographic fractionation was illustrated in table (19).<br />

Table (19): Column Chromatographic Fractionation of Light petroleum<br />

Soluble Fraction (A).<br />

Eluent %<br />

Composition<br />

Fr.<br />

No.<br />

122<br />

Fr.<br />

wt.<br />

( g )<br />

Rf value (solvent system<br />

11 )<br />

Isolated<br />

material<br />

Benzene<br />

Benzene: chloroform<br />

100 %<br />

95: 5<br />

1 & 2<br />

3 & 4<br />

0.34 Undifferentiated spots<br />

--<br />

--<br />

Benzene: chloroform 90: 10 5-7 0.12<br />

0.97, 0.88 +<br />

Undifferentiated spots<br />

--<br />

Benzene: chloroform 75: 25 8 & 9 0.10 0.88, 0.87, 0.83 --<br />

Benzene: chloroform 50: 50 10- 13 0.15 0.87, 0.83, 0.79 * material 1<br />

Benzene: chloroform 25: 75 14- 21 0.71 0.79 *, 0.61*, 0.48, 0.45<br />

material<br />

1, 2<br />

Chloroform 100 % 22 & 23 0.12 0.45* material 3<br />

Chloroform: methanol 99: 1 24 & 25 0.11 0.45, 0.37, 0.30 --<br />

Chloroform: methanol 98: 2 26 & 27 0.10<br />

0.30, 0.17 +<br />

Undifferentiated spots<br />

--<br />

Chloroform: methanol 95:5 28 --<br />

Methanol 100% 29 & 30<br />

0.25 Undifferentiated spots<br />

--<br />

*Rf Corresponding to the isolated compound.


• Isolation of materials (1, 2):<br />

123<br />

PART II<br />

TLC investigation of fractions (14-21) using solvent system (11)<br />

revealed the presence of two major spots with Rf value 0.79 (violet) and<br />

0.61 (purple) respectively.<br />

Fractions (14-21) (0.708 g) were rechromatographed over silica gel<br />

column (B) (1×50 cm, 20 g) packed in light petroleum (60-80). The<br />

elution of the column was started with light petroleum then the polarity<br />

increased gradually with chloroform and methanol , fractions 100 ml each<br />

were collected , concentrated under reduced pressure , monitored by TLC<br />

using solvent system 10 and 11 and similar fractions were pooled.<br />

a- Isolation of material (1):<br />

TLC screening of fractions in previous subcolumn (B) eluted by 50<br />

% chloroform in light petroleum indicated the presence of one major<br />

violet spot with Rf values of 0.67 and 0.79 (System 10 and 11<br />

respectively with anisaldehyde-sulphuric acid spray reagent).<br />

Crystallization from chloroform - methanol afforded 80 mg of white<br />

powder with m.p. 62 - 63 o C. This substance was designated as material 1.<br />

This material was previously separated (70 mg) from fractions (10-13) of<br />

the light petroleum column (A).<br />

b- Isolation of material (2):<br />

TLC screening of fractions in previous subcolumn (B) eluted by 60<br />

% chloroform in light petroleum revealed the presence of one major<br />

purple spot with Rf values of 0.47 and 0.61 (solvent systems 10 and 11<br />

respectively with anisaldehyde-sulphuric acid spray reagent).<br />

Crystallization from chloroform - methanol afforded 350 mg of colourless<br />

needles crystals with m.p. 144-146 o C. This substance was designated as<br />

material 2.


PART II<br />

• Isolation of material (3):<br />

TLC screening of fractions (22& 23) of column (A) indicated the<br />

presence of one major violet spot with Rf values of 0.52 and 0.45 (using<br />

solvent systems 1 and 11 respectively with anisaldehyde-sulphuric acid<br />

spray reagent). Crystallization from chloroform - methanol afforded 75<br />

mg of white powder with m.p.30- 33 o C. This substance was designated as<br />

material 3.<br />

Characterization of material 1<br />

Material "1" (150 mg) occurs in the form of white powder; with m.p.<br />

62-63 o C and Rf value 0.67 and 0.79 (System 10 and 11). It is soluble in<br />

light petroleum, benzene, chloroform and insoluble in methanol, acetone.<br />

It gives negative Libermann's and Salkowiski's tests for sterols and /<br />

or triterpenes (191, 192) .<br />

Spectral Analysis:<br />

IR Spectral Analysis:<br />

The IR spectrum of material "1"(Fig.19) shows the following<br />

absorption frequencies:<br />

Vmax (KBr) cm -1 : 3500-3300, 2920-2850, 1705, 1466, 1296-1040, 940,<br />

723, 687 and 549.<br />

Mass Spectral Analysis:<br />

mass fragments:<br />

The mass spectrum of material "1" (Fig.20) shows the following<br />

m/z (relative intensity %): 284 (M + , 1.5), 265 (2.1), 264 (2.2), 256 (M + ,<br />

22.9), 239 (3.3), 213 (10.6), 199 (4.2 ), 185 (8.5), 171(8.5), 169 (0.5), 157<br />

(8.4), 143 (4.3), 129 (22), 115 (9.2),101 (7.1), 97 (20.5), 83(30), 73<br />

(81.8), 71 (37.3), 69 (46.5), 60 (97.2), 57 (75.9) and 55 (100).<br />

124


Discussion and conclusion<br />

125<br />

PART II<br />

The IR spectrum of material "1" (Fig.19) indicated the presence of<br />

aliphatic stretching peaks at 3500-3300 cm -1 for OH group, 2925-2845<br />

cm -1 for aliphatic -CH, 1705 cm -1 for C = O of the carboxylic group, 1466<br />

(CH2- bending) and 1296- 1040 (C - C stretching) (199) .<br />

The mass spectrum showed two distinct parent ions peaks at m/z<br />

284 (1.5%) and at m/z 256 (22.9%) together with other significant<br />

fragments at m/z 129, 73, 55.<br />

There are ions representing fragmentations between most methylene<br />

groups as mass spectrum showed the pattern of long chain fatty acid by<br />

successive loss of 14 (CH2) mass units. An ion at m/z = 239 [M + -17]<br />

presumably reflects a loss of OH from carboxyl group.<br />

Comparison of mass spectrum with that of the standard stearic and<br />

palmitic acid individually, elevates the following data:<br />

Molecular ion at m/z 284 together with other fragments at m/z 255,<br />

241, 227, 213, 199, 185, 171, 157, 143, 129, 115,101, 87, 73, 60, 55<br />

indicating the presence of stearic acid and a molecular ion peak at m/z<br />

256 together with other fragments at m/z 239, 227, 213, 199, 185, 171,<br />

157, 143, 129, 115, 101, 87, 73, 60, and 55 indicating the presence of<br />

palmitic acid.<br />

From the previously mentioned data, material 1 was proved to be a<br />

mixture of palmitic acid and stearic acid.<br />

CH3-(CH2)14- COOH CH3-(CH2)16- COOH<br />

Palmitic acid Stearic acid


PART II<br />

Fig. (19): IR spectrum of material "1" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (20): Mass spectrum of material "1" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

126


Characterization of material 2<br />

127<br />

PART II<br />

Material "2" (350 mg) occurs as white needle-shaped crystals<br />

(chloroform/ methanol) with m.p. 144-146 o C and Rf values of 0.47 and<br />

0.61 (solvent systems 10 and 11 respectively). It is soluble in chloroform,<br />

benzene and insoluble in methanol and acetone. It gives positive<br />

Libermann's and salkowski's (191, 192, 200) tests for sterols and/ or<br />

triterpenes. It also gives negative tests for reducing properties and the<br />

glycosidic nature of the compound (188) .<br />

Spectral analysis:<br />

IR Spectral Analysis:<br />

The IR spectrum of material "2" (Fig.21) shows the following<br />

absorption frequencies:<br />

Vmax (KBr) cm -1 : 3416-3213, 2940-2870, 1461, 1376, 1185, 1053, 959,<br />

837, 805 and 593.<br />

Mass Spectral Analysis:<br />

mass fragments:<br />

The mass spectrum of material "2" (Fig.22) shows the following<br />

m/z (% relative abundance): 414 (M + , 11.4) for C29H50O, 412 (M + , 2.4)<br />

for C29H48O, 399 (4.7), 397 (2.2), 396 (5.4), 381 (6), 329 (5), 303 (6.5),<br />

289 (6.1), 273 (4.9), 271(2.6), 255 (9.7), 231 (6.9), 229 (3.6), 213 (13.2),<br />

211 (2.9), 173 (10.3), 145 (22.5), 133(17.9), 109 (18.8), 107 (31.8), 105<br />

(34.9), 95 (40.3), 83 (19), 81 (41.5), 79 (31.7), 69 (47.1), 67 (41.9), 57<br />

(68.2) and 55 (100).<br />

Preparation of Acetyl Derivative of material "2" (201, 202) :<br />

Mass spectrum of material "2" shows 414 (M + ) and 412 (M + ) which<br />

indicates the presence of two compounds. Acetylation was made to


PART II<br />

confirm this probability. About 20 mg of material "2" was dissolved in 15<br />

ml acetic anhydride containing 1 g fused sodium acetate. The mixture<br />

was refluxed for 30 minutes on water bath and poured into ice-cooled<br />

water (50 ml) followed by stirring, where white precipitate was formed. It<br />

was filtered and washed several times with cold water till completely free<br />

from acidity. On repeated crystallization (chloroform/ methanol) about 28<br />

mg of colourless needle-shaped crystals with m.p. 126-128 o C were<br />

obtained.<br />

Preparation of Reactive Layer (silver nitrate) and TLC Examination<br />

of Acetates (202) :<br />

Silica gel GF was slurred with 10% aqueous silver nitrate solution;<br />

wedge shape plate was prepared and activated in hot oven for 90 minutes<br />

at 110 o C. Spotting was made on narrow part of the plate (solvent system<br />

14) (197) . The dried chromatogram was examined under light UV lamp, to<br />

show two fluorescent spots with Rf values 0.22 and 0.30.<br />

Discussion and Conclusion<br />

The physical properties and colour reactions of material "2"<br />

suggested a steroidal or triterpenoidal skeleton (191, 192, 200) .<br />

IR spectrum of material "2" showed broad absorption band at 3416-<br />

3213 cm -1 for bonded –OH group together with C-O stretching at 1053<br />

cm -1 besides the presence of bands at 2940-2870 cm -1 for C-H aliphatic<br />

and another absorption peak at 959 cm -1 indicating the trans disubstituted<br />

side chain.<br />

The mass spectrum (Fig. 22) showed two distinct parent ions at m/z<br />

414 (11.4%) and at m/z 412 (2.4%) together with other significant<br />

128


129<br />

PART II<br />

fragments at m/z 396, 381, 303, 271 and 255, these data are indicative for<br />

steroidal compound (203) .<br />

Direct comparison of mass spectrum with that of the standard<br />

β-sitosterol and stigmasterol individually, elevates the following data:<br />

molecular ion at m/z 414 together with other fragments at m/z 399, 396,<br />

273, 231, 229 and 213 indicating the presence of β-sitosterol, and a<br />

molecular ion peak at m/z 412 with other fragments at m/z 397, 396, 271,<br />

255, 229, 213 and 211 are characteristic for stigmasterol.<br />

However, it showed two parent ion peaks at m/z 414 and m/z 412<br />

corresponding to β-sitosterol and stigmasterol respectively. The relative<br />

abundance of parent ion at m/z 414 (11.4%) and m/z 412 (2.4%)<br />

indicated that β-sitosterol is the major compound.<br />

The suggested fragmentation pattern is shown in scheme (2).<br />

From the previously mentioned data and direct comparison (MS, IR,<br />

m.p. and coTLC of acetyl derivatives on silver nitrate plate with authentic<br />

samples), material "2" was proved to be a mixture of β-sitosterol and<br />

stigmasterol.<br />

HO HO<br />

β-sitosterol<br />

stigmasterol


PART II<br />

Fig. (21): IR spectrum of material "2" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (22): Mass spectrum of material "2" of Phyllanthus atropurpureus<br />

Boj Hort. Maurit.<br />

130


+<br />

H<br />

HO<br />

m/z 273<br />

m/z 303<br />

+<br />

-R<br />

HO<br />

HO<br />

m/z 213<br />

-CH3<br />

Scheme (2): Mass fragmentation pattern of β-sitosterol (major one)<br />

+<br />

m/z 231<br />

m/z 414<br />

+<br />

m/z 381<br />

- H 2O m/z 396<br />

-R<br />

+<br />

m/z 255


PART II<br />

Characterization of material 3<br />

Material "3" (75 mg) occurs in the form of white residue; with<br />

m.p. 30 - 33 o C and Rf values of 0.52 and 0.45 (System 1 and 11<br />

respectively). It is soluble in light petroleum, benzene, chloroform and<br />

insoluble in methanol, acetone. It gave negative Libermann's and<br />

Salkowiski's tests for sterols and / or triterpenes (191, 192, 200) .<br />

Spectral Analysis:<br />

IR Spectral Analysis:<br />

The IR spectrum of material "3" (Fig. 23) shows the following<br />

absorption frequencies:<br />

Vmax (KBr) cm -1 : 3500- 3350, 2920-2850, 1707, 1460 and 597.<br />

Mass Spectral Analysis:<br />

The mass spectrum of material "3" (Fig. 24) shows the following<br />

mass fragments:<br />

m/z (% relative intensity): 254 (1.6), 225 (2.4), 156 (1.4), 139 (3.5),<br />

126 (3.5), 125 (4.1), 124 (1.6), 111 (3.5), 97 (10.3), 83 (23.6), 69<br />

(29.6) and 55 (100).<br />

NMR Spectral Analysis:<br />

The 1 H-NMR spectral analysis of material "3" (CD3OD, 500<br />

MHz) (Fig. 25) showed the following signals: 5.25 (2H, m), 2.17 (2H,<br />

t, J= 6Hz), 1.96 (2H, m), 1.5 (2H, m) and 0.81(3H, t, J= 6Hz) ppm.<br />

The 13 C-NMR spectral analysis of material "3" (CD3OD, 125<br />

MHz) (Fig. 26) revealed the presence of several signals which are<br />

- 132 -


- 133 -<br />

PART II<br />

177.79 (C-1), 130.89 (C-10), 129.05 (C-9), 14.43 (C-18), 35.01,<br />

33.07, 32.67, 30.76, 30.48, 30.43, 30.25, 28.11, 26.11, 23.73, 23.63<br />

ppm.<br />

Discussion and conclusion:<br />

The IR spectrum of material "3" (Fig. 23) indicated the presence<br />

of hydroxyl group at 3500-3350, aliphatic stretching peaks at 2920-<br />

2850 (of methyl and methylene groups), 1707 (C = O stretching<br />

vibration of the carboxylic group) and 1460 (CH2- bending).<br />

The 1 HNMR spectrum of material "3" (Fig. 25) showed one<br />

multiplet at δ 5.25 ppm integrated for two protons each assigned to<br />

olefinic protons H-9 and H-10. Two proton triplet at δ 2.17 ppm (J= 6)<br />

is attributed to C-2 methylene protons adjacent to carboxylic group.<br />

Two multiplets at δ1.96 and 1.50, both intergrated for two protons<br />

each accounted C-8 and C-11 methylene adjacent to the olefinic<br />

linkage, respectively. A three-proton triplet at δ 0.81 ppm (J= 6) for<br />

terminal primary CH3 protons. The remaining methylene proton<br />

resonated as a broad signal at δ 1.25 ppm.<br />

H 3C<br />

0.81 ppm<br />

1.5 ppm<br />

10<br />

5.25ppm<br />

H<br />

5.25 ppm<br />

1.96ppm 2.17 ppm<br />

The 13 C-NMR spectrum of material "3" (Fig. 26) revealed<br />

important signals for carboxylic carbonyl (δ 177.79), unsaturated<br />

carbons at δ 130.89 (C- 10) and 129.05 (C-9) and methyl carbon at δ<br />

14.43 (C- 18). The remaining methylene carbon resonated between<br />

H<br />

9<br />

O<br />

1<br />

C<br />

OH


PART II<br />

δ 23.63 - 35.01 ppm. The absence of any signals between δ 129.05-<br />

35.01 ppm ruled out the presence of a hydroxyl group in the molecule.<br />

14.43<br />

H 3C<br />

The mass fragmentation pattern of material 3 is represented in<br />

scheme (3).The prominent ion fragments generated at m/z 156, 126<br />

(C9-C10 fission) + , 111 (156 -COOH) + , 124 (139 –Me) + suggested the<br />

location of double bond at C9 -C10<br />

Molecular ions at m/z 139, 125, 111, 97, 83, 69 and 55 are<br />

corresponding to the sequential loss of 14 mass units (-CH2) which<br />

revealed the presence of a C18 straight chain acid with an olefinic<br />

unsaturation at C-9.<br />

On the basis of spectral data analysis, chemical reactions and<br />

available literature (204- 206) , the structure has been characterized as<br />

oleic acid.<br />

H 3C<br />

23.63<br />

33.07<br />

30.43- 30.48<br />

26.11<br />

130.89<br />

H<br />

H<br />

129.0532.76<br />

28.11<br />

Oleic acid<br />

- 134 -<br />

30.43<br />

30.76<br />

30.25<br />

23.73<br />

O<br />

C<br />

35.01 177.79<br />

OH<br />

COOH


- 135 -<br />

PART II<br />

Fig. (23): IR spectrum of material "3" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (24): Mass spectrum of material "3" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

Fig. (25): 1 H-NMR spectrum of material "3" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (26):<br />

- 136 -<br />

13 C-NMR spectrum of material "3" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


m/z 254<br />

- CO<br />

m/z 124 (1.6%)<br />

H 3C<br />

H 3C +<br />

m/z 139 (3.5%)<br />

- CH3<br />

M + 282<br />

C18H34O2<br />

H 3C +<br />

m/z 126<br />

(3.5%)<br />

m/z 97 (10.3%)<br />

m/z 83 (23.6%)<br />

- 137 -<br />

- CH3<br />

m/z 111 (3.5%)<br />

- CH2<br />

- CH2<br />

- CH2<br />

m/z 69 (29.6%)<br />

-CH2<br />

m/z 55 (100%)<br />

PART II<br />

Scheme (3): Mass fragmentation pattern of material "3" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.<br />

+<br />

COOH<br />

+.<br />

COOH<br />

m/z 156 (1.4%)<br />

- COO<br />

m/z 112 (1.6%)<br />

- H<br />

m/z 111 (3.5%)


Spot n o<br />

PART II<br />

Chromatographic <strong>In</strong>vestigation of Ethyl Acetate Soluble<br />

Fractions:<br />

TLC Screening of Ethyl acetate Fractions of Leaf, Stem and Root.<br />

Thin layer chromatographic screening of the ethyl acetate<br />

fractions of leaf, stem and root were carried out using silica gel GF245<br />

chromatoplates and solvent systems (6, 9 and 13). The developed<br />

plates were visualized by UV lamp λmax 365nm and spray reagents<br />

(ammonia and 50 % aqueous sulfuric acid). The chromatoplates<br />

revealed that the ethyl acetate fractions of stem and root are similar<br />

and in the same time are different from leaf ethyl acetate fraction.<br />

Results of TLC investigation are illustrated in table (20).<br />

Table (20): TLC <strong>In</strong>vestigation of Ethyl Acetate Fractions using<br />

solvent system (9).<br />

Rf value using<br />

solvent system<br />

(9)<br />

+ present<br />

─ absent<br />

+++ major spot<br />

Leaf ethyl<br />

acetate<br />

fraction<br />

Stem & root<br />

ethyl acetate<br />

fractions<br />

- 138 -<br />

Visualizing agent<br />

UV lamp (365<br />

NH4OH<br />

nm)<br />

1 0.99 + + blue fluorescence yellow violet<br />

2 0.97 + + violet yellow violet<br />

3 0.95 + ─ violet yellow yellow<br />

4 0.92 +++ + blue fluorescence yellow<br />

50%<br />

H2SO4<br />

blue fluorescence yellow<br />

brownish<br />

orange<br />

violet<br />

violet yellow brown<br />

5 0.90 + ─<br />

6 0.89 +++ ─<br />

7 0.88 ─ + violet. yellow violet<br />

8 0.87 + ─ violet yellow yellow<br />

9 0.86 + +++ blue fluorescence yellow yellow<br />

10 0.84 +++ +<br />

blue<br />

fluorescence<br />

yellow<br />

11 0.74 +++ ─ violet yellow<br />

brownish<br />

orange<br />

yellowish<br />

brown<br />

12 0.60 ─ +++ purple yellow yellow<br />

13 0.48 + + blue fluorescence yellow yellow<br />

14 0.30 + + blue fluorescence yellow yellow<br />

15 0.15 + + blue fluorescence Yellow<br />

yellowish<br />

brown


- 139 -<br />

PART II<br />

The chromatoplates of ethyl acetate soluble fraction of leaf<br />

revealed the presence of four major and nine minor spots. Results of<br />

TLC investigation are illustrated in tables (20& 21). While that of<br />

stem and root ethyl acetate fractions revealed the presence of two<br />

major and eight minor spots. Results of TLC investigation are<br />

illustrated in tables (20 & 28).<br />

Column Chromatography of Leaf Ethyl Acetate Fraction:<br />

A. TLC Screening of Leaf Ethyl Acetate Fraction.<br />

Thin layer chromatographic investigation of leaf ethyl acetate<br />

soluble fraction was carried out using silica gel GF245 chromatoplates<br />

using solvent systems (6, 9, 13), UV lamp λmax 365nm and spray<br />

reagents (ammonia and 50 % aqueous sulfuric acid) for visualization.<br />

The chromatographic study revealed the presence of four major and<br />

nine minor spots. The Rf values and behaviors with different reagents<br />

are illustrated in table (21).


PART II<br />

Table (21): TLC <strong>In</strong>vestigation of Leaf Ethyl Acetate Soluble<br />

Fraction with different visualizing agents and different solvent<br />

systems.<br />

Spot<br />

n<br />

Rf value Visualizing agent<br />

*major spot<br />

o 6 9 13<br />

UV lamp<br />

(365 nm) NH4OH 50 % H2SO4<br />

Isolated<br />

materials<br />

1 0.97 0.99 0.98<br />

Blue<br />

fluorescence<br />

Yellow Violet ---<br />

2 0.82 0.97 0.96 Violet Yellow Violet ---<br />

3 0.80 0.95 0.93 Violet Yellow Yellow ---<br />

4 0.75* 0.92* 0.91* Blue<br />

fluorescence<br />

Yellow Brownish orange Material 4<br />

5 0.69 0.90 0.87 Blue<br />

fluorescence<br />

Yellow Violet ---<br />

6 0.59* 0.89* 0.82* Violet Yellow Brown Material 5<br />

7 0.51 0.87 0.79 Violet. Yellow Yellow ---<br />

8 0.49 0.86 0.78 Blue<br />

fluorescence<br />

Yellow Yellow ---<br />

9 0.39* 0.84* 0.76* Blue<br />

fluorescence<br />

Yellow Brownish orange Material 6<br />

10 0.33* 0.74* 0.65* Violet Yellow Yellowish brown Material 7<br />

11 0.29 0.48 0.43 Blue<br />

fluorescence<br />

Yellow Yellow ---<br />

12 0.20 0.3 0.24 Blue<br />

fluorescence<br />

Yellow Yellow ---<br />

13 0.09 0.15 0.11 Blue<br />

fluorescence<br />

Yellow Yellowish brown ---<br />

B. Column Chromatography of Leaf Ethyl Acetate Soluble<br />

Fraction.<br />

6.5 g of the leaf ethyl acetate soluble fraction was dissolved in<br />

the least amount of methanol and adsorbed on 15 g of silica gel for<br />

column and transferred into a silica column (A) (2.5 × 150 cm, 250 g)<br />

packed with benzene. Elution was carried out starting with benzene<br />

and the polarity gradually increased with chloroform and methanol.<br />

Fractions (250 ml each) were collected, concentrated and examined by<br />

TLC using solvent system (9) and the similar fractions were pooled.<br />

- 140 -


- 141 -<br />

PART II<br />

Description of the column chromatographic process is illustrated in<br />

table (22).<br />

Table (22): Column Chromatography of Leaf Ethyl Acetate Soluble<br />

Fraction.<br />

Eluent<br />

%<br />

Composition<br />

Fr.<br />

No.<br />

Fr. wt.<br />

(g)<br />

Rf value (solvent system 9 )<br />

Isolated<br />

Material<br />

Benzene 100% 1-5 --<br />

Benzene:<br />

chloroform<br />

Benzene:<br />

chloroform<br />

Benzene:<br />

chloroform<br />

75:25 6-15 Undifferentiated spots<br />

--<br />

1.25<br />

50:50 16-33 --<br />

25:75 34- 49<br />

Chloroform 100% 50- 68 0.58<br />

Chloroform:<br />

methanol<br />

Chloroform:<br />

methanol<br />

Chloroform:<br />

methanol<br />

Chloroform:<br />

methanol<br />

Chloroform:<br />

methanol<br />

Chloroform:<br />

methanol<br />

Chloroform:<br />

methanol<br />

Chloroform:<br />

methanol<br />

Chloroform:<br />

methanol<br />

0.99, 0.97, 0.95 + undifferentiated<br />

spots<br />

99.5: 0.5 69- 73 0.55 0.95, 0.92*, 0.90<br />

--<br />

--<br />

Material<br />

4<br />

99: 1 74- 80 0.27 0.92, 0.90 --<br />

97: 3 81-96 0.34 undifferentiated spots --<br />

96: 4 97-99 0.10 0.89* + undifferentiated spots<br />

Material<br />

5<br />

94: 6 100-113 0.16 0.87, 0.86 ---<br />

92: 8 114-122 1.04 0.86, 0.84*<br />

84: 16 123-125 0.15 0.84, 0.74*<br />

Material<br />

6<br />

Material<br />

7<br />

68: 32 126-135 0.35 0.74, 0.48 , 0.3, 015 ---<br />

50: 50 136-147 0.40<br />

0.48, 0.3, 0.15+ undifferentiated<br />

spots<br />

Methanol 100% 148 1.31 Undifferentiated spots ---<br />

*Rf Corresponding to the isolated compound.<br />

--


PART II<br />

• Isolation of material (4):<br />

TLC examination of fractions 69-73 (0.55 g) revealed the<br />

presence of one major brownish orange spot with Rf value 0.92<br />

(solvent system 9 and 50 % aqueous sulphuric acid visualizing<br />

reagent). Crystallization from methanol afforded 250 mg of reddish<br />

brown needles, m.p. 141-143 o C. This was designated as material 4.<br />

• Isolation of material (5):<br />

Fractions 97-99 (0.1 gm) were examined by TLC to reveal the<br />

presence of one major brown spot with Rf value 0.89 alongside with<br />

other undifferentiated spots (solvent system 9 and 50 % aqueous<br />

sulphuric acid visualizing reagent).<br />

Fractions 97-99 were rechromatographed over silica gel column<br />

(B) (1x 50 cm, 15 g) and eluted with chloroform and the polarity<br />

increased gradually with methanol. Fractions (25 ml each) were<br />

collected, concentrated and examined by TLC using solvent system<br />

(9) and 50 % aqueous sulphuric acid visualizing reagent.<br />

TLC examination of fractions of this subcolumn eluted with 4%<br />

methanol in chloroform indicated the presence of one major brown<br />

spot with Rf value 0.89 (solvent system 9 and 50 % aqueous sulphuric<br />

acid visualizing reagent). Crystallization from methanol afforded 30<br />

mg of yellowish white residue; m.p.179 o C. This was designated as<br />

material 5.<br />

• Isolation of material (6):<br />

TLC investigation of fractions 114-122 (1.04 g) revealed the<br />

presence of one major brownish orange spot with Rf values of 0.84<br />

- 142 -


- 143 -<br />

PART II<br />

and 0.66 (solvent systems 9 and 100% ethyl acetate respectively<br />

using 50% aqueous sulphuric acid visualizing reagent).<br />

Fractions 114-122 was then rechromatographed over a silica gel<br />

column (C) (1 x 50 cm, 20 g) and eluted by gradient elution technique<br />

using benzene and ethyl acetate. 50ml fractions were collected,<br />

monitored by TLC and similar fractions were pooled.<br />

The pooled fractions eluted from benzene: ethyl acetate (1:1)<br />

revealed the presence of one major brownish orange spot with Rf<br />

value 0.84. Crystallization from methanol afforded 800 mg of buff<br />

fine powder; m.p. 144-146 o C. This was designated as material 6.<br />

• Isolation of material (7):<br />

The fractions 123-125 (0.15 g) when examined using solvent<br />

system (9) and 50 % aqueous sulphuric acid as visualizing reagent<br />

revealed the presence of one major yellowish brown spot with Rf<br />

value 0.74 and one minor brownish orange spot Rf value 0.84.<br />

Crystallization from methanol afforded faint yellow crystals (50 mg);<br />

m.p. 150-152 o C. This was designated as material 7.


