24.06.2013 Views

For printing - MSP

For printing - MSP

For printing - MSP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EIGENVALUES ASYMPTOTICS 13<br />

Here Res(s0) denotes the residue of ZA(s) at s0 and C (m,q) is a constant.<br />

Then we have<br />

d1 = 2 1−d/2 1 Γ(m/(2q))Γ((pm − qn)/(2q))<br />

,<br />

q(1 + q) Γ(m/2)Γ(pm/(2q))<br />

1−d/2 1 Γ(m/(2q))<br />

d2 = 2<br />

pq Γ(m/2)Γ(n/2) ,<br />

d3 = 2 1−d/2<br />

<br />

1 Γ(m/(2q))ψ((m + mq + nq)/(2q))<br />

Γ(n/2)<br />

pqΓ(m/2)<br />

(1 + q)Γ((m + mq)/(2q))<br />

+ C (m,q)<br />

−<br />

p<br />

γΓ(m/(2q))<br />

q(1 + q)Γ(m/2)<br />

+ Γ(m/(2q))<br />

<br />

m + mq<br />

ψ<br />

−<br />

pqΓ(m/2) 2q<br />

p<br />

1 + q ψ<br />

<br />

n<br />

<br />

m + mq + nq<br />

− ψ<br />

2<br />

2q<br />

<br />

−n/2 (1 + q)Γ((m + mq)/(2q))Γ(n(1 + p + q)/(2p)) n(1 + q)<br />

d4 = 2 ZA<br />

pΓ(n/2)Γ((m + mq + nq)/(2q)<br />

2p<br />

where ψ(z) = Γ ′ (z)/Γ(z) is the digamma function and γ is the Euler constant.<br />

In the particular case where q = m = 1, we have s0 = 1, Res(s0) = 2 −1/2<br />

and C (1,1) = 2 −1/2 (γ + log 2). Moreover, for Res > 1, we see that ZA(s) =<br />

(2 s/2 − 2 −s/2 )R(s) where R(s) is the Riemann zeta function. Thus we have<br />

−(1+n)/2 Γ((p − n)/2)<br />

d1 = 2 ,<br />

Γ(p/2)<br />

d2 = 2 (1−n)/2 1<br />

pΓ(n/2) ,<br />

d3 = 2 (1−n)/2<br />

<br />

1 2 − p + 2<br />

Γ(n/2)<br />

3/2<br />

γ −<br />

2p<br />

p<br />

2 ψ<br />

<br />

n<br />

<br />

+<br />

2<br />

21/2<br />

<br />

log 2 ,<br />

p<br />

1−n/2 Γ(n(2 + p)/(2p))<br />

d4 = 2<br />

pΓ(n/2)Γ(1 + n/2) (2n/(2p) − 2 −n/(2p) <br />

n<br />

)R .<br />

p<br />

<strong>For</strong> a more precise argument, see [3].<br />

References<br />

[1] J. Aramaki, On an extension of the Ikehara Tauberian theorem, Pacific J. Math.,<br />

133(1) (1988), 13-30.<br />

[2] , Complex powers of vector valued operators and their applications to asymptotic<br />

behavior of eigenvalues, J. Funct. Anal., 87(2) (1989), 294-320.<br />

[3] , An extension of the Ikehara Tauberian theorem and its application, Acta<br />

Math. Hungarica, 71(4) (1996), 297-326.<br />

[4] K. Itô and H.P. Mckean, Jr., Diffusion Processes and Their Sample Paths, Springer,<br />

Berlin, Heidelberg, New York, 1974.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!