06.04.2013 Views

Hermite Interpolating Polynomials and Gauss-Legendre Quadrature

Hermite Interpolating Polynomials and Gauss-Legendre Quadrature

Hermite Interpolating Polynomials and Gauss-Legendre Quadrature

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Integrating L(x) over the interval a ≤ x ≤ b yields the trapazoidal rule<br />

b<br />

a<br />

f(x) dx ≈<br />

b<br />

b<br />

f(a) (x − b) dx/(a − b) + f(b) (x − a) dx/(b − a)<br />

a<br />

a<br />

= f(a) ·<br />

b − a<br />

2<br />

+ f(b) · b − a<br />

2 ,<br />

Here Q = 2, the quadrature points are x1 = a, x2 = b, <strong>and</strong> the quadrature weights are<br />

w1 = w2 = b−a<br />

2 .<br />

Error Analysis for Lagrange <strong>Quadrature</strong>.<br />

If L(x) is the polynomial of degree Q − 1 which interpolates f(x) at {xi} Q<br />

i=1 <strong>and</strong> if<br />

f ∈ C Q [a, b], then it can be shown that the pointwise approximation error is given by<br />

where<br />

f(x) − L(x) = 1 d<br />

Q!<br />

Qf dxQ (ξx) π(x), for some ξx ∈ (a, b), (7)<br />

Q<br />

π(x) ≡ (x − xk) = (x − x1)(x − x2) · · · (x − xQ). (8)<br />

k=1<br />

By integrating (7) we obtain the quadrature error bounds<br />

<br />

<br />

<br />

b<br />

Q<br />

<br />

<br />

<br />

f(x)dx − f(xq)wq<br />

<br />

<br />

a<br />

q=0 <br />

=<br />

<br />

1 <br />

b<br />

d<br />

<br />

Q! a<br />

Qf dxQ (ξx)<br />

≤<br />

<br />

<br />

<br />

π(x) dx<br />

<br />

1<br />

Q! max<br />

<br />

<br />

d<br />

<br />

a≤ξ≤b <br />

Q ≤<br />

<br />

f b<br />

<br />

(ξ) |π(x)| dx<br />

dxQ a<br />

(9)<br />

1<br />

Q! max<br />

<br />

<br />

d<br />

<br />

a≤ξ≤b <br />

Q <br />

f <br />

<br />

(ξ) <br />

dxQ max<br />

a≤x≤b |π(x)|<br />

b<br />

dx<br />

a<br />

≤ const (b − a) Q+1 . (10)<br />

Defining the interval length h = b − a, we obtain O(h Q+1 ) accuracy. The quadrature rule is<br />

exact (i.e., there is no quadrature error) for all polynomials of degree ≤ Q − 1 because the<br />

Qth derivative of these polynomials vanishes.<br />

Continuation of Example 1: For the trapazoidal rule, Q = 2, so the method is exact for<br />

polynomials of degree ≤ 1 <strong>and</strong> the accuracy is O(h 3 ) provided the function being integrated<br />

is twice continuously differentiable.<br />

Exercise 1. Derive Simpson’s rule, which is based on interpolation at points a, (a + b)/2,<br />

<strong>and</strong> b, <strong>and</strong> show that the accuracy is O(h 4 ), where h = b − a.<br />

<strong>Hermite</strong> Interpolation.<br />

Given a differentiable function f defined on discrete points {x1, . . . , xQ}, the <strong>Hermite</strong><br />

interpolating polynomial is the unique polynomial H of degree 2Q − 1 that interpolates f<br />

<strong>and</strong> its derivative,<br />

H(xi) = f(xi),<br />

dH<br />

dx (xi) = df<br />

dx (xi), i = 1, . . . , Q. (11)<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!