PART II<br />

Characterization of material 4<br />

Material "4" (250 mg) occurs as reddish brown needles<br />

(methanol), with m.p. 141-143 o C. It is freely soluble in methanol and<br />

ethyl acetate, slightly soluble in chloroform and insoluble in benzene<br />

and light petroleum. It shows Rf value of 0.75 & 0.92 (solvent system<br />

6 & 9 respectively using 50 % aqueous sulphuric acid as visualizing<br />

reagent). Material 4 gave yellow colour with ammonia, brownish<br />

orange with 50% aqueous sulphuric acid reagent and blue<br />

fluorescence under UV light.<br />

Spectral analysis:<br />

IR Spectral Analysis:<br />

The IR spectrum of material "4" (Fig. 27) showed the following<br />

absorption frequencies:<br />

Vmax (KBr) cm -1 : 3621, 3500-3100, 3030, 2929-2800, 1649, 1517,<br />

1465, 1246, 1194, 1095, 1023, 833 and 760.<br />

UV Spectral Analysis:<br />

The UV spectroscopic analysis of material "4" showed<br />

absorption peak at λ max (methanol) 292 nm.<br />

Mass Spectral Analysis: (Fig. 28):<br />

EI-MS: m/z (%): 266 (M + , 4.7), 265 (7.47), 248 (0.23), 140<br />

(2.47), 125 (3.3), 124 (1.06), 112 (6.79),109 (10.19), 108 (4.51), 107<br />

(20.84), 99 (12.88), 98 (13.08), 95 (39.08), 84 (20.84), 79 ( 41.92), 67<br />

( 52.58), 66 ( 4.14), 60 (100).<br />

1 H-NMR and 13 C-NMR Spectral analysis<br />

The 1 H-NMR spectrum of material "4" (Fig. 29) (CDCl3/<br />

CD3OD, 300 MHz), showed the presence of the following signals:<br />

- 144 -


• A broad singlet at δ 6.615 - 6.651 ppm.<br />

• A singlet signal at δ 3.338 ppm.<br />

- 145 -<br />

PART II<br />

The 13 C-NMR of material "4" (Fig. 30) (CDCl3/ CD3OD, 75<br />

MHz), showed signals at δ (115.29- 117.30) and (149.87- 150.76)<br />

ppm.<br />

DEPT 135 of material "4" (Fig. 31) showed signals at δ 115.29-<br />

117.30 ppm.<br />

Discussion and conclusion<br />

The physical characters, colour reaction and UV absorption of<br />

material "4" suggest the presence of phenolic skeleton (207) .<br />

The IR spectrum of material "4" showed an absorption<br />

frequency at 3621 cm -1 attributed to unbonded -OH, broad absorption<br />

band at 3500-3100 cm -1 for several –OH groups and 1649, 1517, 1465<br />

cm -1 for aromaticity in addition to peaks at 1246, 1194, 1095 and 1023<br />

cm -1 for C-O stretching (ether linkage).<br />

EI-MS exhibited a molecular ion peak at m/z 266 (M + ) which is<br />

compatible with the molecular formula C12H10O7. The suggested mass<br />

fragmentation of this material illustrated in scheme (4).<br />

The 1 H-NMR spectrum of material "4" showed a broad singlet at<br />

δ 6.615- 6.651 ppm for aromatic protons and singlet signal at δ 3.338<br />

ppm for –OH groups.<br />

13 C-NMR spectral data and DEPT 135 experiments showed that<br />

material 4 contains only two types of carbons:<br />

=C-H at δ (115.29- 117.30) ppm and C-O at δ (149.87- 150.76) ppm.


PART II<br />

From the previously mentioned data and the available literature<br />

(208) , it is assumed that this material is di (3, 4, 5- trihydroxy phenyl)<br />

ether.<br />

For our knowledge, this is the first report about the isolation of<br />

this compound from nature. Also, this is the first detection of this class<br />

of natural product (diphenyl ether) in terrestrial plant while many<br />

marine brown algae (209) contain the phlorotannins which are<br />

phloroglucinol units exclusively linked by aryl ether bonds and can be<br />

grouped into several structure subclasses according to the structural<br />

elements they contain (210) .<br />

HO<br />

HO<br />

HO<br />

O<br />

- 146 -<br />

OH<br />

OH<br />

OH<br />

Di (3, 4, 5- trihydroxy phenyl) ether.


- 147 -<br />

PART II<br />

Fig. (27): IR spectrum of material "4" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (28): Mass spectrum of material "4" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

Fig. (29): 1 H-NMR spectrum of material "4" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 148 -


- 149 -<br />

PART II<br />

Fig. (30): 13 C-NMR spectrum of material "4" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (31): DEPT 135 spectrum of material "4" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


HO<br />

O<br />

- H<br />

HO<br />

HO<br />

HO<br />

HO<br />

- CO<br />

PART II<br />

HO<br />

HO<br />

H<br />

H<br />

H<br />

H<br />

m/z 98 (13.08 %)<br />

HO<br />

- OH<br />

HO<br />

HO<br />

m/z 248 ( 0.23 %)<br />

m/z 266<br />

atropurpureus Boj. Hort. Maurit.<br />

- 150 -<br />

+<br />

- OH<br />

m/z 109 (10.19 %)<br />

- H<br />

O<br />

m/z 108 (4.51 %)<br />

- H<br />

m/z 107 (20.84 %)<br />

+ .<br />

OH<br />

O O<br />

O H<br />

m/z 140 (2.47 %)<br />

- CO<br />

m/z 112 (6.79 %)<br />

- CO<br />

OH<br />

O H<br />

m/z 84 (20.84 %)<br />

- OH<br />

m/z 67 (52.58 %)<br />

Scheme (4): Mass fragmentation pattern of material "4" of Phyllanthus<br />

OH<br />

OH<br />

OH


Characterization of material 5<br />

- 151 -<br />

PART II<br />

Material "5" (30 mg) occurs as yellowish white residue<br />

(methanol), with m.p. 179 o C. It is freely soluble in methanol and ethyl<br />

acetate, slightly soluble in chloroform, insoluble in benzene and light<br />

petroleum. It shows Rf value of 0.89 & 0.59 (System 9 & 6<br />

respectively). Material "5" gave blue colour with FeCl3, red colour<br />

with nitric acid and yellow colour with alkali (T.S) and aluminum<br />

chloride (T.S).<br />

Spectral analysis:<br />

IR Spectral Analysis:<br />

The IR spectrum of material "5" (Fig. 32) showed the following<br />

absorption frequencies:<br />

Vmax (KBr) cm -1 : 3500-3250, 2930-2850, 1733, 1620 and 1458.<br />

UV Spectral Analysis:<br />

The data obtained by UV spectral analysis of material "5" (Fig.<br />

33) using different shifting reagents are summarized in table (23).<br />

Table (23): UV Spectral data of material "5"<br />

Shift reagent<br />

λ max nm<br />

Band II Band I<br />

MeOH 252 292( sh.)<br />

MeOH + NaOMe 274 300<br />

MeOH + AlCl3 272 312 (sh.)<br />

MeOH + AlCl3 + HCl 260 298<br />

MeOH + NaOAc 250 292 (sh.)<br />

MeOH + NaOAc + Boric acid 264 296<br />

Mass Spectral Analysis:<br />

The mass spectrum of material "5" (Fig. 34) showed the<br />

following fragments:


PART II<br />

m/z (% relative abundance):118 (0.1), 111 (7.7), 110 (100), 92 (10.2),<br />

64( 80.4) and 63 (31.3)<br />

1 H-NMR Spectral analysis:<br />

The 1 H-NMR spectrum of material "5" (Fig. 35) using CD3OD<br />

(500 MHz), showed the presence of the following signals which are<br />

listed in table (24).<br />

Table (24): 1 H-NMR spectral data of material "5".<br />

Position of proton δ (chemical shift)<br />

2 7.416,1H, S<br />

7 7.416,1H, S<br />

2', 6' 7.40, 2H, d, J= 8.5 Hz<br />

3', 5' 6.74 , 2H, d, J= 8.5 Hz<br />

Discussion and conclusion:<br />

Material "5" gave yellow colour with alkali (T.S) and AlCl3 in<br />

addition to blue colour with ferric chloride indicating phenolic<br />

character (188) . It gave red colour with nitric acid indicating isoflavone<br />

nature of the material (211) .<br />

The IR spectrum showed absorption peaks at 3500-3250 cm -1<br />

indicating the presence of hydroxyl group; peak at 1733 cm -1 for γ<br />

pyrone ring and peaks at 1620 and 1458 cm -1 for aromaticity.<br />

The UV data showed one major band at λmax 252 nm (band II)<br />

and a shoulder at 292 nm (band I) in methanol suggesting an<br />

isoflavone material (187) . Addition of NaOMe showed a bathochromic<br />

shift (+8 and +22 nm) in band I and II respectively indicating the<br />

presence of free hydroxyl groups at ring A. AlCl3 produced a<br />

- 152 -


- 153 -<br />

PART II<br />

bathochromic shift (+20 nm) in both band I and II indicating the<br />

presence of ortho-dihydroxy groups in ring A and/ or free 5-OH, this<br />

will confirmed upon addition of HCl, where the absorption of AlCl3<br />

was reduced but not return back to methanol spectrum values. NaOAc<br />

caused no bathochromic shift in band II indicating the absence of free<br />

hydroxyl group at C-7. No bathochromic shift in band I upon the<br />

addition of NaOAc/ H3BO3.<br />

The mass fragmentation pattern of material "5" (scheme 5)<br />

showed parent ion (M + ) at m/z 286 which is in a good accordance with<br />

a molecular formula C15H10O6 and fragments at m/z 121, 118<br />

confirmed the presence of one hydroxyl group at ring B.<br />

The 1 H-NMR spectrum of material "5" showed singlet signal at<br />

7.416 p.pm which was assigned to H-2 and H-7 ( 187) , two signals at<br />

δ 7.40 and 6.74 p.p.m (each 2H, d, J=8.5) which were assigned to H-<br />

2', 6' and H- 3', 5' respectively.<br />

From the previous spectral analysis; IR, UV, MS and 1 H-NMR<br />

confirmed that the material "5" is 5, 6, 8, 4'-tetrahydroxy isoflavone. It<br />

has the following structural formula:<br />

HO<br />

For our knowledge this is the first report of isolation of this<br />

compound from family Euphorbiaceae and it may be a new<br />

compound.<br />

OH<br />

OH<br />

O<br />

O<br />

OH<br />

5, 6, 8, 4'-tetrahydroxy isoflavone


PART II<br />

Fig. (32): IR spectrum of material"5" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

─ MeOH<br />

----MeOH+NaOMe<br />

Fig. (33): UV spectrum of material "5" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 154 -<br />

─ MeOH+NaOAc<br />

---- MeOH+NaOAc+H3BO3<br />

─ MeOH+ AlCl3<br />

---- MeOH+AlCl3+ HCl


- 155 -<br />

PART II<br />

Fig. (34): Mass spectrum of material "5" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (35): 1 H-NMR spectrum of material "5" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

HO<br />

m/z 258<br />

HO<br />

OH<br />

OH<br />

O<br />

OH<br />

O<br />

- CO<br />

HO<br />

OH<br />

OH<br />

OH<br />

O<br />

O<br />

M + 286<br />

HO C O m/z 168<br />

OH<br />

m/z 139<br />

OH<br />

- CO<br />

- H<br />

-CO<br />

O<br />

- H<br />

m/z 110 (100%)<br />

m/z 111 (7.7%)<br />

- 156 -<br />

OH<br />

O<br />

HC<br />

C<br />

C<br />

m/z 121<br />

OH<br />

OH<br />

m/z 118 (0.1%)<br />

Scheme (5): Mass fragmentation pattern of material "5" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.


Characterization of material "6"<br />

- 157 -<br />

PART II<br />

Material "6" (800 mg) occurs as buff fine powder (Chloroform-<br />

methanol) m.p 144-146 o C; Rf value of 0.84 & 0.66 (100% ethyl<br />

acetate & system 9 respectively sprayed with 50% aqueous sulphuric<br />

acid).It is soluble in methanol and ethyl acetate, slightly soluble in<br />

chloroform, and insoluble in benzene. Material "6" gives yellow<br />

colour with alkali (T.S) and aluminum chloride (T.S).<br />

Spectral Analysis:<br />

UV Spectral Analysis:<br />

The UV spectroscopic analysis of material "6" (Fig. 36) showed<br />

absorptions at λ max (methanol) 224.5, 299.5, 313.5 nm and λ max<br />

(sodium methoxide) at 361 nm.<br />

IR Spectral Analysis:<br />

The IR spectrum of material "6" (Fig. 37) showed the following<br />

absorption frequencies:<br />

Vmax (KBr) cm -1 : 3500-3250, 2920, 1690, 1605, 1512 and 1448.<br />

The Mass Spectral Analysis:<br />

The EI-MS spectroscopic analysis of material "6" (Fig. 38)<br />

showed the following data:<br />

m/z (% relative abundance): 418 (M + , 8.76), 313 (9.49), 312 (27), 309<br />

(56.2), 283 (16.06), 219 (8.03), 164(10.22), 147 (100), 119 (5 ), 109<br />

(5) and 81 (75 ).<br />

37.96%).<br />

FAB-MS (positive ion mode) (Fig. 39) showed m/z 419 (M + ,


PART II<br />

NMR Spectral Analysis:<br />

The 1 HNMR and 13 CNMR spectral analysis of material "6"<br />

(CD3OD, 300 MHz) (Fig. 40) and (CD3OD, 75 MHz) (Fig. 41)<br />

respectively revealed the presence of several signals which are<br />

summarized in table (25).<br />

Table (25): 1 HNMR and 13 CNMR Spectral Data of Material "6":<br />

H-N o<br />

δ – value<br />

(ppm)<br />

<strong>In</strong>tegration<br />

- 158 -<br />

J (Hz)<br />

δ – value<br />

(ppm)<br />

C-1 152.3 s<br />

C-N o<br />

H-2 6.94 2H d (9) C-2 119.64 d<br />

H-3 6.65 2H d (9) C-3 116.65 d<br />

C-4 153.9 s<br />

H-5 6.65 2H d (9) C-5 116.65 d<br />

H-6 6.94 2H d (9) C-6 119.64 d<br />

H-1' 4.73 1H d (6.9) C-1' 103.67 d<br />

H-2' 3.44 1H t (6.9) C-2' 75.51 d<br />

H-3' 3.66 1H t (6.9) C-3' 77.93 d<br />

H-4' 3.35 1H t (6.9) C-4' 71.95 d<br />

H-5' 3.66 1H dd (6.9, 2.5) C-5' 74.96 d<br />

H-6'a 4.34 1H dd (12, 6.9) C-6' 64.74 t<br />

H-6'b 4.52 1H dd (12, 2.5)<br />

C-1" 127.37 s<br />

H -2" 7.45 2H d (8.7) C -2" 131.28 d<br />

H -3" 6.81 2H d (8.7) C -3" 116.94 d<br />

C-4" 161.35 s<br />

H -5" 6.81 2H d (8.7) C-5" 116.94 d<br />

H -6" 7.45 2H d (8.7) C -6" 131.28 d<br />

H -7" 7.63 1H d (15.9 ) C -7" 146.88 d<br />

H -8" 6.34 1H d (15.9) C -8" 114.95 d<br />

C-9" 169.06 s<br />

DISCUSSION AND CONCLUSION<br />

The UV spectrum showed λ max (methanol) at 299.5 and 313.5<br />

nm which implied the presence of a conjugated chromophore and<br />

sodium methoxide which caused 48 nm bathochromic shifts in UV<br />

spectrum indicating the presence of free OH group.<br />

The IR spectrum showed a hydroxyl stretching band at 3500-<br />

3250 cm -1 . Also it showed an absorption band at 1690 cm -1 for ester


- 159 -<br />

PART II<br />

carbonyl besides another bands at 1605, 1512 and 1448 cm -1 for<br />

aromaticity.<br />

The 1 HNMR spectrum of material "6" (Fig. 40& table 25)<br />

showed signals for two sets of aromatic protons (δ 6.81 and 7.45 ppm,<br />

J= 8.7 Hz) and (δ 6.65 and 6.94 ppm, J= 8.7 Hz), trans - olefinic<br />

protons (J= 15.9) at δ 7.63 and 6.34 ppm, and sugar protons (anomeric<br />

proton at δ 4.73 ppm).<br />

The 13 C-NMR spectrum of material "6" (Fig. 41& table 25)<br />

revealed ester carbonyl at δ 169.06 ppm and six carbon signals arising<br />

from a monosaccharide moiety whose anomeric carbon signal is at<br />

103.67 ppm indicating the presence of a glucose moiety in the<br />

molecule (42, 212, 213) .<br />

The mass fragmentation pattern of material "6" is a suggestive<br />

one and shown in scheme (6). The parent ion peak at m/z 418<br />

corresponding to the molecular formula (C21H22O9), the fragments at<br />

m/z 309 [M- 109] + and 147 support the presence of a cinnamoyl<br />

group .Finally it was considered to be a trans-cinnamoyl group<br />

esterified with a hydroxyl group of the glucose moiety and the<br />

fragment at m/z 164 and 147 implied the presence of p-coumaroyl<br />

moiety (212, 214) .<br />

Extensive NMR analysis: 1 H- 1 H COSY (Fig. 42), DEPT 135<br />

(Fig. 43), APT (Fig. 44), gHSQCAD (Fig. 45), and gHMBC (Fig. 46)<br />

spectral data of material "6" allowed a complete assignment of protons<br />

attached to their respective carbons.<br />

• Only one CH2 group at 64.74 ppm (C-6') and five quaternary<br />

carbon at 169.06, 161.35, 153.9, 152.3, 127.37 ppm (C-9", C-4",


PART II<br />

C-4, C-1, and C-1" respectively) present in the material and this is<br />

confirmed by DEPT 135 and APT.<br />

• The chemical shift (δ C 152.3) of one of the aromatic carbons<br />

indicated that it was attached to an oxygen atom, and the chemical<br />

shift of the sugar anomeric proton [δ H 4.73 (d, J= 6.9 Hz)] and<br />

carbon [δ C 103.67] signals indicated that the sugar moiety was<br />

not attached to the carboxyl group but to this phenolic oxygen<br />

through a glycosidic linkage.<br />

• The gHMBC correlation achieved between the anomeric proton<br />

at δ H 4.73 (H-1') and δ C 152.3 (C-1) support a C-1 location for<br />

the sugar unit in the glucosidic linkage.<br />

• The existence of cinnamoyl group in the compound, with an<br />

ester linkage at C-9", was established by gHMBCAD<br />

correlations:<br />

H-6' to C- 9"; H-2" and H-6" to C- 7" and C-4"; and H-3" and H-<br />

5" to C-2", C-6" and C-4"<br />

Finally the data confirmed that material "6" is 6'-(4"-hydroxy-<br />

cinnamoyl) arbutin which is known as robustaside A (215) by<br />

comparing its UV, 1 H-NMR and 13 C-NMR spectra with the reported<br />

data. This is the first report about isolation of robustaside A from<br />

genus Phyllanthus and the second from the nature (215) .<br />

HO<br />

4<br />

HO<br />

4"<br />

1<br />

HO<br />

O<br />

1"<br />

- 160 -<br />

1'<br />

7"<br />

O<br />

O<br />

8" 9"<br />

O<br />

OH<br />

OH<br />

6'-(4"-hydroxy- cinnamoyl) arbutin<br />

6'


- 161 -<br />

MeOH+ NaOMe<br />

MeOH<br />

PART II<br />

Fig. (36): UV spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (37): IR spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

Fig. (38): EI-MS spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (39): FAB-Mass spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 162 -


- 163 -<br />

PART II<br />

Fig. (40): 1 H-NMR spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (41): 13 C-NMR spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

Fig. (42): 1 H - 1 H COSY spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (43): DEPT 135 spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 164 -


- 165 -<br />

PART II<br />

Fig. (44): APT spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

Fig. (45): gHSQCAD spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (46): gHMBC spectrum of material "6" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 166 -


+<br />

HO<br />

HO<br />

HO<br />

O<br />

HO<br />

O<br />

O<br />

m/z 309 ( 56.2 %)<br />

m/z 164 (10.22%)<br />

-OH<br />

m/z 147 (100%)<br />

4<br />

HO<br />

OH<br />

O<br />

OH<br />

-CO<br />

4"<br />

OH<br />

1<br />

HO<br />

O<br />

1"<br />

1'<br />

7"<br />

- 167 -<br />

O<br />

O<br />

8" 9"<br />

O<br />

m/z 418 (8.76 %)<br />

OH<br />

m/z 119 (5 %)<br />

OH<br />

6'<br />

+<br />

HO<br />

+ .<br />

O<br />

m/z 109 (5%)<br />

- CO<br />

m/z 81 (75 %)<br />

PART II<br />

Scheme (6): Mass fragmentation pattern of material "6" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.


