24.04.2013 Views

impact of farmers' organic farming practices on soil properties in ...

impact of farmers' organic farming practices on soil properties in ...

impact of farmers' organic farming practices on soil properties in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

In kharif jowar based cropp<strong>in</strong>g system (Table 19), the average <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>soil</strong>s <strong>in</strong>dicated<br />

an <strong>in</strong>crease <strong>in</strong> ir<strong>on</strong> c<strong>on</strong>tent due to <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> from 4.42 to 5.93 ppm and 2.81 to 4.17<br />

ppm <strong>in</strong> surface and subsurface <strong>soil</strong>s, respectively, account<strong>in</strong>g for an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> 34.20 per<br />

cent <strong>in</strong> surface <strong>soil</strong> and 48.40 per cent <strong>in</strong> subsurface <strong>soil</strong>s. The highest <strong>in</strong>crease <strong>in</strong> ir<strong>on</strong><br />

c<strong>on</strong>tent was observed <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> K 1 farmer (43.75%) than K 2 farmer (38.00%).<br />

In rabi jowar based cropp<strong>in</strong>g system (Table 19) also there was an <strong>in</strong>crease <strong>in</strong><br />

average ir<strong>on</strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong>s from 4.38 ppm <strong>in</strong> c<strong>on</strong>venti<strong>on</strong>al farm to 5.91 ppm <strong>in</strong> <str<strong>on</strong>g>organic</str<strong>on</strong>g> farm<br />

<strong>in</strong> the surface <strong>soil</strong>s and from 3.19 to 4.57 ppm <strong>in</strong> the subsurface <strong>soil</strong>. Am<strong>on</strong>g three <str<strong>on</strong>g>organic</str<strong>on</strong>g><br />

farms, the highest <strong>in</strong>crease <strong>in</strong> ir<strong>on</strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g> farm, over c<strong>on</strong>venti<strong>on</strong>al farms was<br />

observed <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> R1 farmer (44.05%) and lowest <strong>in</strong>crease was <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> R3 farmer<br />

(35.90%).<br />

All the four <strong>soil</strong>s under sugarcane based cropp<strong>in</strong>g system (Table 20) showed an<br />

<strong>in</strong>crease <strong>in</strong> ir<strong>on</strong> c<strong>on</strong>tent due to <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> practice. The DTPA-Fe c<strong>on</strong>tent <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>organic</str<strong>on</strong>g> farms varied narrowly (5.56 to 5.89 ppm). The overall average <strong>in</strong>crease <strong>in</strong> ir<strong>on</strong><br />

c<strong>on</strong>tent due to <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> over c<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> was 35.50 per cent and 39.94 per<br />

cent <strong>in</strong> surface and subsurface <strong>soil</strong>s, respectively. The highest <strong>in</strong>crease <strong>in</strong> ir<strong>on</strong> c<strong>on</strong>tents was<br />

noticed <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S 3 farmer (41.30%) and lowest was <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S 1 farmer (34.20%),<br />

The ir<strong>on</strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> three <strong>soil</strong>s under v<strong>in</strong>eyards (Table 21), <strong>in</strong>creased due to <str<strong>on</strong>g>organic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> to the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.14 and 4.96 ppm <strong>in</strong> surface and subsurface <strong>soil</strong>s, respectively from<br />

4.72 and 3.65 ppm <strong>in</strong> c<strong>on</strong>venti<strong>on</strong>al farms. The average <strong>in</strong>crease <strong>in</strong> ir<strong>on</strong> <strong>in</strong> surface <strong>soil</strong> was<br />

30.08 per cent and it was 35.89 per cent <strong>in</strong> subsurface <strong>soil</strong>. The <strong>soil</strong> from V 3 farmer recorded<br />

highest <strong>in</strong>crease <strong>in</strong> ir<strong>on</strong> c<strong>on</strong>tent (36.03%), while the lowest <strong>in</strong>crease was <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> V2 farmer<br />

