07.05.2013 Views

Métodos miméticos de pasos fraccionarios - E-Archivo - Universidad ...

Métodos miméticos de pasos fraccionarios - E-Archivo - Universidad ...

Métodos miméticos de pasos fraccionarios - E-Archivo - Universidad ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

§2.4 time integration: a linearly implicit fsrkm+1 method 23<br />

S 1,−1<br />

i+1/2,j+1/2<br />

S 1,0<br />

i+1/2,j+1/2<br />

S 1,1<br />

i+1/2,j+1/2<br />

KXX<br />

= −<br />

4(hX )<br />

Y<br />

i+1,j KXY i+1,j KY i+1,j<br />

+ − 2 Y<br />

2h X h<br />

4(hY ,<br />

) 2<br />

i+1,j + KXX i+1,j+1<br />

= −KXX<br />

4(hX ) 2 + KY Y<br />

Y<br />

i+1,j + KY i+1,j+1<br />

4(hY ) 2<br />

= −KXX<br />

4(hX )<br />

Y<br />

i+1,j+1 KXY i+1,j+1 KY i+1,j+1<br />

− − 2 Y<br />

2h X h<br />

4(hY .<br />

) 2<br />

Note that the central element is obtained as:<br />

S 0,0<br />

(<br />

i+1/2,j+1/2 = − S −1,−1<br />

)<br />

i+1/2,j+1/2 + S−1,1<br />

i+1/2,j+1/2 + S1,−1<br />

i+1/2,j+1/2 + S1,1<br />

i+1/2,j+1/2<br />

and it holds that:<br />

S −1,0<br />

i+1/2,j+1/2 + S0,−1<br />

i+1/2,j+1/2 + S0,1<br />

i+1/2,j+1/2 + S1,0<br />

i+1/2,j+1/2 = 0, (2.35)<br />

so that the sum of all of the elements of the stencil matrix is equal to zero.<br />

To conclu<strong>de</strong>, it is easy to check that the preceding elements fulfill the following<br />

conditions:<br />

S −1,−1<br />

i+1/2,j+1/2 = S1,1<br />

i−1/2,j−1/2 ,<br />

S −1,0<br />

i+1/2,j+1/2 = S1,0<br />

i−1/2,j+1/2 ,<br />

S −1,1<br />

i+1/2,j+1/2 = S1,−1<br />

i−1/2,j+3/2 ,<br />

S 0,−1<br />

i+1/2,j+1/2 = S0,1<br />

i+1/2,j−1/2 ,<br />

thus ensuring the symmetry of the diffusion matrix A characterized by (2.33)<br />

(cf. Das et al. (1994)).<br />

2.4. Time integration: a linearly implicit FSRKm+1 method<br />

Once we have <strong>de</strong>rived the MFD semidiscrete scheme (2.28a), endowed with<br />

the initial data (2.28b), we are in condition to introduce a suitable time integrator<br />

for the approximation of the semidiscrete solution. In this section, we<br />

initially <strong>de</strong>fine an appropriate operator splitting belonging to the class of domain<br />

<strong>de</strong>composition methods. Then, we combine it with a linearly implicit fractional<br />

step method in or<strong>de</strong>r to reduce the nonlinear system of ODEs to a set of uncoupled<br />

linear systems per internal stage.<br />

2.4.1. Domain <strong>de</strong>composition operator splitting. Let us first introduce the<br />

basic tools required to <strong>de</strong>fine a suitable domain <strong>de</strong>composition splitting for problem<br />

(2.28). In particular, the spatial domain Ω is <strong>de</strong>composed into a certain<br />

number of overlapping subdomains and a partition of unity is subsequently <strong>de</strong>fined<br />

over Ω. Based on this partition, the discrete diffusion operator A h ≡ A<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!