PART II<br />

Characterization of material "7"<br />

Material "7" (50 mg) occurs as pale yellow crystals (Chloroform-<br />

methanol) m.p 150-152 o C; Rf value of 0.52 (100% ethyl acetate). It<br />

is soluble in methanol and ethyl acetate, slightly soluble in<br />

chloroform, and insoluble in benzene. Material "7" gives yellow<br />

colour with alkali (T.S) and aluminum chloride (T.S).<br />

Spectral Analysis:<br />

UV Spectral Analysis:<br />

The UV spectroscopic analysis of material "7" (Fig. 49)<br />

showed absorptions at λ max (methanol) 288, 324 nm and λ max<br />

(sodium methoxide) at 374 nm.<br />

IR Spectral Analysis:<br />

The IR spectrum of material "7" (Fig. 50) showed the following<br />

absorption frequencies:<br />

Vmax (KBr) cm -1 : 3600-3100, 2925, 1715, 1606, 1511 and 1430.<br />

Mass Spectral Analysis:<br />

The EI-MS spectroscopic date of material "7" (Fig. 51) showed<br />

the following data:<br />

m/z (% relative abundance): 255 (M + -179, 100%), 135 (8.1), 118 (7),<br />

117 (3.7), 110 (13.3), 109 (9.6), 101(8.5) and 100 (10).<br />

NMR Spectral Analysis:<br />

The 1 HNMR spectral analysis of material "7" (CD3OD, 500<br />

MHz) (Fig. 52) revealed the presence of several signals which are<br />

summarized in table (26).<br />

- 168 -


Table (26): 1 HNMR Spectral Data of Material "7":<br />

δ – value<br />

(ppm)<br />

<strong>In</strong>tegration J (Hz)<br />

H-2 6.94 2H d (9)<br />

H-3 6.64 2H d (9)<br />

H-5 6.64 2H d (9)<br />

H-6 6.94 2H d (9)<br />

H-1' 4.72 1H d (7.6)<br />

H-2', 3', 4' 3.35-3.5 3H m<br />

H-5' 3.65 1H dd (6.9, 2.5 )<br />

H-6'a 4.35 1H dd (12, 6.9)<br />

H-6'b 4.52 1H dd (12, 2.5)<br />

H -2" 6.93 1H d (2.3)<br />

H -5" 7.06 1H d (9)<br />

H -6" 6.81 1H dd (9, 2.3 )<br />

H -7" 7.57 1H d (16)<br />

H -8" 6.29 1H d (16)<br />

H-N o<br />

DISCUSSION AND CONCLUSION<br />

- 169 -<br />

PART II<br />

The UV spectrum showed λ max (methanol) at 288 and 324 nm<br />

which implied the presence of a conjugated chromophore and sodium<br />

methoxide which caused 50 nm bathochromic shifts in UVspectrum<br />

indicating the presence of free OH group.<br />

The IR spectrum showed a hydroxyl stretching band at 3600-<br />

3100 cm -1 .Also it showed an absorption band at 1715 cm -1 for ester<br />

carbonyl besides another bands at 1606, 1511 and 1430 cm -1 for<br />

aromaticity.<br />

The mass fragmentation pattern of material "7" is a suggestive<br />

one and shown in scheme (7).<br />

The 1 HNMR spectrum of material "7" (Fig. 52& table 26)<br />

showed signals at:


PART II<br />

• δ 6.64 (2H, d, J= 9Hz) and 6.94 (2H, d, J= 9Hz) for H-2,<br />

H-6 and H- 3, H-5 aromatic protons respectively.<br />

• δ 6.81 (1H, dd, J= 9, 2.3), 6.93 (1H, d, J=2.3) and 7.06<br />

(1H d, J= 9) for H- 6", H- 2" and H- 5" aromatic protons<br />

respectively.<br />

• δ 7.57 (1H, d, J=16) and 6.29 (1H, d, J=16) for trans-<br />

olefinic protons H-7" and H-8" respectively.<br />

• δ 4.72 for anomeric proton of glucose.<br />

Comparing data of material 7 with robustaside A was illustrated<br />

in table (27).<br />

Table (27): Comparison between robustaside A and material "7" data.<br />

UV<br />

Mass<br />

1 HNMR<br />

Comparison Robustaside A Material 7<br />

m.p. 144-146 o C 150-152 o C<br />

Rf value* 0.66 0.52<br />

buff fine powder faint yellow crystals<br />

MeOH 299.5, 313.5 nm 288, 324 nm<br />

NaOMe 361 nm 374 nm<br />

IR<br />

3500-3250(OH), 2920, 1690(C=O),<br />

1605, 1512 and 1448 (aromaticity)<br />

cm -1<br />

- 170 -<br />

3600-3100(OH), 2925, 1715(C=O),<br />

1606, 1511 and 1430 (aromaticity)<br />

cm -1<br />

M+ 418 434<br />

base<br />

peak<br />

147 255<br />

H-2 6.94 (2H, d, J= 9) 6.94 (2H, d, J= 9)<br />

H-3 6.65 (2H, d, J= 9) 6.64 (2H, d, J= 9)<br />

H-5 6.65 (2H, d, J= 9) 6.64 (2H, d, J= 9)<br />

H-6 6.94 (2H, d, J= 9) 6.94 (2H, d, J= 9)<br />

H-1' 4.73 (1H, d, J= 6.9) 4.72 (1H, d, J= 7.6)<br />

H-2' 3.44 (1H, t, J= 6.9)<br />

H-3' 3.66 (1H, t, J= 6.9)<br />

3.35-3.5 (3H, m)<br />

H-4' 3.35 (1H, t, J= 6.9)<br />

H-5' 3.66 (1H, dd J= 6.9, 2.5) 3.65 (1H, dd, J= 6.9, 2.5)<br />

H-6'a 4.34 (1H, dd J=12, 6.9) 4.35 (1H, dd, J= 12, 6.9)<br />

H-6'b 4.52 (1H, dd J=12, 2.5) 4.52 (1H, dd J= 12, 2.5)<br />

H -2" 7.45 (2H, d, J= 8.7) 6.93 (1H, d, J= 2.3)<br />

H -3" 6.81 (2H, d, J= 8.7) ---


- 171 -<br />

PART II<br />

Comparison Robustaside A Material 7<br />

H -5" 6.81 (2H, d, J= 8.7) 7.06 (1H, d, J= 9)<br />

H -6" 7.45 (2H, d, J= 8.7) 6.81 (1H, dd, J= 9, 2.3)<br />

H -7" 7.63 (1H, d, J= 15.9) 7.57 (1H, d, J= 16)<br />

H -8" 6.34 (1H, d, J= 15.9) 6.29 (1H, d, J= 16)<br />

*solvent system (100% ethyl acetate);<br />

Finally the data confirmed that material 7 is 6'- (3", 4"-dihydroxy<br />

cinnamoyl) arbutin or it can be named as 3"-hydroxy robustaside A.<br />

For our knowledge this is the first report about the isolation of this<br />

compound from the nature.<br />

HO<br />

4<br />

HO<br />

HO<br />

3"<br />

1<br />

HO<br />

O<br />

1"<br />

1'<br />

O<br />

8" 9"<br />

7''<br />

3"-hydroxy robustaside A<br />

O<br />

OH<br />

O<br />

OH<br />

6'


PART II<br />

─ MeOH<br />

----MeOH+NaOMe<br />

Fig. (49): UV spectrum of material "7" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (50): IR spectrum of material "7" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 172 -


- 173 -<br />

PART II<br />

Fig. (51): Mass spectrum of material "7" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (52): 1 H-NMR spectrum of material "7" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

HO<br />

HO<br />

HO<br />

HO<br />

m/z 179<br />

- COO<br />

O<br />

O<br />

m/z 135 (8.1 %)<br />

- OH<br />

m/z 118 (7%)<br />

- OH<br />

m/z 101 (8.5%)<br />

HO<br />

+<br />

HO<br />

HO<br />

Scheme (7): Mass fragmentation pattern of material "7" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.<br />

+<br />

- 174 -<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

m/z 434(M + )<br />

HO<br />

OH<br />

HO<br />

O<br />

+ .<br />

O<br />

OH<br />

+CH 2<br />

(M + -179)<br />

m/z 255 (100 %)<br />

HO OH<br />

m/z 110 (13.3%)<br />

+<br />

HO<br />

- H<br />

O<br />

m/z 109 (9.6%)<br />

OH


- 175 -<br />

PART II<br />

Column Chromatography of Stem and Root Ethyl<br />

Acetate Soluble Fraction:<br />

A. TLC Screening of Collected Ethyl Acetate Soluble Fraction<br />

of Root and Stem.<br />

Thin layer chromatographic investigation of root and stem ethyl<br />

acetate soluble fraction was carried out using silica gel GF245<br />

chromatoplates, solvent systems (6, 9& 13), UV lamp 365nm and<br />

spray reagents (ammonia and 50 % aqueous sulfuric acid) for<br />

visualization. The chromatographic study revealed the presence of<br />

two major and eight minor spots. The Rf values and behaviors with<br />

different reagents are illustrated in table (28).<br />

Table (28): TLC <strong>In</strong>vestigation of Collected Ethyl Acetate Soluble<br />

Fraction of Stem and Root with different visualizing agents.<br />

Spot<br />

n<br />

Rf value Visualizing agent<br />

o 6 9 13<br />

UV lamp<br />

NH4OH 50 % H2SO4<br />

(365 nm)<br />

Isolated<br />

materials<br />

1 0.79 0.99 0.98<br />

Blue<br />

fluorescence<br />

Yellow Violet ---<br />

2 0.75 0.97 0.95 Violet Yellow Violet ---<br />

3 0.69 0.92 0.87<br />

Blue<br />

fluorescence<br />

Yellow<br />

Brownish<br />

orange<br />

---<br />

4 0.55 0.88 0.80 Violet Yellow Violet ---<br />

5 0.49* 0.86* 0.78* Blue<br />

fluorescence<br />

Yellow Yellow material 8<br />

6 0.39 0.84 0.76<br />

Blue<br />

fluorescence<br />

Yellow<br />

Brownish<br />

orange<br />

material 6<br />

7 0.31* 0.60* 0.54* Purple Yellow Yellow material 9<br />

8 0.29 0.48 0.43<br />

Blue<br />

fluorescence<br />

Yellow Yellow ---<br />

9 0.20 0.30 0.24<br />

Blue<br />

fluorescence<br />

Yellow Yellow ---<br />

10 0.09 0.15 0.11<br />

Blue<br />

fluorescence<br />

Yellow<br />

Yellowish<br />

brown<br />

---<br />

* major spot


PART II<br />

B. Column Chromatography of Collected Root and Stem Ethyl<br />

Acetate Soluble Fraction.<br />

About 4 g of the collected ethyl acetate soluble fraction of root<br />

and stem was dissolved in the least amount of methanol and adsorbed<br />

on 7 g of silica gel for column and transferred onto a silica column ( 2<br />

× 100 cm, 100 g) packed with benzene. Elution was carried out<br />

starting with benzene and the polarity gradually increased with<br />

chloroform and methanol. Fractions (250 ml. each) were collected,<br />

concentrated<br />

and examined by TLC using solvent system (9) and 50 % aqueous<br />

sulphuric acid as visualizing reagent and similar fractions were<br />

pooled. Description of the column chromatographic process is<br />

illustrated in table (29).<br />

Table (29): Column Chromatography of Collected Ethyl Acetate<br />

soluble Fraction of Root and Stem.<br />

Eluent<br />

%<br />

Compositio<br />

n<br />

Fr.<br />

N o .<br />

- 176 -<br />

Fr.<br />

Wt.<br />

(g)<br />

Rf value (solvent<br />

system 9 )<br />

Isolated<br />

materials<br />

Benzene 100% 1-5 0.150 Undifferentiated spots ---<br />

Benzene: chloroform 75 :25 6-13 0.230 0.99 ---<br />

Benzene: chloroform 60:40 14-17 0.063 0.97 ---<br />

Benzene: chloroform 30:70 18-27 0.180 0.97, 0.92 ---<br />

Chloroform 100% 28-33 0.180<br />

0.92 +<br />

Undifferentiated spots<br />

---<br />

Chloroform: methanol 0.5: 99.5 34-36 0.190 Undifferentiated spots ---<br />

Chloroform: methanol 99: 1 37-42 0.330 Undifferentiated spots ---<br />

Chloroform: methanol 97: 3 43-69 0.850 Undifferentiated spots ---<br />

Chloroform: methanol 95: 5 70-78 0.550 0.88 ---<br />

Chloroform: methanol 92: 8 79-82 0.150 0.86*, 0.84<br />

material 6 +<br />

material 8<br />

Chloroform: methanol 84: 16 83-88 0.170 0.84 , 0.6* material 9<br />

Chloroform: methanol 68: 32 89&90 0.410 0.48 , 0.30 , 0.15 ---<br />

Methanol 100% 91-93 0.547 Undifferentiated spots ---<br />

*Rf Corresponding to the isolated material


• Isolation of material "8":<br />

- 177 -<br />

PART II<br />

<strong>In</strong>vestigation of fractions (79-82) using TLC, solvent system (6<br />

&9) and 50 % aqueous sulphuric acid as visualizing reagent revealed<br />

the presence of one major yellow spot with Rf value of 0.49 & 0.86<br />

and one minor spot with Rf value of 0.39 & 0.84 respectively. To<br />

obtain pure material from this<br />

fraction, crystallization from ethyl acetate and MeOH mixture was<br />

done to give 50 mg of yellow crystals with m.p. 250- 251 o C, this<br />

compound was designated as material "8". The minor spot give buff<br />

sandy crystals with m.p. 144-146 o C and this was previously isolated<br />

and designated as material "6".<br />

• Isolation of material "9":<br />

<strong>In</strong>vestigation of fractions (83-88) using TLC, solvent system (6<br />

and 9) and 50 % aqueous sulphuric acid as visualizing reagent<br />

revealed the presence of one major yellow spot with Rf value of 0.31<br />

and 0.6 respectively. Upon crystallization several times from MeOH-<br />

ethyl acetate mixture gave 43 mg of yellow crystals with m.p. 254-255<br />

o C, this compound was designated as material "9".


PART II<br />

Characterization of material "8"<br />

Material "8" was obtained as yellow crystals (MeOH / ethyl<br />

acetate), m.p. 250-251 o C and Rf of 0.49 (solvent system 6). It is<br />

soluble in ethyl acetate, methanol, insoluble in benzene and<br />

chloroform. Material "8" developed a yellow colour with ammonia,<br />

AlCl3 and showed negative Molisch's and Fehling's tests.<br />

Spectral Analysis:<br />

UV Spectral Analysis:<br />

The data obtained by UV spectral analysis of material "8" (Fig.<br />

53) using different shifting reagents are summarized in table (30).<br />

Table (30): UV spectral data of material "8".<br />

Shift reagent<br />

Band II<br />

λ max nm<br />

Band I<br />

MeOH 278 302<br />

MeOH + NaOMe 290 368<br />

MeOH + AlCl3 282 314, 344<br />

MeOH + AlCl3 + HCl 282 314, 344<br />

MeOH + NaOAc 276, 310(sh.) 342<br />

MeOH + NaOAc + H3BO3 274, 310(sh.) 348<br />

IR Spectral Analysis:<br />

The IR spectrum of material "8" (Fig. 54) showed the following<br />

absorption frequencies:<br />

Vmax (KBr) cm -1 : 3500-3100, 2924, 2853, 1648, 1453, 1386 and 1181.<br />

Mass Spectral Analysis:<br />

The EI-MS spectroscopic date of material "8" (Fig. 55) showed<br />

the following data:<br />

- 178 -


- 179 -<br />

PART II<br />

m/z (% relative abundance): 329 (M + -1, 7.8), 280 (9.8), 212 (9.8),<br />

155 (25.5), 154 (5.9), 121 (29.4), 120 (29.4), 118 (11.8), 93 (78.4), 92<br />

(9.8) and 89 (100).<br />

1 H-NMR Spectral Analysis:<br />

The 1 H-NMR spectrum of material "8" (Fig. 56), using CD3OD<br />

(500 MHz) is represented in table (31)<br />

Table (31): 1 H-NMR spectral data of material "8".<br />

H-No. δ (ppm) integration J (Hz)<br />

H- 3 6.70 1H S<br />

H- 2', 6' 7.99 2H d, J= 8.75<br />

H- 3', 5' 7.10 2H d, J= 8.75<br />

O-CH3 at C-6 3.89 3H S<br />

O-CH3 at C-8 3.92 3H S<br />

Discussion and conclusion:<br />

The IR spectrum of material "8" showed a hydroxyl stretching<br />

band at 3500-3100 cm -1 . Also it showed an absorption band at 2924<br />

and 2853 cm -1 for aliphatic C-H. It showed an absorption band at 1648<br />

cm -1 for γ-pyrone ring beside another three bands at 1453, 1386 and<br />

1181 cm -1 for -CH2 bending, -CH3 bending and C-C respectively.<br />

Material "8" was recognized as a flavone from its UV absorption<br />

maxima at 302 nm (band I) and 278 nm (band II). A bathochromic<br />

shift (+66 nm) in band I was observed upon addition of NaOMe<br />

indicated a free hydroxyl group at C-4'. Bathochromic shift (+42 nm)<br />

in band I was observed upon addition of AlCl3 and AlCl3/ HCl<br />

indicating the presence of –OH group at C-5 and absence of<br />

orthohydroxylation as well.


PART II<br />

<strong>In</strong> addition, bathochromic shift of band II was observed by the<br />

effect of NaOAc that confirmed the presence of free –OH group at C-<br />

7.<br />

The mass spectrum exhibited a molecular ion at m/z 329 (M + -1)<br />

which is in a good accordance with a molecular formula C17H14O7for<br />

this compound. Fragments at m/z 212 corresponding to ring A with<br />

two methoxyl groups and two hydroxyl groups, 118 corresponding to<br />

ring B with one hydroxyl group were observed in scheme (8).<br />

The 1 H-NMR spectrum of this material confirmed the presence<br />

of flavone through the arise of an olefinic proton singlet signal<br />

localized at δ 6.7 ppm assigned for H-3. The spectrum also showed<br />

two broad doublets: one at δ 7.99 (2H, J= 8.75 Hz, H-2', 6') and<br />

another one at δ 7.1 (2H, J= 8.75 Hz, H-3', 5') that are characteristic<br />

for 4'-substituted B-ring (211).<br />

Finally, the data confirmed that material "8" is 5, 7, 4'-<br />

trihydroxy- 6, 8-dimethoxyflavone. Evidently, material "8" was<br />

tentatively identified as demethoxysudachitin by comparing its 1 H-<br />

NMR with the reported data (187) . This represents the first time of<br />

isolation of this compound from the genus Phyllanthus and from<br />

Phyllanthus atropurpureus Boj. Hort. Maurit. as well.<br />

HO<br />

MeO<br />

OMe<br />

OH<br />

O<br />

O<br />

Demethoxysudachitin<br />

- 180 -<br />

OH


─ MeOH<br />

----MeOH+NaOMe<br />

- 181 -<br />

─ MeOH+NaOAc<br />

---- MeOH+NaOAc+H3BO3<br />

PART II<br />

─ MeOH+ AlCl3<br />

---- MeOH+AlCl3+ HCl<br />

Fig. (53): UV spectrum of material "8" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (54): IR spectrum of material "8" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

Fig.(55): Mass spectrum of material "8" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (56): 1 H-NMR spectrum of material "8" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 182 -<br />

329


MeO<br />

m/z 313<br />

-OH<br />

m/z 296<br />

-OH<br />

OMe<br />

O<br />

O<br />

-OH<br />

m/z 280 (9.8%)<br />

m/z 120( 29.4%)<br />

-OH<br />

-OH<br />

HO<br />

MeO<br />

m/z 329 (7.8%)<br />

OMe<br />

OH<br />

HO<br />

MeO<br />

Scheme (8): Mass fragmentation pattern of material "8" of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit.<br />

- 183 -<br />

O<br />

O<br />

-H<br />

M + 330<br />

OMe<br />

OH<br />

O<br />

C<br />

m/z 212 (9.8%)<br />

HO<br />

O<br />

-Me<br />

-Me<br />

m/z 182<br />

O<br />

-CO<br />

OH<br />

O<br />

m/z 154 (5,9%)<br />

O<br />

OH<br />

-H<br />

+.<br />

O<br />

PART II<br />

HC<br />

C<br />

OH<br />

m/z 121 (29.4%)<br />

C<br />

m/z 118 (11.8%)<br />

m/z 153 (5.9%)<br />

-OH<br />

m/z 101<br />

OH


PART II<br />

Characterization of material "9"<br />

Material "9" occurs as yellow crystals (43 mg), m.p. 254-255 o C<br />

and Rf values of 0.31 and 0.6 using solvent systems (6 & 9)<br />

respectively. It is soluble in ethyl acetate, methanol, insoluble in<br />

benzene and chloroform. It dissolves in dilute solution of alkalies<br />

producing intense yellow colour, indicating the flavonoidal nature of<br />

the material. Alcoholic solution developed a yellow colour when a<br />

few drops of 0.1 M AlCl3 solution was added and gives bluish green<br />

colour with neutral ferric chloride solution indicating the presence of<br />

phenolic group. Material "9" gives positive Molisch's test and reduce<br />

Fehling's solution after acid hydrolysis.<br />

Spectral Analysis:<br />

UV Spectral Analysis:<br />

The data obtained by UV spectral analysis of material "9" (Fig.<br />

57) using different shifting reagents are summarized in table (32).<br />

Table (32): UV Spectral data of material "9".<br />

Shift reagent<br />

λ max nm<br />

Band II Band I<br />

MeOH 256 354<br />

MeOH + NaOMe 271 328 (sh.), 406<br />

MeOH + AlCl3 272 302(sh.), 366 (sh.), 420<br />

MeOH + AlCl3 + HCl 262 300(sh.),354,400 (sh.)<br />

MeOH + NaOAc 261 362<br />

MeOH+NaOAc+ H3BO3 261 371<br />

IR Spectral Analysis:<br />

The IR spectrum of material "9" (Fig. 58) showed the<br />

following absorption frequencies:<br />

Vmax (KBr) cm -1 : 3500-3100, 1651, 1619, 1447 and 1120.<br />

- 184 -


Mass Spectral Analysis:<br />

- 185 -<br />

PART II<br />

The EI-MS spectroscopic date of material "9" (Fig. 59) showed<br />

the following data:<br />

m/z (% relative abundance): 302 (100), 301 (17.57), 274 (9.46), 273<br />

(12.16), 258 (2.7), 152 (5.41), 137 (18.91), 136 (9.5), 134 (5.41), 73<br />

(54.05), 60 (99.32) and 44 (22.97).<br />

FAB-MS (positive ion mode) (Fig. 60): 465 [M + 1] +<br />

1 H-NMR and 13 C-NMR Spectral Analysis:<br />

The 1 H-NMR spectrum of material "9" (Fig. 61, CD3OD, 500<br />

MHz) and the 13 C-NMR spectrum (Fig. 62, CD3OD, 125 MHz) are<br />

represented in table (33)<br />

Table (33): 1 H-NMR (CD3OD, 500 MHz) and 13 C-NMR (CD3OD,<br />

125 MHz) spectral data of material "9".<br />

Position of<br />

hydrogen<br />

δ (chemical shift)<br />

Position of<br />

carbon<br />

δ (chemical shift)<br />

C-2 157.17<br />

C-3 134.17<br />

C-4 177.95<br />

C-5 161.6<br />

H-6 6.09, 1H, d, J = 2 Hz C-6 98.86<br />

C-7 160<br />

H-8 6.28, 1H, d, J = 2 Hz C-8 93.56<br />

C-9 157.46<br />

C-10 103.94<br />

C-1' 121. 67<br />

H-2' 7.61, 1H, d, J =2 Hz C-2' 116.1<br />

C-3' 144.53<br />

C-4' 148.5<br />

H-5' 6.77, 1H, d, J = 9 Hz C-5' 114.59<br />

H-6' 7.49, 1H, dd, J = 9& 2 Hz C-6' 121.75<br />

H-1'' 5.13, 1H, d, J = 7.5 Hz C-1'' 103.01<br />

H-2'' C-2'' 74.31<br />

H-3" 3.22- 3.35, 3H, m<br />

C-3'' 76.98<br />

H-4"<br />

C-4'' 69.81<br />

H-5" 3.38, 1H, m C-5'' 76.73<br />

H-6"a 3.48, dd, J= 12, 6 Hz<br />

H-6"b 3.61, dd, J= 12, 2 Hz<br />

C-6'' 61.14


PART II<br />

Discussion and conclusion<br />

The physical characters, colour reaction and UV absorption of<br />

material "9" suggest the presence of a flavonoidal glycoside skeleton.<br />

The IR showed absorption at 3500-3100 together with peak at<br />

1120 cm -1 indicating the presence of several hydroxyl groups. Also it<br />

showed the presence of carbonyl group at 1651 cm -1 .<br />

Material "9" was recognized as a flavonol from its UV<br />

absorption maxima at 256 nm (band II) and 354 nm (band I). A<br />

bathochromic shift (+ 52 nm) in band I upon addition of NaOMe<br />

indicating the presence of free hydroxyl group at C-4'. Addition of<br />

AlCl3 produced a bathochromic shift (+66 nm) in band I indicating the<br />

presence of ortho-dihydroxy groups and/ or free 5-OH this will<br />

confirmed upon addition of HCl, where the absorption of AlCl3 was<br />

reduced indicating the presence of free 5-OH. This also confirmed by<br />

a bathochromic shift in band I (+ 17 nm) upon the addition of NaOAc/<br />

H3BO3 while band II was unaffected by the use of NaOAc indicating<br />

substituted OH at C-7.<br />

The mass spectrum (FAB-MS) exhibited a molecular ion at m/z<br />

465 [M +1] + which is in a good accordance with a molecular formula<br />

C21H20O12 for this compound. EI-MS spectrum exhibited fragments a<br />

m/z 302 corresponding to M + -glu., m/z 152 corresponding to ring A<br />

with two hydroxyl groups and m/z 134 corresponding to ring B with<br />

two hydroxyl groups were observed in scheme (9).<br />

- 186 -


- 187 -<br />

PART II<br />

The 1 H-NMR spectrum of material "9" showed two doublets at<br />

6.09, 6.28 ppm with meta coupling (J= 2 Hz) assigned to H-6 and H-8,<br />

respectively, two doublets at δ 6.77(J=9 Hz), 7.61(J= 2Hz) ppm<br />

which were assigned to H-5' and H-2', respectively. Proton at δ 7.49<br />

(dd, J= 9, 2 Hz) was assigned to H-6' this pattern is typical for<br />

quercetin. The sugar moiety was confirmed to be glucose by the<br />

appearance of an anomeric proton signal at δ 5.13 (J =7.5 Hz)<br />

characteristic for glucose in β-glucosidic linkage confirmed by 13 C-<br />

NMR at δ 103.01 ppm. The effect of NaOAc on band II (no<br />

bathochromic shift) indicated glycosylation at C-7.<br />

The 13 C-NMR spectrum of material "8" showed 21 carbon<br />

resonances as shown in table (33). The 13 C-NMR spectrum of this<br />

material was compared to that of quercetin -7- O- glucoside<br />

and all signals were similar.<br />

(216, 217)<br />

Extensive analysis of the 1 H- 1 H and 1 H - 13 C correlation spectral<br />

data of material "9" confirm the assignment of this compound to be<br />

quercetin -7- O- glucoside<br />

The glycosidic linkage at C-7 was suggested through the<br />

chemical shift of the glucose anomeric proton [δ H 5.13 (d, J= 7.5 Hz)]<br />

and carbon [δ C 103.01] signals. The gHMBCAD correlation achieved<br />

between the anomeric proton at δ H 5.13 (H-1'') and δ C 160 (C-7)<br />

support a C-7 location for the sugar unit in the glucosidic linkage.<br />

By comparing the MS, 1 H- and 13 C- NMR data of this material<br />

with the reported data (216) , we can conclude that this material is


PART II<br />

5, 3', 4'- trihydroxy flavonol-7-O-glucoside. Evidently, material "9"<br />

was tentatively identified as quercetin-7-O-glucoside or<br />

Quercimeritrin.<br />

This represents the first time of isolation of quercetin-7-O-<br />

glucoside from the genus Phyllanthus.<br />

Glu<br />

O<br />

OH<br />

O<br />

O<br />

- 188 -<br />

OH<br />

OH<br />

Quercetin-7-O-glucoside<br />

OH


─ MeOH<br />

----MeOH+NaOMe<br />

─ MeOH+NaOAc<br />

---- MeOH+NaOAc+H3BO3<br />

- 189 -<br />

PART II<br />

─ MeOH+ AlCl3<br />

---- MeOH+AlCl3+ HCl<br />

Fig. (57): UV spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit


PART II<br />

Fig. (58): IR spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (59): EI-MS spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 190 -


- 191 -<br />

PART II<br />

Fig. (60): FAB-MS spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (61): 1 H-NMR spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.


PART II<br />

Fig. (62): 13 C-NMR spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

Fig. (63): 1 H- 1 H Cosy spectrum of material "9" of Phyllanthus atropurpureus<br />

Boj. Hort. Maurit.<br />

- 192 -


- 193 -<br />

PART II<br />

Fig. (64): gHSQCAD correlation spectrum of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.<br />

Fig. (65): gHMBCAD correlation spectrum of material "9" of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.