(27.68%).<br />

4.4.5.3 Manganese<br />

The results <strong>on</strong> DTPA-extractable manganese (DTPA-Mn) c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong>s are<br />

presented <strong>in</strong> Table 22, 23, 24 and 25. All the <strong>soil</strong>s, irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> and<br />

cropp<strong>in</strong>g system, c<strong>on</strong>ta<strong>in</strong>ed DTPA-Mn c<strong>on</strong>tent above the critical c<strong>on</strong>centrati<strong>on</strong>.<br />

In cott<strong>on</strong> based cropp<strong>in</strong>g system (Table 22), the mean DTPA-Mn c<strong>on</strong>tent <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>organic</str<strong>on</strong>g> farms ranged from 7.25 ppm (C 4) to 8.25 ppm (C 1) as aga<strong>in</strong>st 5.50 to 6.37 ppm <strong>in</strong><br />

c<strong>on</strong>venti<strong>on</strong>al farms. On an average, manganese c<strong>on</strong>tent <strong>in</strong>creased from 6.80 to 8.71 ppm and<br />

5.06 to 6.63 ppm <strong>in</strong> surface and subsurface <strong>soil</strong>s, respectively under the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g>. Am<strong>on</strong>g the <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> four <str<strong>on</strong>g>organic</str<strong>on</strong>g> farms, the highest <strong>in</strong>crease <strong>in</strong> manganese c<strong>on</strong>tent<br />

was observed <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> C 4 farmer (31.20%) followed by C 3 farmer (30.35%) and lowest<br />

<strong>in</strong>crease was observed <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> C1 farmer (27.50%).<br />

In kharif jowar based cropp<strong>in</strong>g system (Table 23), the average <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>soil</strong>s <strong>in</strong>dicated<br />

an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese from 7.83 ppm <strong>in</strong> c<strong>on</strong>venti<strong>on</strong>al farm to 9.76 ppm <strong>in</strong> <str<strong>on</strong>g>organic</str<strong>on</strong>g> farm <strong>in</strong><br />

surface <strong>soil</strong> and from 5.85 to 7.72 ppm <strong>in</strong> subsurface <strong>soil</strong>. The overall <strong>in</strong>crease <strong>in</strong> available<br />

manganese due to <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> was 27.77 per cent. The highest <strong>in</strong>crease was observed <strong>in</strong><br />

<strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> K1 farmer (30.90%) than K2 farmer (24.80%).<br />

The <strong>soil</strong>s under rabi jowar based cropp<strong>in</strong>g system (Table 23) also showed an<br />

<strong>in</strong>crease <strong>in</strong> available manganese due to <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> (7.77 to 9.50 ppm and 6.16 to 7.76<br />

ppm <strong>in</strong> surface and surface <strong>soil</strong>s, respectively). Am<strong>on</strong>g the three <strong>soil</strong>s, the highest <strong>in</strong>crease <strong>in</strong><br />

available manganese was observed <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> R2 farmer (29.50%) and lowest was <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R1 farmer (20.60%).<br />

The average <strong>in</strong>crease <strong>in</strong> available manganese c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong> due to <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g><br />

<strong>in</strong> sugarcane based cropp<strong>in</strong>g system (Table 24) was 23.04 (8.47 to 10.36 ppm) and 29.61<br />

per cent (6.28 to 8.14 ppm) <strong>in</strong> surface and subsurface <strong>soil</strong>s, respectively. The Mn c<strong>on</strong>tent<br />

<strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S3 farmer accounted for highest <strong>in</strong>crease (32.45%), while <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S1 farmer<br />

accounted for lowest <strong>in</strong>crease (20.90%).<br />

In v<strong>in</strong>e yard system (Table 25), the average <str<strong>on</strong>g>of</str<strong>on</strong>g> three <strong>soil</strong>s <strong>in</strong>dicated that available<br />

manganese c<strong>on</strong>tent <strong>in</strong>creased due to <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> from 8.45 to 10.51 ppm and 6.31 to<br />

7.73 ppm <strong>in</strong> surface and subsurface <strong>soil</strong>s, respectively. The highest and lowest <strong>in</strong>crease <strong>in</strong><br />

manganese c<strong>on</strong>tent due to <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>farm<strong>in</strong>g</str<strong>on</strong>g> were recorded <strong>in</strong> <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> V 3 farmer (25.88%) and<br />

V2 farmer (20.32%), respectively.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!