14.04.2013 Views

The Birth of Insurance Contracts - The Ataturk Institute for Modern ...

The Birth of Insurance Contracts - The Ataturk Institute for Modern ...

The Birth of Insurance Contracts - The Ataturk Institute for Modern ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Yet, the model ignores other important <strong>for</strong>ces shaping contracts. It is there<strong>for</strong>e complementary<br />

to other capital-structure theories based on agency costs, multiple margins <strong>for</strong> moral hazard,<br />

adverse selection, signaling, transactions costs, and/or incomplete contracting.<br />

A Pro<strong>of</strong> <strong>of</strong> proposition 1<br />

Let parameter values ˆ λ = ( ˆ θ, ˆ k1, ˆ ˆp¯x<br />

k, ˆy, ˆpy, ˆx, ˆ¯x, ˆpx+ˆp¯x ) with ˆ θ = 0 and ˆ k1 = 0 be such that the sea<br />

loan contract does not sustain program 2’s optimal allocation <strong>of</strong> consumption, (ĉ2(y), ĉ2(x)). <strong>The</strong>n,<br />

ĉ2(y) < ˆw(y), as draw in figure 1<strong>for</strong> CC ′ , and necessary and sufficient Kuhn-Tucker conditions<br />

lead to<br />

∂£(η,µy,µx,c2(y),c2(x);λ)<br />

∂η = − U 2 + E [U2[c2(s)]] = 0<br />

∂£(η,µy,µx,c2(y),c2(x);λ)<br />

∂c2(y) = −pyU ′ 1[w(y) − c2(y)] + η pyU ′ 2[c2(y)] − µy = 0<br />

∂£(η,µy,µx,c2(y),c2(x);λ)<br />

∂c2(x) = − pxU ′ 1[w(x) − c2(x)] + p¯xU ′ 1[w(¯x) − c2(x)] <br />

+η(1 − py)U ′ 2[c2(x)] − µx = 0<br />

evaluated at ˆη, ˆµ(y) = ˆµ(x) = 0, ĉ2(y), ĉ2(x), and ˆ λ, where η, µy, and µx are the Lagrangian<br />

multipliers associated with restrictions (9) and (10), respectively, and £(.) is the Lagrange function<br />

associated with Program 2. 17<br />

Let λ varies in an open neighborhood <strong>of</strong> ˆ λ such that the pattern <strong>of</strong> binding and slack constraints<br />

<strong>of</strong> program 2 does not change. Totally differentiating (12) and applying the Implicit Function<br />

<strong>The</strong>orem, one can calculate the comparative statics effects <strong>of</strong> each parameter value λi on c2(y)<br />

at a solution point (ĉ2(y), ĉ2(x)) and parameter values ˆ λ with ˆη > 0, ˆµ(y) = ˆµ(x) = 0, and<br />

dµy = dµx = 0:<br />

where<br />

<br />

<br />

ˆ <br />

<br />

<br />

<br />

<br />

Hλi = <br />

<br />

<br />

<br />

<br />

∂2 £(η,µy,µx,c2(y),c2(x);λ)<br />

(∂η)2<br />

∂2 £(η,µy,µx,c2(y),c2(x);λ)<br />

∂c2(y)∂η<br />

∂2 £(η,µy,µx,c2(y),c2(x);λ)<br />

∂c2(x)∂η<br />

<br />

<br />

dc2(y) <br />

= −<br />

dλi<br />

ˆ <br />

<br />

Hλi <br />

<br />

<br />

ˆ ,<br />

<br />

H<br />

∂2 £(η,µy,µx,c2(y),c2(x);λ)<br />

∂η∂λi<br />

∂2 £(η,µy,µx,c2(y),c2(x);λ)<br />

∂c2(y)∂λi<br />

∂2 £(η,µy,µx,c2(y),c2(x);λ)<br />

∂c2(x)∂λi<br />

∂2 £(η,µy,µx,c2(y),c2(x);λ)<br />

∂η∂c2(x)<br />

∂2 £(η,µy,µx,c2(y),c2(x);λ)<br />

∂c2(y)∂c2(x)<br />

∂2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

£(η,µy,µx,c2(y),c2(x);λ) <br />

<br />

(∂c2(x))2<br />

and the (binding-constraints) border hessian ˆ H evaluated at ˆ λ and (ĉ2(y), ĉ2(x)) is negative<br />

<br />

<br />

definite: ˆ <br />

<br />

H<br />

> 0.<br />

17 This assumes that <strong>for</strong> parameter values ˆ λ the solution <strong>of</strong> program 2 is such that ĉ2(x) < ˆw(x). <strong>The</strong> case <strong>for</strong><br />

which ĉ2(x) = ˆw(x) can be easily derived by adding restriction ∂£(η,µy,µx,c2(y),c2(x);λ)<br />

∂µx<br />

24<br />

= 0 to (12).<br />

(12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!