PART II<br />

m/z 301(17.57%)<br />

HO<br />

OH<br />

O<br />

OH<br />

HO<br />

m/z 274 (9.46%)<br />

- H<br />

m/z 273 (12.16%)<br />

OH<br />

Glu<br />

- H<br />

O<br />

- CO<br />

OH<br />

OH<br />

HO<br />

OH<br />

OH<br />

Scheme (9): Mass fragmentation pattern of material "9" of<br />

O<br />

O<br />

Phyllanthus atropurpureus Boj. Hort. Maurit.<br />

- 194 -<br />

O<br />

O<br />

OH<br />

OH<br />

- Glu.<br />

m/z 302(100%)<br />

O<br />

C<br />

O<br />

m/z 152 (5.41%)<br />

OH<br />

OH<br />

OH<br />

OH<br />

O<br />

M + 464<br />

C<br />

HC<br />

C<br />

OH<br />

m/z 134 (5.41%)<br />

OH<br />

OH<br />

m/z 137 (18.91%)<br />

OH


<strong>In</strong>troduction:<br />

Biological Activities<br />

A. Antihepatotoxic activity.<br />

- 195 -<br />

PART III<br />

The liver is one of the largest gland and most complex organ in<br />

the body. It performs multiple functions, including the production of<br />

the proteins and enzymes, detoxification, metabolic functions, the<br />

regulation of cholesterol and blood clotting (218) .It contains the highest<br />

concentration of enzymes involved in phase I oxidation-reduction<br />

reactions (219) . It is the primary site of biotransformation and<br />

detoxification of exogenous toxin xenobiotics (220) .<br />

Unfortunately, the liver is often the most abused organ in the<br />

body. It is exposed to alcohol, drugs, and a multitude of environmental<br />

toxins. An overstressed liver can impair detoxification and manifest in<br />

what may appear to be unrelated symptoms. Eventually, a<br />

dysfunctional liver can not perform its tasks properly and<br />

consequently the body becomes subject to toxicity and an overall<br />

decline in metabolic function (221) .<br />

Problems associated with liver dysfunction can ultimately lead to<br />

serious illness such as hepatitis, cirrhosis, fatty liver, alcoholic liver<br />

disease, and biliary cirrhosis (221) .<br />

Cirrhosis is a complex disease in which several biological and<br />

biochemical alteration are combined and no proven effective treatment<br />

capable of reversing it has been developed (222) .


PART III<br />

Many plants demonstrate hepatoprotective activity. Some<br />

Phyllanthus plants were used as remedies for hepatic disorders<br />

224) .<br />

- 196 -<br />

(101, 223<br />

Phyllanthus contains a lot of tannin and flavonoids which possess<br />

the antioxidant activity (98) . The aim of the present study is to<br />

investigate the ability of 75% ethanolic extract of Phyllanthus on<br />

repairing rat liver damage induced by CCl4 and also the possible<br />

mechanisms of Phyllanthus antihepatotoxic activity.<br />

I-Materials:<br />

A. Experimental animals:<br />

Material and methods<br />

Fifty adult male albino rats weighing about 200-250 g each were<br />

used in the present investigation. The animals were housed in cages<br />

with wood shaving bedding, and allowed to become acclimatized to<br />

laboratory conditions for one week before the experiment.<br />

B. Experimental design:<br />

The animals were randomly divided into two groups according to<br />

the following design:<br />

(1) Group (1) (n=10) :<br />

This group received liquid paraffin (0.3 ml/Kg, i.p.) for 45 days<br />

and served as normal control group.<br />

(2) Group (2) (n=40) :<br />

This group received carbon tetrachloride 3 times a week for 45<br />

days in a dose of 25 µl/100 g body weight, i.p. diluted (1:6) with<br />

liquid paraffin and served as subacute cirrhotic group.<br />

Then group (2) was subdivided into 4 subgroups which are:<br />

• Subgroup (A) (n=10): Cirrhotic rats without treatment.


- 197 -<br />

PART III<br />

• Subgroup (B) (n=10): Cirrhotic rats received the aerial<br />

part ethanolic extract of Phyllanthus atropurpureus Boj.<br />

Hort. Maurit. for 30 days in a dose of 200 mg/kg body<br />

weight, orally.<br />

• Subgroup (C) (n=10): Cirrhotic rats received the root<br />

ethanolic extract of Phyllanthus atropurpureus Boj. Hort.<br />

Maurit. for 30 days in a dose of 200 mg/kg body weight,<br />

orally.<br />

• Subgroup (D) (n=10): Cirrhotic rats received the<br />

silymarin for 30 days in a dose of 100 mg/kg body weight,<br />

orally.<br />

C. Drugs and chemicals:<br />

Table (34): Drugs and chemicals used in antihepatotoxic experiment:<br />

Drug name Dose Note<br />

Silymarin 100 mg/kg<br />

Root extract 200 mg/kg<br />

Aerial part<br />

extract<br />

II-Methods<br />

200 mg/kg<br />

The drug was dissolved in normal<br />

saline<br />

The drugs was suspended or<br />

emulsified in 10% gum acacia<br />

All drug solutions were freshly prepared just before use.<br />

<strong>In</strong>duction of liver cirrhosis<br />

Liver cirrhosis was induced in rats by intraperitoneal injection<br />

(225) of CCl4 3 times a week for 45 days in a dose of 25µl/100 g body<br />

weight. CCl4 was freshly diluted by liquid paraffin directly before the<br />

injection (1:6).


PART III<br />

Blood sampling and serum preparation<br />

Blood samples were collected in clean dry test tubes from the<br />

orbital sinus of fasted rats using heparinized micro capillary tubes<br />

according to the method of (Riley, 1960 and Sorg &Buchner, 1964)<br />

(226, 227) . Blood samples were centrifuged directly at 3500 r.p.m for 15<br />

minutes using Heraeus Sepatech centrifuge (Labofuge 200). Liver<br />

enzymes (ALT, AST), Proteins (total protein, albumin) and<br />

antioxidant parameters (Malondialdehyde and glutathione) were<br />

determined in the collected plasma and serum.<br />

1. Determination of aspartate aminotransferase (AST):<br />

Serum AST level was determined by a colorimetric method (228)<br />

using a diagnostic kit supplied by Plasmatek (Germany).<br />

Principle:<br />

The enzyme AST catalyzes the following reaction:<br />

L-aspartate + 2- oxoglutarate oxalacetate + L-glutamate<br />

The formed oxalacetate reacts with 2, 4-dinitrophenylhydrazine<br />

to form oxalacetate hydrazones, which are brown in alkaline medium.<br />

The product is determined spectrophotometrically at λ505 nm using 1<br />

cm light path cuvette.<br />

2. Determination of alanine aminotransferase (ALT):<br />

Serum ALT level was determined by a colorimetric method (228,<br />

229) using a diagnostic kit supplied by Plasmatek (Germany).<br />

Principle<br />

The enzyme ALT catalyzes the following reaction:<br />

L-alanine + 2- oxoglutarate pyruvate + L-glutamate<br />

ALT<br />

AST<br />

The formed pyruvate reacts with 2, 4-dinitrophenylhydrazine<br />

- 198 -


- 199 -<br />

PART III<br />

to form pyruvate hydrazones, which are brown in alkaline medium.<br />

The product is determined spectrophotometrically at λ505 nm using 1<br />

cm light path cuvette.<br />

3. Determination of total protein:<br />

• Biuret method<br />

Total protein was determined by an enzymatic colorimetric<br />

method (230) using a diagnostic kit supplied by Biocon (Germany).<br />

Principle:<br />

Colorimetric determination of total protein based on the<br />

principle of Biuret reaction (copper salts in an alkaline medium).<br />

Protein in serum sample forms a blue coloured complex when treated<br />

with cupric ion in alkaline solution. The intensity of blue colour is<br />

proportional to the protein concentration and measured<br />

spectrophotometrically at λ505 nm.<br />

4. Determination of serum albumin:<br />

• Bromcresol green method<br />

Serum albumin was determined by an enzymatic colorimetric<br />

method (231, 232) using a diagnostic kit supplied by Biocon (Germany).<br />

Principle:<br />

Colorimetric determination of serum albumin by using<br />

bromcresol green (BCG) at pH 4.2.<br />

5. Determination of malondialdehyde :<br />

Malondialdehyde was identified as the product of lipid<br />

peroxidation that reacts with thiobarbituric acid in acidic medium at<br />

temperature of 95 o C for 30 minutes to form a pink coloured


PART III<br />

compound absorbing at 534 nm. Therefore, lipid peroxidation can be<br />

assayed by recording the increase in absorbance of extracted<br />

membrane lipids at 534 nm (233) .<br />

6. Determination of reduced glutathione:<br />

Glutathione reduce 5, 5' dithiobis (2-nitrobenzoic acid) to<br />

produce a yellow compound which has absorption at 405 nm that it is<br />

directly proportional to glutathione concentration (234) .<br />

Statistical analysis:<br />

All results are expressed as mean ± standard error of the mean<br />

(S.E.M). ANOVA and post ANOVA test at p < 0.05 was used to test<br />

significance of the differences between control and treated<br />

groups.<br />

Results and Discussion:<br />

• A significant reduction of the hepatic glutathione (GSH) level<br />

was observed in rats administered with CCl4 alone. However,<br />

treatment with Phyllanthus atropurpureus Boj. Hort. Maurit. root<br />

extract at dose of 200 mg/kg exhibited a significant increase in the<br />

plasma levels of glutathione.<br />

• A significant increase in Malondialdehyde levels was observed<br />

in CCl4 alone treated rats. However, treatment of the rats with<br />

Phyllanthus atropurpureus extracts (root & aerial part) at a dose of<br />

200 mg/kg reduced significantly the MDA elevated by CCl4 treatment,<br />

also in silymarin treated rats, MDA levels were significantly reduced.<br />

- 200 -


- 201 -<br />

PART III<br />

• The antioxidant activity of extracts of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit. was comparable to that of silymarin,<br />

the reference hepatoprotective drug.<br />

• The results presented in table (35) and Figs. (66 & 67)<br />

illustrated that : Activities of serum AST & ALT (marker enzymes for<br />

liver damage) were significantly elevated in CCl4-treated animals<br />

compared to normal control rats, indicating liver damage as the<br />

increased cytolysis expressed by the higher levels of serum AST while<br />

the administration of silymarin at a dose of 100 mg/kg caused a<br />

significant reduction in ALT and AST levels which is quite similar to<br />

the significant reduction caused by the oral administration of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit. extracts at a dose of<br />

200 mg/kg in CCl4 intoxicated rats.<br />

• As listed in table (35) and as graphically presented in Figs.<br />

(68 &69), only oral treatment of cirrhotic rats with ethanolic extract of<br />

root showed a significant elevation in albumin level while neither root<br />

extract nor aerial part extract produce any significant change in total<br />

protein level.<br />

• Antihepatotoxic activity of Phyllanthus atropurpureus Boj.<br />

Hort. Maurit. extracts is quite similar to silymarin. Both of them<br />

improve the parameters of CCl4-induced liver injury including serum<br />

AST and ALT. Among the extracts tested, root extract showed<br />

maximum activity as shown in table (35) compared with aerial part<br />

extract relative to silymarin.


Parameters<br />

PART III<br />

Table (35): Effect of total extract of aerial parts and roots of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit. (200 mg/kg) taken<br />

orally for 30 days on liver enzymes, plasma protein and antioxidant<br />

parameters in sub acute male cirrhotic rats.<br />

Normal rats<br />

Cirrhotic rats before<br />

treatment<br />

Data are expressed as mean ± S.E.M.<br />

* Significant difference from cirrhotic rats without treatment (after<br />

30 days) at p


ALT value<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

- 203 -<br />

PART III<br />

Figs (66, 67): Effect of oral treatment with silymarin (100 mg/kg), total ethanolic<br />

extract of aerial parts (200 mg/kg) and total ethanolic extract of roots (200 mg/kg)<br />

for 30 days on ALT and AST levels in adult male cirrhotic rats.<br />

*Data are expressed as the mean ± S.E.M. *Statistics: ANOVA and post ANOVA test.<br />

* Significantly different from the corresponding mean values of the cirrhotic rats<br />

without treatment (after 30 days) (The cirrhotic control group) at p< 0.05<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Normal Cirrhotic after 30 days Silymarin<br />

Aerial parts extract Root extract<br />

Aerial parts extract Root extract<br />

total protein level Normal Cirrhotic after 30 days Silymarin<br />

*<br />

*<br />

Figs (68, 69): Effect of oral treatment with silymarin (100 mg/kg), total ethanolic<br />

extract of aerial parts (200 mg/kg) and total ethanolic extract of roots (200 mg/kg)<br />

for 30 days on total protein and albumin levels in adult male cirrhotic rats.<br />

*Data are expressed as the mean ± S.E.M. *Statistics: ANOVA and post ANOVA test.<br />

* Significantly different from the corresponding mean values of the cirrhotic rats<br />

without treatment (after 30 days) (The cirrhotic control group) at p< 0.05<br />

AST level<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Albumin level<br />

Normal Cirrhotic after 30 days<br />

Silymarin Aerial parts extract<br />

Root extract<br />

0<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Normal Cirrhotic after 30 days<br />

Silymarin Aerial parts extract<br />

Root extract<br />

*<br />

*<br />

*<br />

*


PART III<br />

Malondialdehyde level<br />

Normal Cirrhotic after 30 days<br />

Silymarin Aerial parts extract<br />

Root extract<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Figs (70, 71): Effect of oral treatment with silymarin (100 mg/kg), total ethanolic<br />

extract of aerial parts (200 mg/kg) and total ethanolic extract of roots (200 mg/kg)<br />

for 30 days on malondialdehyde and glutathione levels in adult male cirrhotic rats.<br />

*Data are expressed as the mean ± S.E.M. *Statistics: ANOVA and post ANOVA test.<br />

* Significantly different from the corresponding mean values of the cirrhotic rats<br />

without treatment (after 30 days) (The cirrhotic control group) at p< 0.05<br />

A) Antioxidant activity:<br />

Discussion<br />

• The extract of Phyllanthus atropurpureus Boj. Hort. Maurit.<br />

showed good antioxidant potential and prevented oxidation of<br />

proteins and lipids. By virtue of its ability to scavenge ROS (Reactive<br />

Oxygen Species), it probably can modulate transcription factors and<br />

regulate the levels of antioxidant enzymes.<br />

• <strong>In</strong> conclusion the extracts of Phyllanthus atropurpureus Boj.<br />

Hort. Maurit. act as antioxidant and the anti-lipid peroxidation<br />

activity of root extract was found to be better than that of aerial part<br />

extract and that may be attributed to the presence of tannoid in the<br />

root as reported before (235) .<br />

*<br />

*<br />

*<br />

- 204 -<br />

Glutathione level<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Normal Cirrhotic after 30 days<br />

Silymarin Aerial parts extract<br />

Root extract<br />

*


- 205 -<br />

PART III<br />

• Potent antioxidant activities of Phyllanthus aerial part may be<br />

due to the presence of phenolic and polyphenolic compounds, such<br />

as flavonoids (236) , catachin (237) and hydrolysable tannins, with<br />

geraniin being the most abundant (76, 80, 238) , ellagic acid (239) and<br />

lignans (240) .<br />

• Polyphenolic compounds enhance the stability of low density<br />

lipoprotein (LDL) to oxidation by scavenging the superoxide anion<br />

(241) , singlet oxygen (242) and lipid peroxy radicals (243) and stabilizing<br />

free radicals involved in oxidative processes through hydrogenation<br />

or complexing with oxidizing species ( 244, 245) .<br />

• La Casa et al. (246) reported that rutin, a natural flavone, induced a<br />

significant increase in glutathione activity. Flavonoids can reduce<br />

macrophage oxidative stress by inhibition of cellular oxygenases<br />

(such as nicotinamide adenine dinucleotide phosphate), reduced<br />

form (NADPH) oxidase or by activating cellular antioxidants (such<br />

as the glutathione system) (247) .<br />

• The potent anti-peroxidative effect of Phyllanthus protects the<br />

liver by preventing CCl3 • - induced peroxidative disintegration of<br />

membranes (248) .<br />

• The enhancement in hepatic GSH status was associated with<br />

corresponding decreases in malondialdehyde levels and alanine<br />

aminotransferases activities, indicating a significant reduction in the<br />

extent of oxidative hepatocellular damage.


PART III<br />

B) Hepatoprotective activity:<br />

1- CCl4:<br />

• The increased cytolysis expressed by the higher levels of<br />

serum AST suggests that the enhanced microsomal lipid peroxidation<br />

in liver is associated with a damage of hepatic tissue, which is in<br />

agreement with the earlier findings (249) .<br />

• Carbon tetrachloride (CCl4) is hepatotoxic agent causing<br />

centrolobular necrosis and associated with fatty liver.<br />

• CCl4 convert to trichloromethyl free radical (CCl3 • ) by hepatic<br />

mixed function oxidases. (CCl3 • ) can abstract hydrogen from<br />

polyunsaturated fatty acids to initiate lipid pre-oxidation, alternatively<br />

in the presence of oxygen, it forms the more reactive trichloro methyl<br />

peroxy free radical (CCl3COO • ),(CCl3COO • ) that can participate in<br />

lipid pre-oxidation, or it can decompose it to phosgene (CCl2O) (250) .<br />

• Antioxidant and radical scavengers have been used to study<br />

the mechanism of CCl4 toxicity as well as to protect liver cells from<br />

CCl4 –induced damage by breaking the chain reaction of lipid<br />

peroxidation (251) .<br />

2- Silymarin:<br />

• Silymarin has been reported to protect liver cells from a wide<br />

variety of toxins (252, 253) , including CCl4. Hepatoprotective mechanism<br />

of silymarin may be due to:<br />

1. Antioxidant activity (254, 255) .<br />

2. <strong>In</strong>hibition of lipid peroxidation (255) .<br />

3- Aerial part extract:<br />

The pronounced antihepatotoxic activity (compared to silymarin)<br />

of ethanolic extract of Phyllanthus atropurpureus Boj.<br />

- 206 -


- 207 -<br />

PART III<br />

Hort. Maurit. in this study is in agreement with that reported about the<br />

effect of other Phyllanthus species against various chemical liver toxin<br />

(256-260)<br />

Conclusion<br />

It appears that the antioxidant property of ethanolic extracts of<br />

root and aerial parts of Phyllanthus atropurpureus Boj. Hort. Maurit<br />

could counteract CCl4 toxicity. Antihepatotoxic activity of<br />

Phyllanthus atropurpureus Boj. Hort. Maurit. may be due to the<br />

presence of polyphenolic compounds. Therefore, Phyllanthus<br />

antihepatotoxic mechanism may involve its antioxidant activity<br />

against production of ROS. Thus, Phyllanthus atropurpureus Boj.<br />

Hort. Maurit. can be considered as a new efficient hepatoprotective<br />

candidate, but more clinical follow-up is needed to test the safety<br />

variables on other organs.


PART III<br />

Material and methods<br />

1. Cell Culture:<br />

B- Anticancer Activity<br />

Hepatocarcinoma (HepG2) cells were obtained frozen in liquid<br />

nitrogen (-180 o C) from the American Type Culture Collection<br />

(ATCC). The tumor cell lines were maintained in the National Cancer<br />

<strong>In</strong>stitute, Cairo, Egypt, by serial sub-culturing. HepG2 cells were<br />

routinely cultured in DMEM (Dulbeco’s Modified Eagle’s Medium).<br />

Media were supplemented with 10% fetal bovine serum (FBS), 2mM<br />

L-glutamine, containing 100 units/ml penicillin G sodium, 100<br />

units/ml streptomycin sulphate, and 250 ng /ml amphotericin B. Cells<br />

were maintained at sub-confluency at 37ºC in humidified air<br />

containing 5% CO2. For sub-culturing, monolayer cells were<br />

harvested after trypsin /EDTA treatment at 37°C. Cells were used<br />

when confluence had reached 75%. Tested materials were dissolved in<br />

dimethyl sulphoxide (DMSO). All cell culture materials were obtained<br />

from Cambrex BioScience (Copenhagen, Denmark). All chemicals<br />

were from Sigma/Aldrich, USA. All experiments were repeated three<br />

times.<br />

2. Tested materials:<br />

I- Material 1: Robustaside A.<br />

II- Material 2: Ethanolic extract of aerial parts of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.<br />

III- Material 3: Ethanolic extract of root of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.<br />

- 208 -


3. Anti-tumour activity<br />

- 209 -<br />

PART III<br />

Cytotoxicity of tested materials was measured against HepG2<br />

cells using Sulphorhodamine-B (SRB) assay (261) .<br />

Principle<br />

SRB is a bright pink aminoxantherene dye with two sulphonic<br />

groups. It is a protein stain that binds to the amino groups of<br />

intracellular proteins under mildly acidic conditions to provide a<br />

sensitive index of cellular protein content.<br />

Chemicals<br />

Sigma chemical Co., St. Louis, Mo, U.S.A. is the source of the<br />

chemicals and buffer used.<br />

•1% acetic acid (to dissolve the unbound SRB dye).<br />

•0.4% SRB dissolved in 1% acetic acid (protein dye)<br />

•50% trichloroacetic acid (TCA) (stock solution). 50 μl of it was<br />

added to 200 μl RPMI-1640 medium well to yield a final<br />

concentration of 10% used for protein precipitation.<br />

•10 mM Tris EDTA buffer (PH 10.5) was used for dye solubilization.<br />

Procedure<br />

1. Cells were used when 90% confluence was reached in T25<br />

flasks. Adherent cells were harvested with 0.025% trypsin. Viability<br />

was determined by trypan blue exclusion using inverted microscope.<br />

2. Cells were seeded in 96-well plate (104 cells/ well) in fresh<br />

medium and left 24 hours, at 37 o C under 5% CO2 atmosphere, to<br />

attach to the wall of the plate.


PART III<br />

3. After 24 hours, cells were incubated with appropriate<br />

concentrations of drugs and the volume was completed to 200 μl/ well<br />

using fresh medium and incubation was continued for 48 hours.<br />

Control cells were treated with vehicle alone. Triplicate wells<br />

were prepared for each individual dose.<br />

4. After 48 hours, the cells were fixed with 50μl cold 10%<br />

trichloroacetic acid for 1 hour at 4 o C.<br />

5. Cells were washed 5 times with water and stained for 30 minutes,<br />

at room temperature, with 50 μl 0.4% SRB.<br />

6. Excess stain was washed (4 times) with 1% acetic acid.<br />

7. The plate was air dried and the attached stain was solubilized<br />

with 100μl/well of Tris EDTA buffer (PH 10.5) for 5 minutes on<br />

shaker at 1600 r.p.m.<br />

8. The absorbance (A) of each well was measured at 564 nm using<br />

ELISA reader.<br />

Calculation<br />

The cell surviving fraction =<br />

Results (Anti-tumor activity):<br />

Using SRB assay, the effect of the three materials on the<br />

proliferation of HepG2 cell line was studied after 48 hrs of incubation.<br />

As shown in Fig. (72), the treatment of HepG2 cells with the<br />

material 1 (robustaside A) lead to high inhibition in the cell<br />

proliferation as concluded by the low IC50 values 4.93 µg/ml, which<br />

revealed a specific strong anti-tumor activity of the compound against<br />

hepatocellular carcinoma.<br />

- 210 -<br />

A of treated cells<br />

A of control cells


- 211 -<br />

PART III<br />

As shown in Fig. (72), the addition of increasing concentrations<br />

of either material 2 (ethanolic extract of aerial parts) or material 3<br />

(ethanolic extract of root) in the culture medium of HepG2 cells<br />

reduced the cell proliferation in a dose dependant manner. Maximum<br />

concentration of ethanolic extract of aerial parts and ethanolic<br />

extract of root (10 μg/ml) exhibited only 25% cell mortality, so IC50<br />

may be more than 10 μg/ml.


PART III<br />

Fig (72): Anti-tumor activity of Phyllanthus atropurpureus Boj. Hort.<br />

Maurit. against hepatic cell line.<br />

- 212 -<br />

IC50= 4.93<br />

Material 1 concentration (µg /ml)<br />

Material 2 concentration (µg /ml)<br />

Material 3 concentration (µg /ml)


C-Antimicrobial activity<br />

- 213 -<br />

PART III<br />

Cup-plate method (262) was used to detect the preliminary<br />

antimicrobial activity of different fractions including light petroleum,<br />

chloroform, ethyl acetate, aqueous and total ethanolic extract of<br />

leaves, roots and stem. The samples were dissolved in dimethyl<br />

sulfoxide (DMSO) at concentration of 200 mg/ml. The nutrient agar<br />

was seeded by about 10 6 microbial cells.<br />

Gram +ve bacteria (Staphylococcus aureus) and Gram –ve<br />

bacteria (Escherichia coli) as well as Candida albicans as a fungus<br />

were used as tested microorganisms. Each cup was filled by about 100<br />

µl from each extract (200 mg/ml). Ampicillin and gentamycin as well<br />

as nystatin were used as standards. The plates were incubated<br />

overnight at 37 o C for bacteria and 30 o C for fungus. Zones of<br />

inhibition were measured (mm) and are recorded in Table (36).<br />

Results and Discussion:<br />

As shown in table (36), the given results revealed that:<br />

1. Light petroleum fractions show significant antibacterial activity<br />

than chloroform, ethyl acetate and ethanolic fractions for different<br />

parts of the plant against E. coli. The light petroleum activity is more<br />

than that of Ampicillin and Gentamycin.<br />

2. All plant fractions except the ethanolic fraction of leaves show<br />

significant antibacterial activity against S. aureus compared to the<br />

effect of Gentamycin.<br />

3. Only petroleum ether fraction of leaves exhibit significant<br />

antifungal activity against Candida albicans compared to Nystatin.


PART III<br />

Table (36): Antimicrobial activities of different fractions of Phyllanthus<br />

atropurpureus Boj. Hort. Maurit.<br />

Diameter of zone of inhibition (mm)<br />

Material<br />

Gram –ve<br />

bacteria<br />

Gram +ve<br />

bacteria<br />

Fungi<br />

E.coli S.aureus C.albicans<br />

1-Light petroleum fraction of leaves 16 18 18<br />

2- Light petroleum fraction of stem 16 16 14<br />

3- Light petroleum fraction of root 16 22 14<br />

4-Chloroform fraction of leaves 14 18 14<br />

5- Chloroform fraction of stem 10 20 -<br />

6- Chloroform fraction of root 10 20 10<br />

7-Ethyl acetate fraction of leaves 14 25 10<br />

8-Ethyl acetate fraction of stem 10 18 12<br />

9-Ethyl acetate fraction of root 10 16 10<br />

10-Total ethanolic fraction of leaves 10 12 10<br />

11-Total ethanolic fraction of stem 10 16 10<br />

12-Total ethanolic fraction of root 10 20 10<br />

13-Total ethanolic fraction of aerial<br />

parts<br />

10 14 12<br />

14-Aq. fraction of leaves - 16 -<br />

15-Aq. fraction of stem - 16 -<br />

16-Aq. fraction of root - 16 -<br />

17-Ampicillin (10µg/well) 14 30 -<br />

18-Gentamycin (10µg/well) 14 14 -<br />

19-Nystatin (30µg/well) - - 16<br />

- = No zone of inhibition.<br />

200 mg/ml DMSO from plant fractions concentration were used.<br />

100 µl solutions were applied.<br />

- 214 -


REFERENCES<br />

- 219 -<br />

References<br />

1. Sharma, O.P.; "Plant taxonomy", Tata McGraw-Hill publishing<br />

company Ltd., New Delhi, New York, San Francisco, Paris, London,<br />

Tokyo: 377- 382 (1993).<br />

2. Tackholm, V.; "Student's Flora of Egypt"; 2 nd ed., published by Cairo<br />

University, Egypt (1974).<br />

3. Benson, L.; "Plant classification"; 2 nd ed. Oxford & IBH publishing<br />

company, New Delhi, Calcutta and Bombay: 159 (1976).<br />

4. Janice, G. L. and Kaufman, P. B.; "Botany Illustrated, <strong>In</strong>troduction to<br />

Plants Major Groups, Flowering Plant Families"; 2 nd ed., Springer,<br />

New York: 103 (1984).<br />

5. Clarke, I. and Lee, H.; "Name that Flower: The Identification of<br />

Flowering Plants"; 2 nd ed., Melbourne university press, Australia: 139<br />

(2003).<br />

6. Hickey, M. and King, C.; "Common Families of Flowering Plants",<br />

Cambridge Uiversity Press, New York, Australia: 97 (1997).<br />

7. Judd, W. S.; Campbell, C. S.; Elizabeth A. Kellogg and Peter E.<br />

Stevens; "Plant systematics: A. Phylogenetic Approach"; Sinauer<br />

Associates, <strong>In</strong>c., Sunderland Massachusetts, U.S.A.: 271 (1999).<br />

8. Wurdack, K. J.; Hoffmann, P.; Samuel, R., Bruijn, A. D.; Bank, M.<br />

V. D. and Chase, M. W.; "Molecular phylogenetic analysis of<br />

Phyllanthaceae (Phyllanthoideae Pro Parte, Euphorbiaceae Sensu<br />

Lato) using plastide rbcL DNA sequences"; American J. Botany, 91:<br />

1882-1900 (2004).<br />

9. Trease, G. and Evans, W.; "A text Book of <strong>Pharmacognosy</strong>", 14 th<br />

ed.,W. B. Saunders, London, New York, Toronto: 41 (1996).<br />

10. Baiely, L. H.; "Manual of cultivated plants", The Macmillan<br />

Company, New York: 619 (1957).<br />

11. Kathriarachchi, H.; Hoffmann, P.; Samuel, R.; Wurdack, K. J. and<br />

Chase, M. W.; "Molecular Phylogenetic of Phyllanthaceae inferred<br />

from five genes (plastide atpB, matK, 3' ndhF, rbcL and nuclear<br />

PHYC)"; Molecular Phylogenetic & Evolution, 36 : 112-134 (2005).<br />

12. Kathriarachchi, H.; Samuel, R.; Hoffmann, P., Mlinarec, J.; Wurdack,<br />

.J.; Ralimanana, H.; Stuessy, T. F. and Chase, M. W.; "Phylogenetic<br />

of Phyllantheae (Phyllanthaceae ; Euphorbiaceae sensu lato) based on<br />

NRITS and plastide matK DNA sequence data"; American J. Botany,<br />

93: 637-655 (2006).<br />

13. Trease, G and Evans, W.; "A text Book of <strong>Pharmacognosy</strong>", 15th<br />

ed.,W. B. Saunders, London, New York, Toronto:401, 418, 474<br />

(2002).


References<br />

14. Perry, L. M. and Metzger, J.; "Medicinal Plants of East and<br />

Southeast Asia: Attributed Properties and Uses"; the Mit Press,<br />

Cambridge, London: 149-151(1980).<br />

15. Lewis, W. H. and Elvin-Lewis, M. P. F.; "Medical Botany: Plants<br />

Affecting Man's Health"; John Weily & sons, New York, London,<br />

Sydney, Toronto: 234, 248 (1977).<br />

16. Sutthivaiyakit, S.; Nakorn, N. N.; Kraus, W. and Sutthivaiyakit, P.;<br />

"A novel 29-nor-3, 4-seco-friedelane triterpene and a new guaiane<br />

sesquiterpene from the root of Phyllanthus oxyphyllus";<br />

Tetraherdeon, 59: 9991-9995 (2003).<br />

17. Tanaka, R.; <strong>In</strong>, Y.; Ishida, T. and Matsunaga, S.; "11β- hydroxyl-D:<br />

A-friedoolean-1-en-3-one from the stem bark of Phyllanthus<br />

flexuosus"; J. Nat. Prod., 57: 1523-1528 (1994).<br />

18. Tanaka, R. and Matsunaga, S.; "Triterpene dienols and other<br />

constituents from the bark of Phyllanthus flexuosus";<br />

Phytochemistry, 27: 2273-2277 (1988).<br />

19. Adesida, G. A.; Girgis, P. and Taylor, D. A. H.; "Friedelin<br />

derivatives from Phyllanthus muellerianus"; Phytochemistry, 11:<br />

851-852 (1972).<br />

20. Hui, W.H; Li, M.M. and Wong, K.M.; "A new compound, 21αhydroxyfriedel-4(23)-en-3-one<br />

and other triterpenoids from<br />

Phyllanthus reticulates"; Phytochemistry, 15: 797-798 (1976).<br />

21. Lam, S.H.; Wang, C.Y; Kuang, C. and Lee, S.S.; "Chemical<br />

investigation of Phyllanthus reticulates by HPLC-SPE-NMR and<br />

conventional methods"; Phytochemical analysis, 18: 251- 255<br />

(2007).<br />

22. Matsunaga, S.; Tanaka, R.; Takaoka, Y.; <strong>In</strong>, Y.; Ishida, T.; Rahmani,<br />

M. and Ismail, H. B. M.; " 26-nor-D:A-friedooleanane triterpenes<br />

from Phyllanthus watsonii"; Phytochemistry, 32: 165-170 (1993).<br />

23. Chang, C.C.; Lien, Y.C.; Liu, K. C.S. C. and Lee, S.S.; "Lignans<br />

from Phyllanthus urinaria"; Phytochemistry, 63: 825-833 (2003).<br />

24. Satyan, K.S.; Prakash, A.; Singh, R. P. and Srivastava, R. S.;<br />

"Phthalic acid bis-ester and other phytoconstituents of Phyllanthus<br />

urinaria"; Planta Med., 61: 293-294 (1995).<br />

25. Santos, A.R.S.; Niero, R.; Filho, V. C.; Yunes, R. A.; Pizzolatti, M.<br />

G.; Monache, F.D. and Calixto, J. B.; " Antinociceptive properties<br />

of steroids isolated from Phyllanthus corcovadensis in Mice"; Planta<br />

Med., 61: 329-332 (1995).<br />

26. Filho, V. C.; Santos, A. R. S.; Calixto, J. B.; Monache, F. D.;<br />

Obdulio G. Miguel and Yunes, R. A.; "Triterpenes from<br />

Phyllanthus sellowianus roots"; Planta Med., 64: 194(1998).<br />

- 220 -


- 221 -<br />

References<br />

27. Miguel, O. G., Calixto, J. B.; Santos, A. R. S.; Messana, I.; Ferrari,<br />

F.; Filho, V. C.; Pizzolatti, M. G. and Yunes, R.A.; " Chemical and<br />

preliminary analgesic evaluation of geraniin and furosin isolated<br />

from Phyllanthus sellowianus"; Planta Med., 62: 146-149 (1996).<br />

28. Wu, S.J. and Wu, T.S.; "Cytotoxic arylnaphthalene lignans from<br />

Phyllanthus oligospermus"; Chem. Pharm. Bull., 54: 1223-1225<br />

(2006).<br />

29. Bachmann , T. L.; Ghia, F. and Torssell, K. B. G.; "Lignans and<br />

lactones from Phyllanthus anisolobus"; Phytochemistry, 33: 189-191<br />

(1993).<br />

30. Ramesh, N.; Viswanathan, M. B.; Selvi, V. T. and<br />

Lakshmanaperumalsamy, P.; " Antimicrobial and phytochemical<br />

studies on the leaves of Phyllanthus singampattiana (Sebastine&<br />

A.N. Henry) Kumari & Chandrabose from <strong>In</strong>dia"; Med. Chem. Res.,<br />

13: 348-360 (2005).<br />

31. Chandrashekar, K.S.; Satyanarayana, D.; Joshi, A.B. and<br />

subrahmanyam, E.V.S.; "Phytochemical studies of Phyllanthus<br />

debilis"; Nat. Prod. Sci., 10: 101-103 (2004).<br />

32. Anjaneyulu, A. S. R.; Rao, K. J.; Row, L. R. and Subrahmanyam,<br />

C.; "Crystalline constituents of Euphorbiaceae-XII. Isolation and<br />

structural elucidation of three new lignans from the leaves of<br />

Phyllanthus niruri Linn."; Tetrahedron, 29: 1291-1298 (1973).<br />

33. Tanaka, R.; Tabuse, M. and Matsunaga, S.; "Triterpenes from the<br />

stem bark of Phyllanthus flexuosus"; Phytochemistry, 27: 3563-<br />

3567(1988).<br />

34. Sengupta, P. and Mukhopadhyay, J.; "Terpenoids and related<br />

compounds-VII. Triterpenoids of Phyllanthus acidus Skeels";<br />

Phytochemistry, 5: 531-534 (1966).<br />

35. Ndlebe, V. J.; Crouch, N. R. and Mulholland, D. A.; "Triterpenoids<br />

from the African tree Phyllanthus polyanthus"; Phytochemistry<br />

letters, 1: 11-17 (2008).<br />

36. Hnatyszyn, O. and Ferraro, G.; "Phyllanthol from Phyllanthus<br />

sellowianus (Euphorbiaceae)"; Planta Med., 51: 467 (1985).<br />

37. Gupta, J. and Ali, M.; "Four new seco-sterols of Phyllanthus<br />

fraternus roots"; <strong>In</strong>dian J. Pharm. Sci., 61: 90-96 (1999).<br />

38. Miguel, O. G.; Filho, V. C.; Pizzolatti, M. G.; Santos, A. R. S.;<br />

Calixto, J. B.; Ferrari, F.; Messana, I. and Yunes, R. A.; "A<br />

triterpene and phenolic compounds from leaves and stems of<br />

Phyllanthus sellowianus"; Planta Med., 61 : 391 (1995).<br />

39. Tuchinda, P.; Kumkao, A.; Pohmakotr, M.; Sophasan, S.; Santisuk,<br />

T. and Reutrakul, V.; "Cytotoxic arylnaphthalide lignan glycosides<br />

from the aerial parts of Phyllanthus toxodiifolius"; Planta Med., 72:<br />

60-62 (2006).


References<br />

40. Huang, Y.L.; Chen, C.C.; Hsu, F.L. and Chen, C.F.; "Tannins,<br />

flavonol sulfonates and a norlignan from Phyllanthus virgatus"; J.<br />

Nat. Prod., 61: 1194-1197 (1998).<br />

41. Luo, W.; Zhao, M.; Yang, B.; Shen, G. and Rao, G.; "Identification<br />

of bioactive compounds in Phyllanthus emblica L. fruit and their<br />

free radical scavenging activities"; Food Chemistry, 114: 499-504<br />

(2009).<br />

42. Zhang, Y.J.; Tanaka, T.; Iwamoto, Y.; Yang, C.R. and Kouno, I.;<br />

"Novel sesquiterpenoids from the roots of Phyllanthus emblica"; J.<br />

Nat. Prod., 64: 870-873 (2001).<br />

43. Singh, B.; Agrawal, P. K. and Thakur, R. S.; "Isolation of transphytol<br />

from Phyllanthus niruri"; Planta Med., 57: 98 (1991).<br />

44. Singh, B.; Agrawal, P. K. and Thakur, R. S. ; "An acyclic triterpene<br />

from Phyllanthus niruri"; Phytochemistry, 28: 1980-1981(1989).<br />

45. Tempesta, M. S.; Corley, D. G.; Beutler, J. A.; Metral, C. J.; Yunes,<br />

R. A.; Giacomozzi, C. A. and Calixto, J. B.; "Phyllanthimide, a new<br />

alkaloid from Phyllanthus sellowianus"; J. Nat. prod., 51: 617-618<br />

(1988).<br />

46. Mensah, J. L.; Gleye, J.; Moulis, C. and Fouraste, I.; "Alkaloids<br />

from the leaves of Phyllanthus discoideus"; J. Nat. Prod., 51: 1113-<br />

1115 (1988).<br />

47. Houghton, P. J.; Woldemariam, T. Z.; O'Shea, S. and Thyagarajan,<br />

S. P.; "Two securinega-type alkaloids from Phyllanthus amarus";<br />

Phytochemistry, 43: 715-717(1996).<br />

48. Negi, R. S. and Fakhir, T. M..; "Simplexine (14- hydroxy- 4methoxy-<br />

13, 14-dihydronorsecurinine): an alkaloid from<br />

Phyllanthus simplex"; Phytochemistry, 27: 3027-3028 (1988).<br />

49. Mulchandani, N. B. and Hassarajani, S. A.; "4-methoxy-norsecurinine,<br />

a new alkaloid from Phyllanthus niruri"; Planta Med.,<br />

50: 104-105 (1984).<br />

50. Bila, B.; Gedris, T. E. and Herz, W.; "Niruroidine, a norsecurininetype<br />

alkaloid from Phyllanthus niruroides"; Phytochemistry, 41:<br />

1441-1443 (1996).<br />

51. Murugaiyah, V. and Chan, K.L.; "Determination of four lignans in<br />

Phyllanthus niruri L. by a simple high-performance liquid<br />

chromatography method with fluorescence detection"; J.<br />

Chromatography A, 1154: 198-204 (2007).<br />

52. Murugaiyah, V. and Chan, K.L.; "Antihyperuricemic lignans from<br />

the leaves of Phyllanthus niruri"; Plant Med., 72: 1262-1267 (2006).<br />

53. Cutrone, J. Q.; Huang, S.; Trimble, J.; Li, H.; Lin, P.F.; Alam, M.;<br />

Klohr, S. E. and Kadow, K. F.; "Niruriside, a new HIV REV/RRE<br />

binding inhibitor from Phyllanthus niruri"; J. Nat. Prod., 59: 196-<br />

199 (1996).<br />

- 222 -


- 223 -<br />

References<br />

54. Hussain, R. A.; Dickey, J. K.; Rosser, M. P.; Matson, J. A.;<br />

Kozlowski, M. R.; Brittain, R. J.; Webb, M. L.; Rose, P. M. and<br />

Fernandes, P.; "A novel class of non-peptidic endothelin antagonists<br />

isolated from the medicinal herb Phyllanthus niruri"; J. Nat. Prod.,<br />

58: 1515-1520 (1995).<br />

55. Wei, W.X.; Gong, X.G.; Ishrud, O. and Pan, Y.J.; "New lignan<br />

isolated from Phyllanthus niruri Linn. Structure Elucidation by<br />

NMR spectroscopy"; Bull. Korean Chem. Soc., 23: 896-898 (2002).<br />

56. Huang, Y. L.; Chen, C. C. and Ou, J. C.; "Isolintetralin: a new lignan<br />

from Phyllanthus niruri"; Planta Med., 58: 473-474 (1992).<br />

57. Row, L. R.; Srinivasulu, C.; Smith, M. and Rao, G. S. R. S.;<br />

"Crystalline constituents of Euphorbiaceae-V. New lignans from<br />

Phyllanthus niruri Linn- the constitution of phyllanthin";<br />

Tetrahedron, 22: 2899-2908 (1966).<br />

58. Row, L. R.; Srinivasulu, C.; Smith, M. and Rao, G. S. R. S.; "New<br />

lignan from Phyllanthus niruri Linn."; Tetrahedron letters, 24:<br />

1557-1567 (1964).<br />

59. Satyanarayana, P. and Venkateswarlu, S.; "Isolation, structure and<br />

synthesis of new diarylbutane lignans from Phyllanthus niruri:<br />

Synthesis of 5'-desmethoxy niranthin and an antitumour extractive";<br />

Tetrahedron, 47: 8931-8940 (1991).<br />

60. Somanabandhu, A.; Nitayangkura, S.; Mahidol, C.; Ruchirawat, S.;<br />

Likhitwityawuid, K.; Shien, H.L.; Chai, H.; Pezzuto, J. M. and<br />

Cordell, G. A.; " 1 H- and 13 C-NMR assignment of phyllanthin and<br />

hypophyllanthin: lignans that enhance cytotoxic responses with<br />

cultured multidrug-resistant cells"; J. Nat. Prod., 56: 233-239<br />

(1993).<br />

61. Lien Y. C.; "Studies on the lignan constituents of Phyllanthus<br />

urinaria"; Master thesis, National Taiwan University (1997).<br />

62. Wang, C.Y. and Lee, S.S.; "Analysis and Identification of lignans in<br />

Phyllanthus urinaria by HPLC-SPE-NMR"; Phytochemical<br />

analysis, 16: 120-126 (2005).<br />

63. Huang, Y.L.; Chen, C.C.; Hsu, F.L. and Chen, C.F.; "A new lignan<br />

from Phyllanthus virgatus"; J. Nat. Prod., 59: 520-521(1996).<br />

64. Satyanarayana, P.; Subrahmanyam, P.; Viswanatham, K. N. and<br />

Ward, R. S.; "New seco- and hydroxyl lignans from Phyllanthus<br />

niruri"; J. Nat. Prod., 51: 44- 49 (1988).<br />

65. Giridharan, P.; Somasundaram, S.T.; Perumal, K.; Vishwakarma,<br />

R.A.; Karthikeyan, N.P.; Velmurugan, R. and Balakrishnan, A.;<br />

"Novel substituted methylenedioxy lignan suppresses proliferation<br />

of cancer cells by inhibiting telomerase and activation of c-myc and<br />

caspases leading to apoptosis"; British J. Cancer, 87: 98-105 (2002).


References<br />

66. Singh, B.; Agrawal, P. K. and Thakur, R. S.; "A new lignan and a<br />

new neolignan from Phyllanthus niruri"; J. Nat. Prod., 52: 48-<br />

51(1989).<br />

67. Than, N. N.; Fosto, S.; Poeggeler, B.; Hardeland, R. and Laatsch, H.;<br />

"Niruriflavone, a new antioxidant flavone sulfonic acid from<br />

Phyllanthus niruri"; Z. Naturforsch, 61b: 1- 4(2006).<br />

68. Than, N. N.; Fosto, S.; Poeggeler, B.; Hardeland, R. and Laatsch, H.;<br />

"Niruriflavone, a new antioxidant flavone sulfonic acid from<br />

Phyllanthus niruri"; Z. Naturforsch, 61b: 57- 60 (2006).<br />

69. Lee, S.S.; Lin, M.T.; Liu, C.L.; Lin, Y.Y. and Liu, K. C. S. C.;<br />

"Six lignans from Phyllanthus myrtifolius"; J. Nat. Prod., 59: 1061-<br />

1065 (1996).<br />

70. Gertsch, J.; Tobler, R. T.; Brun, R.; Sticher, O. and Heilmann, J.;<br />

"Antifungal, antiprotozoal, cytotoxic and piscicidal properties of<br />

justicidin B and a new arylnaphthalide lignan from Phyllanthus<br />

piscatorum"; Planta Med., 69: 420-424 (2003).<br />

71. Shimizu, M.; Horie, S.; Terashima, S.; Ueno, H.; Hayashi, T.;<br />

Arisawa, M.; Suzuki, S.; Yoshizaki, M. and Morita, N.; "Studies on<br />

Aldose Reductase inhibitors from natural products. II. Active<br />

components of a Paraguayan crude drug "Para-parai mi,"<br />

Phyllanthus niruri"; Chem. Pharm. Bull., 37: 2531- 2532 (1989).<br />

72. Ueno, H.; Horie, S.; Nishi, Y.; Shogawa, H.; Kawasaki, M.; Suzuki,<br />

S.; Hayashi, T.; Arisawa, M.; Shimizu, M.; Yoshizaki, M. and<br />

Morita, N.; "Chemical and pharmaceutical studies on medicinal<br />

plants in Paraguay. Geraniin, an angiotensin-converting enzyme<br />

inhibitor atom "Paraparai mi," Phyllanthus niruri"; J. Nat. prod., 51:<br />

357- 359 (1988).<br />

73. Zhang, Y.J; Tanaka, T.; Iwamoto, Y.; Yang, C.R. and Kouno, I.;<br />

"Novel norsesquiterpenoids from the roots of Phyllanthus emblica";<br />

J. Nat. Prod., 63: 1507-1510 (2000).<br />

74. Zhang, Y.J.; Abe, T.; Tanaka, T.; Yang, C.R. and Kouno, I.;<br />

"Phyllanemblinins A-F, new ellagitannins from Phyllanthus<br />

emblica"; J. Nat. Prod., 64: 1527-1532 (2001).<br />

75. Huang, Y.L.; Chen, C.C.; Hsu, F.L. and Chen, C.F.; "Two tannins<br />

from Phyllanthus tenellus"; J. Nat. Prod., 61: 523- 524 (1998).<br />

76. Foo, L. Y.; "Amariin, a di-hydrohexahydroxydiphenoyl hydrolysable<br />

tannin from Phyllanthus amarus"; Phytochemistry, 33: 487-491<br />

(1993).<br />

77. Santos, A. R. S.; De Campos, R. O.P.; Miguel, O. G.; Filho, V. C.;<br />

Yunes, R. A. and Calixto, J. B.; "The involovement of K + channels<br />

and G i/o protein in the antinociceptive action of the gallic acid ethyl<br />

ester"; European J. Pharmacology, 379: 7-17 (1999).<br />

- 224 -


- 225 -<br />

References<br />

78. El-Mekawy, S.; Meselhy, M. R.; Kusumoto, I. T.; Kadota, S.;<br />

Hattori, M. and Namba, T.; "<strong>In</strong>hibitory effects of Egyptian folk<br />

medicines on human immunodeficiency virus (HIV) reverse<br />

transcriptase"; Chem. Pharm. Bull., 43: 641-648 (1995).<br />

79. Yoshida, T.; Itoh, H.; Matsunaga, S. and Tanaka, R.; "Tannins and<br />

related polyphenols of Euphorbiaceae plants. IX. Hydrolysable<br />

tannins with 1 C4 glucose core from Phyllanthus flexuosus Muell.<br />

Arg."; Chem. Pharm. Bull., 40: 53-60 (1992).<br />

80. Foo, L. Y.; "Amarinic acid and related ellagitannins from<br />

Phyllanthus amarus"; Phytochemistry, 39: 217-224 (1995).<br />

81. Lan-zhen, Z.; Ya-jian, G. and Guang-zhong, T.; "Isolation and<br />

identification of a novel polyphenolic compound from Phyllanthus<br />

urinaria L."; J. Chin. Med. Mater, 5: 724-726 (2000).<br />

82. Lan-zhen, Z.; Ya-jian, G. and Guang-zhong, T.; Wu-bao, G. and<br />

Feng, M.; "Isolation and identification of a novel ellagitannin from<br />

Phyllanthus urinaria L."; Acta Pharmaceutica Sinica, 39: 119-122<br />

(2004).<br />

83. Shin, M. S.; Kang, E. H. and Lee, Y. I.; "A flavonoid from medicinal<br />

plants blocks hepatitis B virus-e antigen secretion in HBV-infected<br />

hepatocytes"; Antiviral Research, 67: 163-168 (2005).<br />

84. Liu, X.; Cui, C.; Zhao, M.; Wang, J.; Luo, W.; Yang, B. and Jiang,<br />

Y.; "Identification of phenolics in the fruits of emblica (Phyllanthus<br />

emblica L.) and their antioxidant activities"; Food Chem., 109: 909-<br />

915 (2008).<br />

85. Chen, Y. W.; Ren, L. J. and Li, K. M.; "Isolation and identification<br />

of a novel polyphenolic compound from Phyllanthus urinaria L.";<br />

Acta Pharmaceutica Sinica, 34: 526-529 (1999).<br />

86. Wei, W.X.; Pan, Y.J.; Zhang, H.; Lin, C.W. and Wei, T.Y.; "Two<br />

new compounds from Phyllanthus niruri"; Chemistry of Natural<br />

Compounds, 40: 460-464 (2004).<br />

87. Gupta, D. R. and Ahmed, B.; "Nirurin: a new prenylated flavanone<br />

glycoside from Phyllanthus niruri"; J. Nat. Prod., 47: 958-963<br />

(1984).<br />

88. Shakil, N. A.; Kumar, P. J.; Pandey, R. K. and Saxena, D. B;<br />

"Nematicidal prenylated flavonones from Phyllanthus niruri";<br />

Phytochemistry, 69: 759-764 (2008).<br />

89. Chauhan, J. S.; Sultan, M. and Srivastava, S. K.; "Two new<br />

glycoflavones from the roots of Phyllanthus niruri"; Planta Med.,<br />

32: 217-222 (1977).<br />

90. Zhang, Y.J.; Abe, T.; Tanaka, T. ; Yang, C.R. and Kouno, I.; "Two<br />

new acylated flavonones glycosides from the leaves and branches of<br />

Phyllanthus emblica"; Chem. Pharm. Bull., 50: 841-843 (2002).


References<br />

91. Pettit, G. R.; Schaufelberger, D. R.; Nieman, R. A.; Dufresne, C. and<br />

Renauld, J. A. S.; "Antineoplastic agents, 177. Isolation and<br />

structure of phyllanthostatin 6"; J. Nat. prod., 53: 1406-1413 (1990).<br />

92. Pettit, G. R.; Cragg, G. M.; Gust, D. and Brown, P.; "The isolation<br />

and structure of phyllanthostatins 2 and 3"; Can. J. Chem., 60: 544-<br />

546 (1982).<br />

93. Pettit, G. R.; Cragg, G. M.; Gust, D.; Brown, P. and Schmidt, J. M.;<br />

"The structure of phyllanthostatin 1 and phyllanthoside from the<br />

central American tree Phyllanthus acuminatus Vahl"; Can. J. Chem.,<br />

60: 939-941 (1982).<br />

94. Ahmad, M. U.; Husain, S. K. and Osman, S. M.; "Ricinoleic acid in<br />

Phyllanthus niruri seed Oil"; J. American Oil Chemist's Soc., 58:<br />

673-674 (1981).<br />

95. Wei, W.X.; Pan, Y.J.; Chen, Y.; Lin, C.W.; Wei, T.Y. and Zhao, S.;<br />

"Carboxylic acids from Phyllanthus urinaria"; Chemistry of Natural<br />

Compounds, 41: 17-21 (2005).<br />

96. Khopde, S. M; Priyadarsini, K. I.; Mohan, H.; Gawandi, V. B.;<br />

Satav, J. G.; Yakhmi, J. V.; Banavaliker, M. M.; Biyani, M. K. and J.<br />

P. Mittal; "Characterizating the antioxidant activity of amla<br />

(Phyllanthus emblica) extract"; Current Science, 81: 185-190<br />

(2001).<br />

97. Sabu, M. C. and Kuttan, R.; "Anti-diabetic activity of medicinal<br />

plants and its relationship with their antioxidant property"; J.<br />

Ethnopharmacol., 81: 155-160 (2002).<br />

98. Anila, L. and Vijayalakshmi, N. R.; "Antioxidant action of<br />

flavonoids from Mangifera indica and Emblica officinalis in<br />

hypercholesterolemic rats"; Food Chem., 83: 569-574 (2003).<br />

99. Bhattacharya, A.; Chatterjee, A.; Ghosal, S. and Bhattacharya, S.K.;<br />

"Antioxidant activity of active tannoid principles of Emblica<br />

officinalis (amla)"; <strong>In</strong>dian J Exp. Biol., 37: 676- 680 (1999).<br />

Through C.A. 132: 59032j.<br />

100. Bhattacharya, A.; Ghosal, S. and Bhattacharya, S.K.; "Antioxidant<br />

activity of tannoid principles of Emblica officinalis (amla) in chronic<br />

stress induced changes in rat brain"; <strong>In</strong>dian J Exp. Biol., 38: 877-<br />

880 (2000). Through C.A. 134: 290353s.<br />

101. Harish, R. and Shivanandappa, T.; "Antioxidant activity and<br />

hepatoprotective potential of Phyllanthus niruri"; Food Chem., 95:<br />

180-185 (2006).<br />

102. Khanna, A. K.; Rizvi, F. and Chander, R.; "Lipid lowering activity<br />

of Phyllanthus niruri in hyperlipemic rats"; J. Ethnpharmacol., 82:<br />

19-22 (2002).<br />

103. Sabir, S.M. and Rocha, J.B.T.; "Water-extractable phytochemicals<br />

from Phyllanthus niruri exhibit distinct in vitro antioxidant and in<br />

- 226 -


- 227 -<br />

References<br />

vivo hepatoprotective activity against paracetamol-induced liver<br />

damage in mice"; Food Chem., 111: 845- 851(2008).<br />

104. Kumar, S.; Sachdeva, N.; Amir, M.; Kumar, A. and Singh, S.K.;<br />

"Free radical scavenging effect of Phyllanthus Simplex: in vitro and<br />

in vivo study"; Saudi <strong>Pharmaceutical</strong> J., 15: 55- 59 (2007).<br />

105. Chung, S.K.; Nam, J. A.; Jeon, S.Y.; Kim, H.J.; Chung, T.H. and<br />

Song, K. S.; "A prolyl endopeptidase- inhibitory antioxidant from<br />

Phyllanthus ussurensi"; Arch. Pharm. Res., 26: 1024-1028 (2003).<br />

Through C.A. 140: 229223g.<br />

106. Aswatha, R. H.N.; Shreedhara, C.S., Falguni, G. P. and Sachin, Z.<br />

B.; "Antioxidant studies of aqueous extract of Phyllanthus<br />

reticulates Poir"; Pharmacologyonline, 1: 351-364 (2008).<br />

107. Aswatha, R. H.N.; Shreedhara, C.S., Falguni, G. P. and Sachin, Z.<br />

B.; "<strong>In</strong> vitro free radical scavenging potential of methanol extract of<br />

entire plant of Phyllanthus reticulatus Poir"; Pharmacologyonline, 2:<br />

440- 451 (2008) .<br />

108. Chidi, U.; Linus, A. N. and Cosmas, O. U.; "Assessment of the<br />

hepatic effects, phytochemical and proximate compositions of<br />

Phyllanthus amarus"; African J. Biotechnology, 6: 728-731 (2007)<br />

109. Naaz, F.; Javed, S. and Abdin, M. Z.; "Hepatoprotective effect of<br />

ethanolic extract of Phyllanthus amarus Schum. Et Thonn. on<br />

aflatoxin B1-induced liver damage in mice"; J. Ethnopharmacol.,<br />

113: 503-509 (2007).<br />

110. Dhuley, N. and Naik, S.R.; "Protective effect of Rhinax, a herbal<br />

formulation, against carbon tetrachloride-induced liver injury and<br />

survival in rats"; J. Ethnopharmacol., 56: 159-164 (1997).<br />

111. Pramyothin, P.; Samosorn, P.; Pongshompoo, S. and<br />

Chaichantipyuth, C.; "The protective effect of Phyllanthus emblica<br />

Linn. extract on ethanol-induced rat hepatic injury"; J.<br />

Ethnopharmacol., 107: 361-364 (2006).<br />

112. Asha, V. V.; Sheeba, M. S.; Suresh, V. and Wills, P.J.;<br />

"Hepatoprotection of Phyllanthus maderaspatensis against<br />

experimentally induced liver injury in rats"; Fitoterapia, 78: 134-141<br />

(2007).<br />

113. Asha, V. V.; Akhila, S.; Wills, P. J. and Subramoniam, A.; "Further<br />

studies on the antihepatotoxic activity of Phyllanthus<br />

maderaspatensis Linn.; J. Ethnopharmacol., 92: 67-70 (2004).<br />

114. Sailaja, R. and Setty, O. H.; "Protective effect of Phyllanthus<br />

fraternus against allyl alcohol-induced oxidative stress in liver<br />

mitochondria"; J. Ethnopharmacol., 105: 201-209 (2006).<br />

115. Padma, P. and Setty, O. H.; "Protective effect of Phyllanthus<br />

fraternus against carbon tetrachloride-induced mitochondrial<br />

dysfunction"; Life Sci., 64: 2411-2417 (1999).


References<br />

116. Suresh, V. and Asha, V. V.; "Preventive effect of ethanol extract of<br />

Phyllanthus rheedii Wight. on D-galactosamine induced hepatic<br />

damage in Wistar rats"; J. Ethnopharmacol., article in press (2008) .<br />

117. Iqbal, M.D. J.; Dewan, F. Z.; Chowdhury, S. A. R.; Mamun, M. I.<br />

R.; Moshiuzzaman, M. and Begum, M.; "Pre-treatment by n-hexane<br />

extract of Phyllanthus niruri can alleviate paracetamol-induced<br />

damage of the rat liver"; Bangladesh J. Pharmacology, 2: 43- 48<br />

(2007).<br />

118. Chatterjee, M. and Sil, P. C.; "Protective role of Phyllanthus niruri<br />

against nimesulide induced hepatic damage"; <strong>In</strong>dian J. of Clinical<br />

Biochemistry, 22: 109-116 (2007).<br />

119. Sarkar, M. K. and Sil, P. C.; "Hepatocytes are protected by herb<br />

Phyllanthus niruri protein isolate against thioacetamide toxicity";<br />

Pathophysiology, 14: 113-120 (2007).<br />

120. Agrawal, S. S., Garg, A. and Agrawal, S.; "Screening of<br />

Phyllanthus niruri Linn. and Ricinus communis Linn. on alcoholinduced<br />

liver cell damage in non-hepatectomized and partially<br />

hepatectomized rats"; <strong>In</strong>dian J. Pharmacol., 18: 211-214 (1986).<br />

121. Jeena, K. J.; Joy, K. L. and Kuttan, R.; "Effect of Emblica<br />

officinalis, Phyllanthus amarus and Picrorrhiza kurroa on Nnitrosodiethylamine<br />

induced hepatocarcinogenesis"; Cancer Letters,<br />

136: 11-16 (1999).<br />

122. Pramyothin, P.; Ngamtin, C.; Pongshompoo, S. and<br />

Chaichantipyuth, C.; "Hepatoprotective activity of Phyllanthus<br />

amarus Schum. et Thonn. extract in ethanol-treated rats: <strong>In</strong> vitro and<br />

in vivo studies"; J. Ethnopharmacol., 114: 169-173 (2007).<br />

123. Wongnawa, M.; Thaina, P.; Bumrungwong, N.; Rattanapirun, P.;<br />

Nitiruangjaras, A.; Muso, A. and Prasartthong, V. ; "The protective<br />

potential and possible mechanism of Phyllanthus amarus Schum.&<br />

Thonn. aqueous extract on paracetamol-induced hepatotoxicity in<br />

rats"; Songklanakarin J. Sci. Technol., 28: 551-561 (2006).<br />

124. Rajeshkumar, N. V. and kuttan, R.; "Phyllanthus amarus extract<br />

administration increases the life span of rats with hepatocellular<br />

carcinoma"; J. Ethnopharmacol., 73: 215-219 (2000).<br />

125. Rajeshkumar, N.V.; Joy, K. L.; Kuttan, G.; Ramsewak, R. S.; Nair,<br />

M. G. and Kuttan, R.; "Antitumour and anticarcinogenic activity of<br />

Phyllanthus amarus extract"; J. Ethnopharmacol., 81: 17-22 (2003).<br />

126. Sureban, S. M.; Subramaniam, D.; Rajendran, P.; Ramanujam, R.<br />

P.; Dieckgraefe, B.K.; Houchen, C. W. and Anant, S.; "Therapeutic<br />

effects of Phyllanthus species: <strong>In</strong>duction of TNF-α mediated<br />

Apoptosis in HepG2 Hepatocellular carcinoma cell"; Am. J. Pharm.<br />

& Toxicol., 1: 65-71 (2006).<br />

- 228 -


- 229 -<br />

References<br />

127. Islam, A.; Selvan,T.; Mazumder,U.K.; Gupta, M. and Ghosal, S.;<br />

"Antitumour effect of phyllanthin and hypophyllanthin from<br />

Phyllanthus amarus against ehrlich ascites carcinoma in mice";<br />

Pharmacologyonline, 2: 796-807 (2008).<br />

128. Nandi, P.; Talukder, G. and Sharma, A.; "Dietary chemoprevention<br />

of clastogenic effects of 3, 4 -benzo (a) pyrene by Emblica officinalis<br />

Gaertn. fruit extract"; British J. Cancer, 76: 1279-1283 (1997).<br />

Through C. A. 128: 60987y.<br />

129. Sancheti, G.; Jindal, A.; Kumari, R. and Goyal, P. k.;<br />

"Chemopreventive action of Emblica officinalis on skin<br />

carcinogenesis in mice"; Asian Pacific J. Cancer Prevention, 6: 197-<br />

201 (2005).<br />

130. Wada, S.I.; Iida, A. and Tanaka, R.; "Screening of triterpenoids<br />

isolated from Phyllanthus flexuosus for DNA Topoisomerase<br />

inhibitory activity"; J. Nat. Prod., 64: 1545-1547 (2001).<br />

131. Rajkapoor, B.; Sankaari, M.; Sumithra, M.; Anbu, J.; Harikrishnan,<br />

N.; Gobinath, M.; Suba, V. and Balaji, R.; "Antitumor and cytotoxic<br />

effects of Phyllanthus polyphyllus on Ehrlich Ascites Carcinoma and<br />

Human Cancer cell lines"; Biosci. Biotechnol. Biochem., 71: 2177-<br />

2183 (2007).<br />

132. Sankaranarayanan, J. and Jolly, C. I.; "Phytochemical, antibacterial<br />

and pharmacological investigation on Momordica charantia Linn.,<br />

Emblica officinalis Gaertn and Curcuma longa Linn."; <strong>In</strong>dian J.<br />

Pharm. Sci., 55: 6-13 (1993).<br />

133. Ali, H.; Houghton, P. J. and Soumyanath, A. ; "α-Amylase<br />

inhibitory activity of some Malaysian plants used to treat diabetes;<br />

with particular reference to Phyllanthus amarus; J.<br />

Ethnopharmacol., 107: 449–455 (2006).<br />

134. Hnatyszyn, O.; Mino Gorzalczany, S.; Ferraro, G. C. J. and<br />

Acevedo, C.; "Antidiabetic activity of Phyllanthus sellowianus in<br />

streptozotocin-induced diabetic rats"; Phytomedicine, 4: 251-253<br />

(1997). Through C. A. 127: 336524j.<br />

135. Hukeri,V. I.; Kalyani, G. A. and Kakrani, H. K.; "Hypoglycemic<br />

activity of flavonoids of Phyllanthus fraternus in rats"; Fitoterapia,<br />

59: 68-70 (1988). Through C. A. 109: 86086m.<br />

136. Nwanjo, H. U. ; "Studies on the effect of aqueous extract of<br />

Phyllanthus niruri leaf on plasma glucose level and some<br />

hepatospecific markers in diabetic wistar rats"; The <strong>In</strong>ternet Journal<br />

of Laboratory Medicine, 2 (2007).<br />

137. Suryanarayana, P.; Kumar, P. A.; Saraswat,M.; Petrash, J. M. and<br />

Reddy, G. B.; "<strong>In</strong>hibition of aldose reductase by tannoid principles<br />

of Emblica officinalis: Implications for the prevention of sugar<br />

cataract"; Molecular Vision,10: 148-154 (2004).


References<br />

138. Nosál'ová, G.; Mokrý, J. and Hassan, K. M. T.; "Antitussive<br />

activity of the fruit extract of Emblica officinalis Gaertn.<br />

(Euphorbiaceae)"; Phytomedicine, 10: 583-589 (2003).<br />

139. Roy, S. K. and Rudra, M. N.; "The state of vitamin C nutrition in<br />

pulmonary tuberculosis"; Ann. Biochem. Exptl. Med., 1: 307-310<br />

(1941). Through C. A. 37: 38063.<br />

140. Niraldo, P.; Filho, C.; Yunes, V.; Rosendo, A. and Calixto,J. B.;<br />

"The relaxant effect of extract of Phyllanthus urinaria in the guinea<br />

pig isolated trachea. Evidence for involvement of ATP-sensitive<br />

potassium channels"; J. Pharm. Pharmacol., 48: 1158-1163 (1996).<br />

Through C. A. 126: 42574r.<br />

141. Paulino, N.; Pizollatti, M. G.; Yunes, R. A.; Filho, V. C.;<br />

Crreczynski-Pasa, T. B. and Calixto, J. B.; "The mechanisms<br />

underlying the relaxant effect of methyl and ethyl gallate in the<br />

guinea pig trachea in vitro: contribution of potassium channels";<br />

Naunyn Schmiedebergs Arch. Pharmacol., 360: 360 (1999).<br />

Through C. A. 132: 117385q.<br />

142. Paulino, N.; Filho, V. C.; Pizzolaatti, M. G.; Yunes, R. A. and<br />

Calxito, J. B.; "Mechanisms involved in the contractile responces<br />

induced by the hydroalcoholic extract of Phyllanthus urinaria on<br />

the Guinea pig isolated trachea: Evidence for participation of<br />

Tachykinins and influx of extracellular Ca +2 sensitive to Ruthenium<br />

red"; General Pharmacology, 27: 795- 802 (1996).<br />

143. Hnatyszyn, O.; Mino, J.; Gorzalczany, S.; Opezzo, J.; Ferraro, G.;<br />

Coussio, J. and Acevedo, C.; "Diuretic activity of an aqueous<br />

extract of Phyllanthus sellowianus"; Phytomedicine, 6: 177-179<br />

(1999). Through C. A. 131: 120684w.<br />

144. Dias, M. A.; Campos, A. H.; Filho, V. C.; Yunes, R. A. and<br />

Calixto, J. B.; "Analysis of the mechanisms underlying the<br />

contractile response induced by the hydroalcoholic extract of<br />

Phyllanthus urinaria in the guinea pig urinary bladder in vitro"; J.<br />

Pharm. Pharmacol., 47: 846- 851 (1995). Through C. A. 124:<br />

76114q.<br />

145. Cipriani, T. R.; Mellinger, C. G.; Souza, L. M.; Baggio, C. H.;<br />

Freitas, C. S.; Marques, M. C. A.; Philip, A. J.; Sassaki, G. L. and<br />

Marcello Iacomini; "Acidic heteroxylans from medicinal plants and<br />

their anti-ulcer activity"; Carbohydrate Polymers, 74: 274- 278<br />

(2008).<br />

146. Sairam, K.; Rao, C. V.; Babu, M. D.; Kumar, K. V.; Agrawal, V.<br />

K. and Goel, R. K.; "Antiulcerogenic effect of methanolic extract of<br />

Emblica officinalis: an experiment study"; J. Ethnopharmacol., 82:<br />

1- 9 (2002).<br />

- 230 -


- 231 -<br />

References<br />

147. Bandyopadhyay, S. K. ; Pakrashi, S. C. and Pakrashi, A.; "The role<br />

of antioxidant activity of Phyllanthus emblica fruits on prevention<br />

from indomethacin induced gastric ulcer"; J. Ethnopharmacol., 70:<br />

171-176 (2000).<br />

148. Gertsch, J.; Niomawë; Gertsch-Roost, K. and Sticher, O.;<br />

"Phyllanthus piscatorum, ethnopharmacological studies on a<br />

women's medicinal plant of the Yanomamï Amerindians"; J.<br />

Ethnopharmacol., 91:181-188 (2004).<br />

149. Akhtar, M. S.;-Uz- Zaman, R. and Khan M. S.; "Antiulcer effects<br />

of aqueous extracts and a fraction of Phyllanthus emblica fruit on<br />

gastric acid secretion and mucosal defence factors in albino rats";<br />

Proc. Pakistan Acad. Sci., 41: 81- 87 (2004).<br />

150. Thakur, C. P. and Mandal, K.; "Effect of Emblica officinalis on<br />

cholesterol-induced atherosclerosis in rabbits"; <strong>In</strong>dian J. Med. Res.,<br />

79: 142- 146 (1984). Through C. A. 100: 119809u.<br />

151. Duan, W.; Yu, Y. and Zhang, L.; "Antiatherogenic effects of<br />

Phyllanthus emblica associated with corilagin and its analogue";<br />

Yakugaku Zasshi (J. of <strong>Pharmaceutical</strong> society of Japan), 125: 587-<br />

591 (2005).<br />

152. Bipat, R.; Toelsie1, J. R.; Joemmanbaks, R. F.; Gummels, J. M.;<br />

Klaverweide, J.; Jhanjan, N.; Orie, S.; Ramjiawan, K.; Brussel, A.V.;<br />

Soekhoe, R. C. and Mans, D. R.A.; "Effects of plants popularly used<br />

against hypertension on norepinephrine-stimulated guinea pig atria";<br />

Phcog. Mag., 4: 12-19 (2008).<br />

153. Saravanan, R. and Pari, L.; "Antihyperlipidemic and<br />

antiperoxidative effect of Diasulin, a polyherbal formulation in<br />

alloxan induced hyperglycemic rats"; BMC (Biomed. central)<br />

Complementary and Alternative Medicine, 5: 14 (2005).<br />

154. Antony, B.; Merina, B.; Sheeba, V. and Mukkadan, J. ; "Effect of<br />

standardized amla extract on atherosclerosis and dyslipidemia";<br />

<strong>In</strong>dian J. Pharm. Sci., 68: 437- 441 (2006).<br />

155. Anila, L. and Vijayalakshim, N. R.; "Flavonoids from Emblica<br />

officinalis and Mangifera indica – effectiveness for dyslipidemia"; J.<br />

Ethnopharmacol., 79: 81- 87 (2002).<br />

156. Tiwari, A.K.; Shukla, S.S.; Agarwal, A. and Dubey, G.P;<br />

"Favourable Effect of Abana on lipoprotein profiles of patients with<br />

hypertension and angina pectoris"; Alternative Medicine, 3: 139-<br />

143(1990).<br />

157. Mathur, R.; Sharma, A.; Dixit, V.P. and Varma, M.;<br />

"Hypolipidaemic effect of fruit juice of Emblica officinalis in<br />

cholesterol-fed rabbits"; J. Ethnopharmacol., 50 :61- 68 (1996).


References<br />

158. Sànchez-Lamar, A.; Fiore, M.; Cundari, E.; Ricordy, R.; Cozzi, R.<br />

and De salvia, R.; "Phyllanthus orbicularis aqueous extract:<br />

cytotoxic, genotoxic and antimutagenic effects in the CHO cell line";<br />

Toxicology and Applied Pharmacology, 161: 231- 239 (1999).<br />

159. Ferrer, M.; Sànchez-Lamar, A.; Fuentes, J. L.; Barbe, J. and<br />

Liagostera, M.; "Studies on antimutagenesis of Phyllanthus<br />

orbicularis: mechanisms involved against aromatic amines"; Mutant.<br />

Res., 498: 99-105 (2001). Through C. A. 135: 328297n.<br />

160. Ferrer, M.; Cristófol, C.; Sánchez-Lamar, A.; Fuentes, J. L.; Barbé,<br />

J. and Llagostera, M.; "Modulation of rat and human cytochromes<br />

P450 involved in PhIP and 4-ABP activation by an aqueous extract<br />

of Phyllanthus orbicularis" ; J. Ethnopharmacol., 90: 273- 277<br />

(2004).<br />

161. Grover, I. S. and Simran, K.; "Effect of Emblica officinalis<br />

Gaertn.(<strong>In</strong>dian gooseberry) fruit extract on sodium azide and 4-nitro-<br />

O-phenylenediamine induced mutagenesis in Salmonella<br />

typhimurium"; <strong>In</strong>dian J. Exp. Biol., 27: 207- 209 (1989). Through C.<br />

A. 111: 17230h.<br />

162. Rani, G.; Saroj, B. and Grover, I. S.; "Antimutagenic studies of<br />

diethyl ether extracts and tannin fractions of Emblica myroblan<br />

(Emblica officinalis Gaertn.) in Ames Assay"; J. Plant Sci. Res.,10:<br />

1- 4 (1995). Through C. A. 125: 238608d.<br />

163. Sripanidkulchai, B.; Tattawasart, U.; Laupatarakasem, P.;<br />

Vinitkethumneun, U.; Sripanidkulcha, K.; Furihata, C. and<br />

Matsushima, T.; "Antimutagenic and anticarcinogenic effects of<br />

Phyllanthus amarus"; Phytomedicine, 9: 26- 32 (2002).<br />

164. Kaur, S.; Arora, S.; Kaur, K. and Kumar, S.; "The in vitro<br />

antimutagenic activity of Triphala- an <strong>In</strong>dian herbal drug"; Food &<br />

Chemical Toxicology, 40: 527- 534 (2002).<br />

165. Santos, A. R.S.; Filho, V. C.; Yunes, R. A. and Calxito, J. B.;<br />

"Analysis of the mechanisms underlying the antinociceptive effect of<br />

the extracts of plants from the genus Phyllanthus"; General<br />

Pharmacology, 26: 1499- 1506 (1995).<br />

166. Santos, A. R.S.; De Campos, R. O.P.; Miguel, O. G.; Filho, V. C.;<br />

Siani, A. C.; Yunes, R. A. and Calxito, J. B.; "Antinociceptive<br />

properties of extracts of new species of the genus Phyllanthus<br />

(Euphorbiaceae)"; J. Ethnopharmacol., 72: 229- 238 (2000).<br />

167. Kassuya, C. A. L.; Leite, D. F. P.; De Melo, L. V.; Rehder, V. L. G.<br />

and Calixto, J. B.; "Anti-inflammatory properties of extracts,<br />

fractions and lignans isolated from Phyllanthus amarus"; Planta<br />

Med., 71: 721- 726 (2005).<br />

- 232 -


- 233 -<br />

References<br />

168. Kassuya, C. A.; Silvestre, A. A.; Rehder, V. L. and Calixto, J. B.;<br />

"Anti-allodynic and anti-oedematogenic properties of the extract and<br />

lignans from Phyllanthus amarus in models of persistent<br />

inflammatory and neuropathic pain"; Eur. J. Pharmacol., 478: 145-<br />

153 (2003). Through C. A. 140: 264260p.<br />

169. Rao, Y. K.; Fang, S.H. and Tzeng, Y.M.; "Anti-inflammatory<br />

activities of constituents isolated from Phyllanthus polyphyllus"; J.<br />

Ethnopharmacol. 103:181–186 (2006).<br />

170. Ganju, L.; Karan, D.; Chanda, S.; Srivastava, K. K.; Sawhney, R. C.<br />

and Selvamurthy, W.; "Immunomodulatory effects of agents of plant<br />

origin"; Biomedicine and Pharmacotherapy, 57: 296-300 (2003).<br />

171. Sunil Kumar, S. K.C. And Müller, K.; "Medicinal plants from<br />

Nepal; I. Evaluation as inhibitors of lipid peroxidation in biological<br />

membranes"; J. Ethnopharmacol., 64: 135-139 (1999).<br />

172. Vormisto, A. I.; Summanen, J.; Kankaanrata, H.; Vuorela, H.;<br />

Asmawi, Z. M. and Moilanen, E.; "Anti-inflammatory activity of<br />

extracts from leaves of Phyllanthus emblica"; Planta Med., 63: 518-<br />

524 (1997).<br />

173. Kiemer, A. K.; Hartung, T.; Huber, C. and Vollmar, A. M.;<br />

"Phyllanthus amarus has anti-inflammatory potential by inhibition<br />

of iNOS, COX-2 and cytokines via the NF-KappaB pathway"; J.<br />

Hepatol., 38: 289-297 (2003).<br />

174. Mahat, M. A. and Patil, B. M.; "Evaluation of anti-inflammatory<br />

activity of methanol extract of Phyllanthus amarus in experimental<br />

animal models"; <strong>In</strong>dian J. pharmaceutical sciences, 69: 33-36<br />

(2007).<br />

175. Prashanth, D.; Padmaja, R. and Samiulla, D. S.; "Effect of certain<br />

plant extract on α-amylase activity"; Fitoterapia, 72: 179- 181<br />

(2001).<br />

176. Koichi, O. and Toru, M.; "Glucosyltransferase inhibitor containing<br />

specified plant extracts"; Jpn. Kokai Tokkyo koho Jp 2002 187,843<br />

(CL. A61 K 35/78) 5 Jul 2002, Appl. 2000/386, 618, 20 Dec. 2000;<br />

9 pp. (Japan). Through C. A.137: 52342e.<br />

177. Chang, C.W.; Lin, M.T.; Lee, S.S.; Liu, K. C. S. C.; Hsu, F.L. and<br />

Lin, J.Y.; "Differential inhibition of reverse transcriptase and cellular<br />

DNA polymerase- α- activities by lignans isolated from Chinese<br />

herbs, Phyllanthus myrtifolius Moon, and tannins from Lonicera<br />

japonica Thunb and Castanopsis hystrix"; Antiviral Research, 27:<br />

367- 374 (1995).<br />

178. Naik, A. K. and Juvekar, A. R.; "Effect of alkaloidal extract of<br />

Phyllanthus niruri on HIV replication"; <strong>In</strong>dian J. medical sciences,<br />

57: 387- 393 (2003).


References<br />

179. Ogata, T.; Higuchi, S.; Mochida, H.; Matsumoto, A.; Kato, T.;<br />

Endo, A. K. and Kaji, H.; "HIV-1 reverse transcriptase inhibitor<br />

from Phyllanthus niruri", AIDS Res. Hum. Retroviruses, 8: 1937-<br />

1944 (1992) through C. A. 118: 139303z.<br />

180. Alam, M. I. and Gomes, A.; "Snake venom neutralization by <strong>In</strong>dian<br />

medicinal plants (Vitex negundo and Emblica officinalis) root<br />

extracts"; J. Ethnopharmacol.; 86: 75- 80 (2003).<br />

181. Mors, W. B.; Do Nascimento, M. C.; Pereira, B. M. R. and Pereira,<br />

N. A.; "Plant natural products active against snake bite - the<br />

molecular approach"; Phytochemistry, 55: 627- 642 (2000).<br />

182. Joshi, H. and Parle, M.; "Pharmacological evidences for antiamnesic<br />

potentials of Phyllanthus amarus in mice"; African J. Biomedical<br />

Research, 10; 165-173(2007).<br />

183. Adedapo, A. A.; Abatan, M. O.; Akinloye, A. K.; Idowu, S. O. and<br />

Olorunsogo, O. O.; " Morphometric and histopathological studies on<br />

the effect of some chromatographic fractions of Phyllanthus amarus<br />

and Euphorbia hirta on the male reproductive organs of rats"; J. Vet.<br />

Sci., 4: 181-185 (2003).<br />

184. Vogel's, A.; "Vogel's Test Book of Practical Organic Chemistry"; 4 th<br />

ed., Longmanns. <strong>In</strong>c. New York, U.S.A. (1978).<br />

185. Egyptian Pharmacopeia, (English text), Cairo University Press<br />

(1953).<br />

186. Stahl, E.; "Thin layer chromatography"; 2 nd ed. , Springer<br />

<strong>In</strong>ternational Student Edition, Springer-Verlage, Berlin- Heidelberg,<br />

New York (1969).<br />

187. Mabry, I.; Markham, K. and Thomas, M.; "The systematic<br />

Identification of Flavonoids", Springer-Verlage, New York,<br />

Heidelberg, Berlin (1970).<br />

188. Trease, G. and Evans, W.C.; "A text book of <strong>Pharmacognosy</strong>"; 2 nd<br />

ed., Baillier Tindal, London: 88 (1978).<br />

189. Balbaa, S.; Hilal, S. and Zaki, A.; "Medicinal plant constituent", 2 nd<br />

ed., Cairo University Press: 228, 367 (1976).<br />

190. Wall, M.E.; Krider, M.M.; Krewson, C.F.; Eddy, C.R.; William,<br />

J.I.; Correll, D.C. and Gentry, H.S.; J. Amer. Phar. Assoc., 30: 1<br />

(1954).<br />

191. Libermann's, C.;" Chem. Ber." 18 th ed., 1803 (1885).<br />

192. Finar, I.L.;" Organic chemistry"; 4 th ed., Longmans, London, 2: 422<br />

(1968).<br />

193. El Said, F. and Amer, M.; "Oils, fats, waxes and surfactants" Anglo.<br />

Egyptian Book, Cairo: 130 (1965).<br />

194. Williams, K.; "Fats, oils, fatty food, their practical examination" of<br />

A Churchill Ltd.: 104 (1966).<br />

- 234 -


- 235 -<br />

References<br />

195. Vogel, A.I.; "Text Book of Practical Organic Chemistry"; 3 rd ed.,<br />

Longmann's Green and Co., London (1966).<br />

196. Williams, K.; "Fats, oils, fatty food, their practical examination";<br />

15 th , of A Churchill Ltd.: 94, 212 (1967).<br />

197. Ikan, R., "Natural Products", Academic press. <strong>In</strong>c. London, New<br />

York, and San Francisco (1976).<br />

198. Cook, C.E. and Twine, C.E; "Chem. Comm.", 791 (1968).<br />

199. Albuquerque, M. L. S.; Guedesand, I.; Alcantara, P. and Moreira,<br />

S. G. C.; "<strong>In</strong>fra red absorption spectra of Byriti ( Mauritia flexuosa<br />

L.) oil"; Vibrational Spectroscopy, 33: 127-131 (2003).<br />

200. Shmidt, J.; "Organic Chemistry"; 8 th ed., Oliver and Royed,<br />

London: 318, 673 (1964).<br />

201. Clifford, J.; Runuiish, A. and Campell, M.; "Spectral Analysis of<br />

Organic Compound"; Longman Group Ltd Bargess, publishing<br />

company, London: 79 (1970).<br />

202. Stock, R. and Rice, C.; "Chromatographic Methods"; 2 nd ed.;<br />

scince paper, Backs. and Chapman and Hall, London: 111 (1976)<br />

203. Goad, L. J. and Akihisa, T.; "Analysis of sterols"; 1 st ed., Blackie<br />

Academic and professional, Chapman and Hall, London, New York,<br />

Tokyo, Melbourne, Madras (1997).<br />

204. Vieville, C.; Mouloungui, Z. and Gaset, A.; "Synthesis and analysis<br />

of the C1-C18 alkyl oleates"; Chemistry and physics of lipids, 75:<br />

101-108 (1995).<br />

205. Simova, S.; Ivanova, G. and Spassov, S.L.; "Alternative NMR<br />

method for quantitative determination of acyl positional distribution<br />

in triacylglycerols and related compounds"; Chemistry and physics<br />

of lipids, 126: 167-176 (2003).<br />

206. Sharma, S. K., Vasudeva, N. and Ali, M.; "A new aliphatic acid<br />

from Achyranthes aspera Linn. roots"; <strong>In</strong>dian J. Chemistry, 48B:<br />

1164-1169 (2009).<br />

207. Pretsch, E.; Buhlmann, P. and Affolter, C.; "Structure determination<br />

of organic compounds"; Springer-Verlage Berlin Heidelberg, New<br />

York, Barcelona , Hong Kong , London, Milan , Paris, Singapore ,<br />

Tokyo: 395(2000).<br />

208. Ham, Y. M.; Baik, J. S.; Hyun, J. W. and Lee, N. H.; "Isolation of a<br />

new phlorotannin, fucodiphlorethol G, from a brown alga Ecklonia<br />

cava"; Bull Korean Chem. Soc., 28: 1595-1597 (2007).<br />

209. Sailler, B. and Glombitza, K.W.; "Phlorethols and fucophlorethols<br />

from brown alga Cystophora retroflexa"; Phytochemistry, 50: 869-<br />

881 (1999).<br />

210. Keusgen, M.; and Glombitza, K.W.; "Phlorethol, fuhalols and their<br />

derivatives from the brown alga Sargassum spinuligerum";<br />

Phytochemistry, 38: 975- 985 (1995).


References<br />

211. Harborne, J.B.; Mabry, T.J. and Mabry, H.; "The Flavonoids"; Part<br />

I, Academic press; Chapman & Hall Ltd, London, New York, San<br />

Francisco. (1975).<br />

212. Hafez, S. S., Abdel Ghani, A. E. and El-Shazly, A. M.;<br />

"Pharmacognostical and antibacterial studies of Chorisia speciosa st.<br />

Hil. flower (Bombacaceaea)"; Mansoura J. pharmaceutical sci., 19:<br />

40- 59 (2003).<br />

213. Zhang, L.; Yang, Z. and Tian, J.K.; "Two new<br />

indolopyridoquinazoline alkaloidal glycosides from Ranunculus<br />

ternatus"; Chem. Pharm. Bull., 55: 1267-1269 (2007).<br />

214. Mizun, M.; Kato, M.; Iinuma, M.; Tanaka, T.; kimura, A.; Ohashi,<br />

H. and sakai, H.; "Acylated luteolin glucoside from Salix gilgiana";<br />

Phytochemistry, 26: 2418-2420 (1987).<br />

215. Ahmed, A. S.; Nakamura, N.;, Meselhy, R.; Makhboul, M. A.; El-<br />

Emary, N. and Hattori, Ma.; " Phenolic constituents from Grevillea<br />

robusta"; Phytochemistry, 53: 149-154 (2000).<br />

216. Eldahshan, O. A.; Ayoub, N. A.; Singab, A.N. B.; and Al-Azizi, M.<br />

M.; "Potential superoxide anion radical scavenging activity of<br />

Doum Palm (Hyphaene thebaica L.) leaves extract"; Record of Nat.<br />

Prod., 2: 83- 93 (2008).<br />

217. Brasseur, T. and Angenot, L.; "Six flavonol glycosides from leaves<br />

of Strychnos variabilis"; Phytochemistry, 27: 1487- 1490 (1988).<br />

218. Marsano, L.S.; Mendez, C.; Hill, D.; Barve, S. and Mc-Clain, C.;<br />

"Diagnosis and treatment of alcoholic liver diseases and its<br />

complications"; Alcoh. Resear. & Heal., 27: 247-256 (2003).<br />

219. Guegenrich, F.P.; "Catalytic selectivity of human cytochrome P450<br />

enzymes: Relevance to drug metabolism and toxicity"; Toxicol. Lett.,<br />

70: 133-138 (1994).<br />

220. Lee,W.M.; "Drug induced hepatotoxicity"; N. Engl. J. Med., 333:<br />

1118-1127 (1995).<br />

221. Treadway, S.; "An Ayurvedic herbal approach to a healthy liver";<br />

Clinical Nutrition <strong>In</strong>sights, vol. 6; no.16 (1998).<br />

222. Matsuda, Y.; Matsumoto, K. and Ichida, T.; "Hepatocyte growth<br />

factor suppresses the onset of liver cirrhosis and abrogates lethal<br />

hepatic dysfunction in rats"; J. Biochem., 118: 643-649 (1995).<br />

223. Hawkins, E.B.; "From tradition to modernity: Asian therapies for<br />

cancer"; J. Am. Bot. Coun., 53: 64-69 (2001).<br />

224. Walaiphachara, N.; "Effect of Phyllanthus amarus on CCl4-induced<br />

hepatotoxicity in rats"; Master's Thesis. Department of Pathology,<br />

Faculty of Science, Mahidol University (1994).<br />

- 236 -


- 237 -<br />

References<br />

225. Hernandez-Munoz, R.; Diaz- Munoz, M.; Lopez, V.; Yanez, L.;<br />

Vidro, S. and De-Sanchez, V.C.; "Balance between oxidative<br />

damage and proliferative potential in an experimental rat model of<br />

CCl4-induced cirrhosis: Protective role of adenosine administration";<br />

Hepatol., 26: 1100- 1110 (1997).<br />

226. Riley, V.; "Adaptation of orbital bleeding technique to rapid serial<br />

blood studies"; Proc. Soc. Exp. Biol. Med., 104: 751-754 (1960).<br />

Cited in: Animal Models in Toxicology, Grad, S.C. and Chengelis,<br />

C.P. (eds.), Marcel Dekkar, New York: 21-164 (1992).<br />

227. Sorg, D. A. and Buckner, B.; Proc. Soc. Exp. Biol. Med., 115: 1131-<br />

1132. Cited in: Animal Models in Toxicology, Grad, S.C. and<br />

Chengelis, C.P. (eds.), Marcel Dekkar, New York: 21-164.<br />

228. Rietman, S. and Frankel, S.; "A Colorimetric method for<br />

determination of serum glutamic oxalacetic and glutamic pyruvic<br />

transaminases"; Am.J. Clin. Pathol., 28: 56-63.Cited from : Elitech<br />

diagnostics kit for the determination of AST and ALT enzymes<br />

(1957).<br />

229. Bergmeyer, H.U.; "Standardization of enzyme assays"; Clin. Chem.;<br />

18: 1305-1311 (1972).<br />

230. Chromy, V. and Fischer, J.; "Photometric determination of total<br />

protein in lipemic sera"; Clin. Chem., 23: 754-756 (1977).<br />

231. Doumas, B.T.; Waston, W.A. and Bigg, H.G.; "Albumin standards<br />

and the measurement of serum albumin with bromcresol green";<br />

Clin. Chim. Acta., 31: 87-96 (1971).<br />

232. Webester, D.; Bignell, A.H. and Birkmayer, J.; "An assessment of<br />

the suitability of bromcresol green for the determination of serum<br />

albumin"; Clin. Chim. Acta., 53 :101-108 (1992).<br />

233. Satoh, K.; Clin. Chim. Acta,, 90: 37 (1978) & Ohkawa, H.; Ohishi<br />

W. and Yagi, K. "Assay for lipid peroxides in animal tissues by<br />

thiobarbituric acid reaction"; Anal. Biochem., 95: 351-358 (1979).<br />

234. Beutler, E.; Duron, O. and Kelly, M.B.; "Improved method for the<br />

determination of blood glutathione"; J. Lab Clin. Med., 61: 882-888<br />

(1963).<br />

235. Bhattachary, A.; Chatterjee, A.; Ghosal, S. and Bhattachyra, S.K.;<br />

<strong>In</strong>dian J. Experimental Biology, 37: 676- 680 (1999).<br />

236. Agarwal, T. and Tiwari, J.S.; "Note on the flavonoids and other<br />

constituents of Phyllanthus genus"; J. <strong>In</strong>dian Chem. Soc., 68: 479-<br />

480 (1991).<br />

237. Deckar, E.A.; "The role of phenolic, conjugated linoleic acid,<br />

carnosine and pyrrolquinolinequinone as nonessential dietary<br />

antioxidants"; Nutritional Reviews, 53: 49-58 (1995).


References<br />

238. Yeap, F. L. and Herbert, W.; "Phyllanthusiin D, an unusual<br />

hydrolysable tannin from Phyllanthus amarus"; Phytochemistry, 31:<br />

711-713 (1992). Through C. A. 117: 44534r.<br />

239. Ishimaru, K.; Yoshimatsu, K.; Kamada, H. and Shimomura, K.;<br />

"Phenolic constituents in tissues cultures of Phyllanthus niruri";<br />

Phytochemistry, 31: 2015-2018 (1991).<br />

240. Satynarayana, P.; Subrahmanyan, P.; Viswanthan, K. N. and Ward,<br />

R.S.; "New seco and hydroxyl lignans from Phyllanthus niruri"; J.<br />

Nat. Prod., 51: 44- 49 (1988).<br />

241. Robak, J. and Gryglewski, R.J.; "Flavonoids are scavengers of<br />

superoxide anions"; Biochemical Pharmacology, 37: 837- 841<br />

(1988).<br />

242. Husain, S.R.; Cillard, J. and Cillard, P.; "Hydroxyl radical<br />

scavenging activity of flavonoids"; Phytochemistry, 26: 2489 - 2491<br />

(1987).<br />

243. Torel, J.; Cillard, J. and Cillard, P.; "Antioxidant activity of<br />

flavonoids and reactivity with peroxy radical"; Phytochemistry, 25:<br />

383-385 (1986).<br />

244. Lewis, N.G. "Antioxidant in higher plants"; <strong>In</strong> R.G. Alscher, &J.L.<br />

Hess (Eds.), Plant phenolics., Boca Raton, CRC Press: 135-169<br />

(1993).<br />

245. Shahidi, F. and Wanasusdara, J.P.K. P.D.; "Phenolic antioxidants";<br />

Critical Reviews of Food Science and Nutrition, 32: 67-103 (1992).<br />

246. La Casa, C.; Villegas, I.; Alarcon-de-la-Lastra, C.; Motilva, V. and<br />

Martin Calero, M.J.; "Evidence for protective and antioxidant<br />

properties of rutin, a natural flavone, against ethanol induced gastric<br />

lesion"; J. Ethnopharmacol., 71: 45-53 (2000).<br />

247. Furhman, B. and Aviram, M.; "Flavonoids protect LDL from<br />

oxidation and attenuate atherosclerosis"; Current Opinion in<br />

Lipidology, 12: 41- 48 (2001).<br />

248. Dhuley, J.N. and Naik, S.R.; "Protective effect of Rhinax, a herbal<br />

formulation, against CCl4-induced liver injury and survival in rats";<br />

J. Ethnopharmacol., 56: 159-164 (1997).<br />

249. Barber, A.A.; "Addendum mechanisms of lipid peroxide formation<br />

in rat tissue homogenates"; Radiation Research, 3: 33-43 (1963).<br />

250. Brattin, W.J.; Glende, E.A. and Recknagel, R.O.; "Pathological<br />

mechanisms in carbon tetrachloride hepatotoxicity"; J. Free Radic.<br />

Biol. Med., 1: 27- 38 (1985).<br />

251. Weber, L.W.D; Boll, M. and Stampfl, A.; Crit Rev. Toxicol., 33:<br />

105 (2003).<br />

252. Muriel, P. and Mourelle, M.; "Preventive by silymarin of membrane<br />

alterations in acute CCl4 liver damage"; J. Appl. Toxicol., 10: 275-<br />

279 (1990).<br />

- 238 -


- 239 -<br />

References<br />

253. Bosisio, E.; Benelli, C. and Pirola, O.; "Effect of the flavanolignans<br />

of Silybum marianum L. on lipid peroxidation in rat liver<br />

microsomes and freshly isolated hepatocytes"; Pharmacol. Res., 25:<br />

147-154 (1992).<br />

254. Pietrangelo, A.; Borella, F. and Casalgrandi, G.; "Anti-oxidant<br />

activity of silybin invivo during long-term iron overload in rats";<br />

Gastroenterol., 109: 1941-1949 (1995).<br />

255. Basage, H.; Poli, G. and Tekkaya, C.; "Free radical scavenging and<br />

anti-oxidation properties of "silibin" complexes on microsomal lipid<br />

per-oxidation"; Cell. Biochem. Funct., 15: 27-33 (1997).<br />

256. Liu, J. H. and Meintosh, H.; "Genus Phyllanthus for chronic hepatitis<br />

B virus infection: a systematic review"; Viral Hepatology, 8: 358-<br />

366 (2001).<br />

257. Xin-Hua, W.; Qngl, C.; Bog, X. and Chua, L.F.; "A comparative<br />

study of Phyllanthus amarus compound and interferon in the<br />

treatment of chronic viral hepatitis B"; Southwest J. Tropical<br />

Medicine& Public Health, 32: 40-42 (2001).<br />

258. Khatoon, S.; Rai, V.; Rawat, S.K.A. and Mehrotra, S.; "Comparative<br />

pharmacognostical studies of three Phyllanthus species"; J.<br />

Ethnopharmacol., 104: 79-86 (2006).<br />

259. Kumaran, A. and Karunnakaran, R.J.; "<strong>In</strong> vitro antioxidant activities<br />

of methanol extracts of Phyllanthus species from <strong>In</strong>dia"; LWR-Swiss<br />

Society of Food Science & Technology, 40: 344- 352 (2007).<br />

260. Syamasunder, K.V.; Singh, B.; Thakur, R.S.; Husain, A. and Hikino,<br />

H.; "Anti-hepatotoxic principles of Phyllanthus niruri herbs"; J.<br />

Ethnopharmacol., 14: 41- 44 (1985).<br />

261. Skehan, P.; Storeng, R. et al.; "New coloremetric cytotoxicity assay<br />

for anticancer drug screening"; J. Natl. Cancer <strong>In</strong>st., 82: 1107-1112<br />

(1990).<br />

262. Woods, G.L. and Washington, J.A.; "Antibacterial Susceptibility<br />

Test: Dilution and Disk Diffusion Methods in: Manual of Clinical<br />

Microbilogy Ed." By Murray, P. R.; Baron, E.J. Pfaller, M.A.;<br />

Tenover, F.C. and Yolken, 6 th ed.; R.H. ASM Press, Washington,<br />

D.C.: 1327 (1995).


SUMMARY<br />

- 215 -<br />

SUMMARY<br />

Phyllanthus is a widespread tropical genus of the family<br />

Euphorbiaceae which is characterized by the presence of many<br />

biological active compounds such as: sterols, terpenes, flavonoids,<br />

tannins, lignans and polyphenolic compounds beside the presence of<br />

some alkaloids.<br />

So, this thesis comprises a phamacognostical study of a plant<br />

from this family and belong to genus Phyllanthus which was<br />

cultivated in Egypt, namely Phyllanthus atropurpureus Boj. Hort.<br />

Maurit. to perform:<br />

1. Botanical study of its different organs to facilitate the<br />

identification of the plant in both entire and powdered<br />

forms.<br />

2. Isolation and characterization of its chemical constituents.<br />

3. Biological study of the plant extracts as well as isolated<br />

compounds.<br />

I- Macro- and Micromorphological study of different organs was<br />

carried out to characterize the plant; as a result the following<br />

characters comprises the main diagnostic features:<br />

1. The plant is a perennial monoecious shrub with dark olive green<br />

petiolated leaves showing red, purple or white colourations.<br />

2. The flower is unisexual, green or purple small axillary one.<br />

3. The rhizome of the plant is vertical showing dark reddish-brown<br />

rough, longitudinally wrinkled outer surface, giving 4 main roots<br />

on its lower end.<br />

4. Leaves are dorsiventral and its epidermis shows paracytic stomata ,<br />

conical-shaped papillae and no hairs.


- 216 -<br />

SUMMARY<br />

5. Short petiole shows parenchymatous cortex with a complete layer<br />

of subepidermal collenchyma, collenchymatous pericycle and large<br />

cresent-shaped vascular tissue.<br />

6. Numerical values of leaves are 64- 86 for stomatal index on lower<br />

epidermis, 3.63 as vein-islet number, 4.86 for veinlet-termination<br />

number and 3.0- 3.8 as palisade ratio.<br />

7. Stem is characterized by the presence of parenchymatous cortex<br />

with a parenchymatous pericycle showing batches of non-lignified<br />

pericyclic fibres.<br />

8. The epidermal cells of sepals, ovary, style, anther and staminal<br />

column are polygonal, isodiametric or axially elongated, covered<br />

with thick or smooth cuticle. The cells of stigma are papillosed.<br />

9. The pollen grains are spherical yellow in colour with three germ<br />

pores.<br />

10. The root shows a characteristic diarch primary xylem in the center.<br />

11. Rhizome shows interrupted bands of lignified sclerides in the<br />

pericycle.<br />

12. Cluster crystals of calcium oxalate are present in all organs of the<br />

plant.<br />

II- Phytochemical <strong>In</strong>vestigation:<br />

A- Pharmacopoeial constant of the plant.<br />

Moisture content, total ash and acid insoluble ash were<br />

determined and found to be: 15, 8.5 and 1.1% for the aerial part of the<br />

plant and 10, 6.81 and 1.3% for the root of the plant respectively.<br />

The successive extractives using selective organic solvents such as<br />

light petroleum, diethyl ether, chloroform and alcohol were found to<br />

be: 0.3, 0.11, 0.07 and 13.27% respectively for the aerial parts extracts


- 217 -<br />

SUMMARY<br />

and 0.18, 0.02, 0.01 and 4.86 % respectively for the root extracts of<br />

the plant.<br />

Preliminary screening proved the probable presence of flavonoids,<br />

isoflavonoid, tannins, mucilage, sterols and/ or triterpenes.<br />

B- Fatty Acid Analysis:<br />

GLC investigation of fatty acid methyl esters together with<br />

authentic samples revealed the presence of the following fatty acids:<br />

caprylic, capric, lauric, myristic, palmitic, palmitoleic, margaric,<br />

stearic, oleic and linoleic.<br />

GC analysis of unsaponifiable matter revealed the presence of β–<br />

sitosterol and stigmasterol.<br />

C- Isolation of the compounds:<br />

As a result of chromatographic study including column and<br />

TLC, the following compounds were isolated in pure form.<br />

1. Mixture of palmitic and stearic acid.<br />

2. Mixture of β-sitosterol and stigmasterol.<br />

3. Oleic acid.<br />

4. Di (3, 4, 5- trihydroxy phenyl) ether (First isolation from<br />

nature) (New compound).<br />

5. 5, 6, 8, 4'-tetrahydroxy isoflavone. (First isolation from<br />

nature) (New compound).<br />

6. Robustaside A. (First isolation from genus Phyllanthus).<br />

7. 6'- (3", 4"- dihydroxy cinnamoyl) arbutin. (First isolation<br />

from nature) (New compound).<br />

8. Demethoxysudachitin (First isolation from genus<br />

Phyllanthus).


- 218 -<br />

SUMMARY<br />

9. Quercetin-7- O-glucoside (First isolation from genus<br />

Phyllanthus)<br />

The characterization, identification and elucidation of their<br />

structures were done by physical and spectral methods including IR,<br />

UV, Mass (FAB, EI), 1 H-NMR and 13 C-NMR.<br />

III- Biological activities:<br />

1. Pharmacological activities:<br />

• The alcoholic extract of the aerial parts and roots of the plant<br />

produced antihepatotoxic activity as they cause a significant<br />

reduction of liver enzymes which were increased by the<br />

effect of CCl4 . Thus, these extracts can be considered as a<br />

new efficient hepatoprotective candidate as it produce an<br />

effect similar and almost equal to that of silymarin.<br />

• The alcoholic extract of the aerial parts and roots of the plant<br />

as well as Roubstaside A were subjected to some<br />

pathological experiment to reveal its anti-tumor activity.<br />

Robustaside A was found to produce a specific strong anti-<br />

tumor activity against hepatocellular carcinoma.<br />

2. Antimicrobial activity:<br />

It was found that different extracts of aerial parts and of roots<br />

exhibited significant antibacterial and antifungal activities against the<br />

tested organisms: S. aureus (G +ve bacteria), E. coli (G-ve bacteria)<br />

and Candida albicans (fungi).


ﻲﺑﺮﻌﻟا ﺺﺨﻠﻤﻟا<br />

ﻲﺑﺮﻌﻟا ﺺﺨﻠﻤﻟا<br />

ﺎﻤﻛ ةرﺎﺤﻟا ﻖﻃﺎﻨﻤﻟا ﻲﻓ ارﺎﺸﺘﻧا ﺔﯿﻨﺒﻠﻟا ﺔﻠﺋﺎﻌﻟا سﺎﻨﺟأ ﺮﺜﻛأ<br />

ﻦﻣ سﻮﺜﻧﻼﯿﻔﻟا<br />

ﺲﻨﺟ ﺮﺒﺘﻌﯾ<br />

،ﺔ ﯿﺛﻼﺜﻟا تﺎ ﻨﯿﺑﺮﺘﻟا ،تﻻوﺮﯿﺘ ﺳﻻا ﻞ ﺜﻣ ﺔ ﻟﺎﻌﻔﻟا ﺔ ﯾﻮﯿﺤﻟا تﺎ ﺒﻛﺮﻤﻟا ﻦ ﻣ ﺪ ﯾﺪﻌﻟا دﻮ ﺟﻮﺑ ﺰ ﯿﻤﺘﯾ<br />

. تاﺪﯾﻮﻠﻘﻟا<br />

ﺾﻌﺑ ﺐﻧﺎﺟ ﻰﻟإ<br />

ﺲﻨ ﺠﻟ ﻊﺑﺎ ﺗ ﺔ ﻠﺋﺎﻌﻟا هﺬ ھ ﻦ ﻣ تﺎ ﺒﻨﻟ<br />

تﻻﻮﻨﯿﻔﻟا ةﺪﯾﺪﻋ تﺎﺒﻛﺮﻤﻟا و ﺔﻀﺑﺎﻘﻟا داﻮﻤﻟا ،تاﺪﯿﻧﻮﻓﻼﻔﻟا<br />

ﺔ ﯿﺟﻮﻟﻮﯿﺑو ﺔ ﯾﺮﯿﻗﺎﻘﻋ ﺔ ﺳارد : ﺔ ﺳارﺪﻟا هﺬ ھ لوﺎ ﻨﺘﺗ اﺬ ﮭﻟ و<br />

و . ﺖ ﯾرﻮﻣ . ترﻮ ھ . جﻮ ﺑ سرﻮ ﺑﺮﯿﺑوﺮﺗا سﻮ ﺜﻧﻼﯿﻓ ﻮ ھو ﺮﺼ ﻣ ﻲ ﻓ عرﺰ ﯾ يﺬ ﻟا<br />

ﻰ ﻠﻋ و ﺔ ﻠﻣﺎﻜﻟا ﮫ ﯿﺘﻟﺎﺣ ﻲ ﻓ ﮫ ﯿﻠﻋ فﺮ ﻌﺘﻟا ﻞﮭﺴ ﯿﻟ<br />

. ﻚﻟذ ﻦﻜﻣأ نإ<br />

. ﺔﻟﻮﺼﻔﻤﻟا تﺎﺒﻛﺮﻤﻟا ﺾﻌﺑ و تﺎﺒﻨﻟا تﺎﺻﻼﺨﻟ<br />

- 1 -<br />

ﺔ ﻔﻠﺘﺨﻤﻟا تﺎ ﺒﻨﻟا ءﺎﻀ ﻋﻷ ﺔ ﯿﺗﺎﺒﻧ ﺔ ﺳارد<br />

سﻮ ﺜﻧﻼﯿﻓ<br />

. قﻮﺤﺴﻣ ﺔﺌﯿھ<br />

ﺎﮭﯿﻠﻋ فﺮﻌﺘﻟا و ﺔﯿﺋﺎﯿﻤﯿﻜﻟا ﮫﺗﺎﻧﻮﻜﻣ ﻞﺼﻓ<br />

تﺎﺒﻨﻠﻟ ﺔﯾﺮﮭﺠﻤﻟا و ﺔﯿﻧﺎﯿﻌﻟا ﺔﺳارﺪﻟا : ﻻوأ<br />

ﻲﺟﻮﻟﻮﯿﺒﻟا ﺮﺛﻷا ﻢﯿﯿﻘﺗ<br />

: ﻞﻤﺸﺗ<br />

ﺔ ﺳارﺪﻟا هﺬ ھ تﺮ ﮭﻇأ ﺪ ﻗ و ﺔ ﻔﻠﺘﺨﻤﻟا تﺎ ﺒﻨﻟا ءﺎﻀ ﻋﻷ ﺔ ﯾﺮﮭﺠﻤﻟا و ﺔ ﯿﻧﺎﯿﻌﻟا ﺔ ﺳارﺪﻟا ﻞﻤﺸ ﺗ و<br />

ﻲﻧﻮ<br />

ﺘﯾﺰﻟا ﺮﻀﺧﻷا ﺎﮭﻧﻮﻟ<br />

ﻲﻓ ﺔﻨﻛاد ﺔﻘﻨﻌﻣ قاروأ تاذ<br />

ﻊ ﺑرأ<br />

ﻞﻔﺳﻷا ﮫﻓﺮﻃ ﻦﻣ جﺮﺨﯾ<br />

. ءﺎﻀﯿﺒﻟا وأ ﺔﯾﺰﻣﺮﻘﻟا<br />

و ءاﺮﻤﺤﻟا ناﻮﻟﻷا<br />

. ﺲﻨﺠﻟا ةﺪﯿﺣو<br />

. 1<br />

. 2<br />

. 3<br />

: ﺔﯿﻟﺎﺘﻟا تاﺰﯿﻤﻤﻟا<br />

ﻦﻜﺴﻤﻟا ةﺪﯿﺣو ةﺮﻤﻌﻣ ةﺮﯿﺠﺷ تﺎﺒﻨﻟا<br />

ﺾﻌﺑ ﺮﮭﻈﺗ ﺪﻗ و<br />

ﻢﺠﺤﻟا ةﺮﯿﻐﺻ نﻮﻠﻟا ﺔﯾﺰﻣﺮﻗ وأ ءاﺮﻀﺧ ةﺮھﺰﻟا<br />

ﺔﯿﻟﻮﻃ تﺎﺟﺮﻌﺗ ﮫﻟ و ﺮﻤﺤﻣ ﻲﻨﺑ ﺢﻄﺳ وذ ﻲﺳأر موﺰﯾﺮﻟا<br />

. روﺬﺟ<br />

ﺪ ﺟﻮﯾ ﻻ و تﺎ ﻤﻠﺣ ﺎ ﮭﺑ ﺎ ﯾﻼﺨﻟا ﺾ ﻌﺑ و ﺎ ﯾﻼﺨﻟا ﺔ ﯾزاﻮﺘﻣ رﻮ ﻐﺛ تاذ ةﺮﻇﺎﻨﺘﻣ ﺮﯿﻏ ﺔﻗرﻮﻟا<br />

.<br />

. تاﺮﯿﻌﺷ ﺎﮭﯿﻠﻋ<br />

ﺔﻨﻨﺠﻠﻣ ﺮﯿﻏ فﺎﯿﻟأ ﮫﺑ ﻲﻤﯿﺸﻧاﺮﺑ ﻞﻜﯿﺴﯾﺮﺑ و ﺔﯿﻤﯿﺸﻧاﺮﺑ ةﺮﺸﻗ دﻮﺟﻮﺑ ﺰﯿﻤﺘﯾ ﺔﻗرﻮﻟا ﻖﻨﻋ<br />

ﻞ ﻣﺎﻌﻤﻟا<br />

و ( 3.8-3.0<br />

) ﺔﯿﺒﺴ ﻨﻟا ﺔ ﯾدﺎﻤﻌﻟا ﺔ ﻤﯿﻘﻟا ﻲ ھو ﺔ ﻗرﻮﻠﻟ ﺔ ﯾدﺪﻌﻟا ﻢﯿ ﻘﻟا ﻦﯿ ﯿﻌﺗ ﻢ ﺗ ﺪ ﻗ<br />

.( 4.86)<br />

تﺎﻘﯾﺮﻌﻟا ﺔﯾﺎﮭﻧ دﺪﻋ و ( 3.63)<br />

ﺔﯿﻗﺮﻌﻟا تاﺮﯾﺰﺠﻟا دﺪﻋ و ( 86-64)<br />

يﺮﻐﺜﻟا<br />

. ﺔﻨﻨﺠﻠﻣ ﺮﯿﻏ فﺎﯿﻟأ ﮫﺑ ﻞﻜﯿﺴﯾﺮﺒﻟا و ﺔﯿﻤﯿﺸﻧاﺮﺑ ةﺮﺸﻗ دﻮﺟﻮﺑ ﺰﯿﻤﺘﯾ قﺎﺴﻟا<br />

ﺔ ﻟوﺎﻄﺘﻣ ،ﺔﻌﻠﻀ ﻣ ﺎ ﯾﻼﺧ ﻦ ﻣ ﻂﯿ ﺨﻟا و ﻚ ﺘﻤﻟا ،ﻢ ﻠﻘﻟا ،ﺾﯿ ﺒﻤﻟا ،تﻼﺒﺴ ﻟا ةﺮﺸ ﺑ نﻮ ﻜﺘﺗ<br />

.<br />

تﺎﻤﻠﺣ ﺎﮭﺑ ﻢﺴﯿﻤﻟا ﺎﯾﻼﺧ . ﺔﻘﯿﻗر وأ ﺔﻜﯿﻤﺳ ﺔﻣدﺄﺑ ةﺎﻄﻐﻣ و<br />

ﺎﯾرﻮﺤﻣ<br />

. 1<br />

. 2<br />

. 3<br />

. 4<br />

. 5<br />

. 6<br />

. 7<br />

. 8


. ﺔﯿﺗﺎﺒﻧا بﻮﻘﺛ ثﻼﺛ ﺎﮭﺑ و نﻮﻠﻟا ءاﺮﻔﺻ<br />

- 2 -<br />

ﻲﺑﺮﻌﻟا ﺺﺨﻠﻤﻟا<br />

ﺔﯾوﺮﻛ حﺎﻘﻠﻟا بﻮﺒﺣ<br />

. ﺰﻛﺮﻤﻟا ﻲﻓ مﺰﺤﻟا ﻲﺋﺎﻨﺛ ﻲﻟوأ ﺐﺸﺧ دﻮﺟﻮﺑ ﺰﯿﻤﺘﯾ رﺬﺠﻟا.<br />

10<br />

. ﻞﻜﯿﺴﯾﺮﺒﻟا ﺔﻘﻄﻨﻣ ﻲﻓ ﺔﻨﻨﺠﻠﻤﻟا ﺔﯾﺮﺠﺤﻟا ﺎﯾﻼﺨﻟا ﻦﻣ تﺎﻋﻮﻤﺠﻣ ﮫﺑ موﺰﯾﺮﻟا.<br />

11<br />

. ءﺎﻨﺜﺘﺳا ﻼﺑ تﺎﺒﻨﻟا<br />

ءاﺰﺟأ ﻞﻛ ﻲﻓ ﺪﺟﻮﺗ ﺔﻌﻤﺠﺘﻤﻟا مﻮﯿﺴﻟﺎﻜﻟا تﻻﺎﺴﻛوا تارﻮﻠﻠﺑ<br />

ﻲ ﻠﻜﻟا دﺎ ﻣﺮﻟا ،(<br />

٪15<br />

تﺎﺒﻨﻠﻟ ﺔﯿﺋﺎﯿﻤﯿﻜﻟا ﺔﺳارﺪﻟا : ﺎﯿﻧﺎﺛ<br />

: تﺎﺒﻨﻠﻟ ﺔﯾرﻮﺘﺳﺪﻟا ﺖﺑاﻮﺜﻟا ﺪﯾﺪﺤﺗ<br />

) ﺔ ﺑﻮﻃﺮﻟا ﺔﺒﺴ ﻧ ﻞ ﺜﻣ تﺎ ﺒﻨﻠﻟ ﺔﯾرﻮﺘ ﺳﺪﻟا ﺖ ﺑاﻮﺜﻟا ﺾ ﻌﺑ ﺪ ﯾﺪﺤﺗ ﻢ ﺗ<br />

ﺎ ﻤﻨﯿﺑ تﺎ ﺒﻨﻟا ﻦ ﻣ ﺔ ﯿﺋاﻮﮭﻟا ءاﺰ ﺟﻸﻟ ( ٪ 1.1)<br />

ﺾﻣﺎﺤﻟا ﻲﻓ نﺎﺑوﺬﻟا ﻢﯾﺪﻋ دﺎﻣﺮﻟا و ( ٪8.5)<br />

و ( ٪ 6.81)<br />

ﻲ ﻠﻜ ﻟا دﺎ ﻣﺮﻟا ،(<br />

٪10)<br />

ﺔﺑﻮﻃﺮﻟا ﺔﺒﺴﻧ : ﻲﺗﻷﺎﻛ<br />

( ٪ 1.3)<br />

تﺎﺒﻨﻟا روﺬﺠﻟ ﺔﺒﺴﻨﻟﺎﺑ نﻮﻜﺗ<br />

ﺾﻣﺎﺤﻟا ﻲﻓ نﺎﺑوﺬﻟا ﻢﯾﺪﻋ دﺎﻣﺮﻟا<br />

: ﻲھ و ﺔﯿﻟﺎﺘﻟا ﺔﺒﻗﺎﻌﺘﻤﻟا تﺎﺼﻠﺨﺘﺴﻤﻟا ﺪﯾﺪﺤﺗ ﻢﺗ ﻚﻟﺬﻛ و<br />

لﻮ ﺤﻜﻟاو ( ٪0.07<br />

) مرﻮ ﻓورﻮﻠﻜﻟا ،(<br />

٪ 0.11)<br />

ﺮ ﯿﺜﯾﻻا ،(<br />

٪ 0.3)<br />

ﻲ ﻟوﺮﺘﺒﻟا ﺮ ﯿﺜﯾﻷا<br />

: ﻲﻟﺎﺘﻟﺎﻛ ﺔﺒﺴﻨﻟا نﻮﻜﺗ تﺎﺒﻨﻟا روﺬﺠﻟ ﺎﻤﻨﯿﺑ تﺎﺒﻨﻟا ﻦﻣ ﺔﯿﺋاﻮﮭﻟا ءاﺰﺟﻸﻟ ( ٪ 13.27)<br />

لﻮ ﺤﻜﻟا و ( ٪ 0.01)<br />

مرﻮ ﻓورﻮﻠﻜﻟا ،(<br />

٪ 0.02)<br />

ﺮ ﯿﺜﯾﻻا ،(<br />

٪ 0.18)<br />

ﻲ ﻟوﺮﺘﺒﻟا ﺮ ﯿﺜﯾﻻا<br />

داﻮ ﻤﻟا ،تاﺪ ﯿﻧﻮﻓﻼﻓوﺰﯾﻷا<br />

. ( ٪4.86)<br />

،تاﺪ ﯿﻧﻮﻓﻼﻔﻟا دﻮ ﺟو تﺎ ﺻﻼﺨﻟا هﺬﮭﻟ ﻲﻟوﻷا ﺺﺤﻔﻟا ﺖﺒﺛأ ﺪﻗ<br />

. ﺔﯿﺛﻼﺜﻟا تﺎﻨﯿﺑﺮﺘﻟا<br />

ﺐﻧﺎﺟ ﻰﻟإ تﻻوﺮﯿﺘﺳﻻا و ﺔﯿﻣﻼﮭﻟا<br />

داﻮﻤﻟا ،ﺔﻀﺑﺎﻘﻟا<br />

: ﺔﯿﻨھﺪﻟا ضﺎﻤﺣﻷا ﺔﺳارد<br />

،ﻚ<br />

ﻠﻠﯾﺮﺑﺎﻛ<br />

: ﺔ ﯿﻨھﺪﻟا ضﺎ ﻤﺣﻷا هﺬ ھ ﻰ ﻠﻋ فﺮ ﻌﺘﻟا ﻢ ﺗ ﻞﺋﺎﺴ ﻟا زﺎ ﻐﻟا ﺎﯿﻓاﺮﺟﻮﺗﺎﻣوﺮﻛ<br />

. 9<br />

. 12<br />

. أ<br />

. ب<br />

ﻖﯾﺮﻃ ﻦﻋ<br />

. ﻚﯿﻟﻮﻨﯿﻟ و ﻚﯿﻟوأ ،ﻚﯾرﺎﯿﺘﺳا<br />

،ﻚﯾﺮﺟرﺎﻣ ،ﻚﯿﻟﻮﯿﺘﻤﻟﺎﺑ ،ﻚﯿﺘﻤﻟﺎﺑ ،ﻚﯿﺘﺳﺮﯿﻣ<br />

،ﻚﯾرﻮﻟ ،ﻚﯾﺮﺑﺎﻛ<br />

: تﺎﺒﻛﺮﻤﻟا ﻞﺼﻓ . ج<br />

ماﺪﺨﺘ ﺳﺎﺑ ﺎ ﯿﻓاﺮﺟﻮﺗﺎﻣوﺮﻛ ﺎﮭﺼ ﺤﻓ و ﺔ ﻔﻠﺘﺨﻤﻟا تﺎ ﺒﻨﻟا تﺎ ﺻﻼﺨﻟ ﺔ ﯿﺋﺎﯿﻤﯿﻜﻟا ﺔ ﺳارﺪﻟا<br />

ﺖ ﻤﺗ<br />

تﺎ ﺒﻛﺮﻤﻟا ﻞﺼ ﻓ ﻢ ﺗ<br />

ﻚ ﻟﺬ ﻟ ﺔ ﺠﯿﺘﻧ و دﻮ ﻤﻌﻟا ﺎ ﯿﻓاﺮﺟﻮﺗﺎﻣوﺮﻛ و ﺔ ﻘﯿﻗﺮﻟا ﺔ ﻘﺒﻄﻟا ﺎ ﯿﻓاﺮﺟﻮﺗﺎﻣوﺮﻛ<br />

. ﻚﯾرﺎﯿﺘﺳﻻاو<br />

ﻚﯿﺘﻤﻟﺎﺒﻟا ﺾﻤﺣ ﻦﻣ ﻂﯿﻠﺧ<br />

.<br />

لوﺮﯿﺘﺳﻮﺘﯿﺳ ﺎﺘﯿﺒﻟا و لوﺮﯿﺘﺳ ﺎﻤﺠﯿﺘﺴﻟا<br />

ﻦﻣ ﻂﯿﻠﺧ<br />

: ﺔﯿﻟﺎﺘﻟا<br />

. 1<br />

. 2


ﻲﺑﺮﻌﻟا ﺺﺨﻠﻤﻟا<br />

- 3 -<br />

. ﻚﯿﻟوﻷا ﺾﻤﺣ<br />

ﮫ ﻠﺼ ﻓ ﻢ ﺘ ﯾ ةﺮ ﻣ لوﻷ ﺪ ﯾﺪﺟ ﺐ ﻛﺮﻣ)<br />

ﺮ ﯿﺜﯾا ( ﻞ ﯿﻨﯿﻓ ﻲﺴ ﻛورﺪﯿھ ياﺮ ﺗ -5<br />

،4<br />

،3)<br />

ياد<br />

ﻦ ﻣ ﮫﻠﺼ ﻓ ﻢﺘ ﯾ ةﺮ ﻣ لوﻷ ﺪ ﯾﺪﺟ ﺐ ﻛﺮﻣ)<br />

نﻮ ﻓﻼﻓوﺰﯾا ﻲﺴ ﻛورﺪﯿھاﺮﺘﯿﺗ<br />

. ﮫﯾإ<br />

.( ﺔﻌﯿﺒﻄﻟا ﻦﻣ<br />

'4<br />

, 8 , 6,<br />

5<br />

. ( ﺔﻌﯿﺒﻄﻟا<br />

ﺪﯿﺳﺎﺘﺳﺎﺑور<br />

ﻢﺘ ﯾ ةﺮ ﻣ لوﻷ ﺪ ﯾﺪﺟ ﺐ ﻛﺮﻣ)<br />

ﻦﯿﺗﻮ<br />

ﯿﺑرا ( ﻞﯾﻮﻣﺎﻨﯿ ﺳ ﻲﺴ ﻛورﺪﯿھ ياد " 4 , " 3)<br />

-'6<br />

. ( ﺔﻌﯿﺒﻄﻟا<br />

ﻦﻣ ﮫﻠﺼﻓ<br />

.( ﺲﻨﺠﻟا اﺬھ ﻦﻣ ﺐﻛﺮﻤﻟا اﺬھ ﻞﺼﻓ ﻢﺘﯾ ةﺮﻣ لوﻷ)<br />

ﻦﯿﺘﯾﺎﻛوﺪﯿﺳ ﻲﺴﻛﻮﺜﯿﻤﯾد<br />

.( ﺲﻨﺠﻟا اﺬھ ﻦﻣ<br />

ﺐﻛﺮﻤﻟا اﺬھ ﻞﺼﻓ ﻢﺘﯾ ةﺮﻣ لوﻷ)<br />

ﺪﯾزﻮﻛﻮﻠﺟ -وأ<br />

-7-ﻦﯿﺘﺳراﻮﻛ<br />

ﺔ ﺻﻼﺧ و ﺔ ﯿﺣﺎﻧ ﻦ ﻣ<br />

ﮫﺗﺎﯾﻮﺘﺤﻣ و تﺎﺒﻨﻠﻟ يﻮﯿﺤﻟا<br />

ﺮﯿﺛﺄﺘﻟا : ﺎﺜﻟﺎﺛ<br />

تﺎ ﺒﻨﻠﻟ<br />

ﺔ ﯿﺋاﻮﮭﻟا ءاﺰ ﺟﻷا ﻦ ﻣ ﻞ ﻜﻟ<br />

ﮫ ﺑﺎﺸ ﻣ ظﻮﺤﻠﻣ ﺮﯿﺛﺄﺗ ﺎﮭﻟ نأ ﺚﯿﺣ يﺪﺒﻜﻟا ﻒﯿﻠﺘﻠﻟ ﻂ ﺒﺜﻣ ﺮﯿﺛﺄﺗ<br />

: ﻲﺟﻮﻟﻮﻛﺎﻣرﺎﻔﻟا ﺮﯿﺛﺄﺘﻟا<br />

ﺔ ﯿﻟﻮﺤﻜﻟا ﺔ ﺻﻼﺨﻟا ﺮ ﮭﻈﺗ<br />

ى ﺮﺧ أ ﺔﯿﺣﺎﻧ ﻦﻣ روﺬﺠﻟا<br />

ﺪ ﺒﻜ ﻟا تﺎ ﻤﯾﺰﻧإ ﺾ ﻔﺧ ﻰ ﻠﻋ ﺔ ﺳارﺪﻟا هﺬھ ﻲﻓ ﺔﻧرﺎﻘﻤﻟا ﻞﺤﻣ ﻦﯾرﺎﻤﻠﯿﺴﻟا ﺐﻛﺮﻣ ﺮﯿﺛﺄﺘﻟ<br />

تﺎ ﺻﻼﺨﻟا هﺬھ ﺢﺷﺮﯾ ﺎﻤﻣ ﺪﯾارﻮﻠﻛاﺮﺘﺗ نﻮﺑﺮﻜﻟﺎﺑ ﻦﻘﺤﻟﺎﺑ ˝ﺎﯿﺒﯾﺮﺠﺗ<br />

ﺎﮭﺘﺒﺴﻧ ﺖﻌﻓر<br />

. ﻦﯾرﺎﻤﻠﯿﺴﻟا<br />

ﺐﻛﺮﻣ<br />

ﺮﯿﺛﺄﺘﻟ يوﺎﺴﻣ ﮫﺒﺷ يﺪﺒﻜﻟا ﻒﯿﻠﺘﻠﻟ<br />

ﻲﺘﻟا<br />

جﻼﻌﻛ<br />

و روﺬ ﺠﻟا ﺔ ﺻﻼﺧ و تﺎﺒﻨﻠﻟ ﺔﯿﺋاﻮﮭﻟا ءاﺰﺟﻷا ﻦﻣ ﻞﻜﻟ ﺔﯿﻟﻮﺤﻜﻟا ﺔﺻﻼﺨﻟا عﺎﻀﺧإ ﻢﺗ<br />

ﻂﺒ ﺜﻤﻟا<br />

ﺎ ھﺮﯿﺛﺄﺗ ءﻼﺠﺘ ﺳﻻ ﺔ ﯿﺟﻮﻟﻮﺛﺎﺒﻟا برﺎ ﺠﺘﻟا ﺾﻌﺒ ﻟ<br />

ﺎ ﯾﻼﺨﻟا<br />

ﻰ ﻠﻋ ﻂﺒ ﺜﻣ و لﺎ ﻌﻓ ﺮﯿﺛﺄ ﺗ ﮫ ﻟ ﮫ ﯾإ ﺪﯿ ﺳﺎﺘﺳﺎﺑور<br />

ﮫ ﯾإ<br />

ﺪﯿ ﺳﺎﺘﺳﺎﺑور ﺐ ﻛﺮﻣ<br />

ﺐ ﻛﺮﻣ نأ ﺪ ﺟو ﺚﯿﺣ ماروﻸﻟ<br />

. ﺪﺒﻜﻟا ﻲﻓ ﺔﯿﻧﺎﻃﺮﺴﻟا<br />

نأ ﺔ ﯿﺟﻮﻟﻮﯿﺑوﺮﻜﯿﻤﻟا برﺎ ﺠﺘﻟا ﺾ ﻌﺑ لﻼ ﺧ ﻦﻣ ﺢﻀﺗا : ﻲﺟﻮﻟﻮﯿﺑوﺮﻜﯿﻤﻟا<br />

ﺮﯿﺛﺄﺘﻟا<br />

ماﺮ ﺠﻟا ﺔ ﺒﺟﻮﻣ ﺎ ﯾﺮﯿﺘﻜﺒﻟا عاﻮ ﻧأ ﺾ ﻌﺑ ﻰ ﻠﻋ ﻂﺒ ﺜﻣ ﺮﯿﺛﺄ ﺗ ﺔ ﻔﻠﺘﺨﻤﻟا تﺎ ﺒﻨﻟا تﺎ ﺻﻼﺨﻟ<br />

اﺪ ﯾﺪﻧﺎﻛ)<br />

تﺎ ﯾﺮﻄﻔﻟا و ( يﻻﻮ ﻛ ﺎﯿ ﺷﺮﯿﺷا)<br />

م اﺮ ﺠﻟا ﺔﺒﻟﺎ ﺳ ، ( ﺲ ﯾروأ ﺲﻛﻮﻛﻮﻠﯿﻓﺎﺘ ﺳ)<br />

.<br />

ﺔﺳارﺪﻟا<br />

ﻞﺤﻣ ( ﺲﻧﺎﻜﯿﺒﻟأ<br />

. 3<br />

. 4<br />

. 5<br />

. 6<br />

. 7<br />

. 8<br />

. 9<br />

. 1<br />

•<br />

•<br />

. 2


2009


2009


ﺝﺮﺳ ﻰﻔﻄﺼﻣ ﻪـﻃ /. ﺩ.<br />

ﺃ<br />

ﻖﻳﺯﺎﻗﺰﻟﺍ ﺔﻌﻣﺎﺟ -ﺔﻟﺪﻴﺼﻟﺍ<br />

ﺔﻴﻠﻛ -ﲑﻗﺎﻘﻌﻟﺍ<br />

ﺫﺎﺘﺳﺃ<br />

ﲏﻐﻟﺍ ﺪﺒﻋ ﻲﻠﻋ ﺪﻴﺴﻟﺍ ﻑﺎﻔﻋ /. ﺩ.<br />

ﺃ<br />

. ﻖﻳﺯﺎﻗﺰﻟﺍ ﺔﻌﻣﺎﺟ -ﺔﻟﺪﻴﺼﻟﺍ<br />

ﺔﻴﻠﻛ -ﲑﻗﺎﻘﻌﻟﺍ<br />

ﺫﺎﺘﺳﺃ<br />

ﺪﻳﺍﺯ ﻱﺩﺎﳍ<br />

ﺍﺪﺒﻋ ﺔﻳﻭﺍﺭ / ﻡ.<br />

ﺃ<br />

. ﻖﻳﺯﺎﻗﺰﻟﺍ ﺔﻌﻣﺎﺟ -ﺔﻟﺪﻴﺼﻟﺍ<br />

ﺔﻴﻠﻛ -ﲑﻗﺎﻘﻌﻟﺍ<br />

ﺪﻋﺎﺴﻣ ﺫﺎﺘﺳﺃ<br />

ﲑﻗﺎﻘﻌﻟﺍ ﻢﺴﻗ<br />

ﺔﻟﺪﻴﺼﻟﺍ ﺔﻴﻠﻛ<br />

ﻖﻳﺯﺎﻗﺰﻟﺍ ﺔﻌﻣﺎﺟ<br />

2009


1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7<br />

<br />

11<br />

<br />

2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!