24.06.2013 Views

For printing - MSP

For printing - MSP

For printing - MSP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Thus, by the Itô formula, we have<br />

F t (z) =<br />

d<br />

1<br />

t<br />

−t<br />

EIGENVALUES ASYMPTOTICS 7<br />

s<br />

dw<br />

i,j=1<br />

0<br />

i s<br />

0<br />

d<br />

1<br />

dw<br />

i,j=1<br />

0<br />

i s<br />

s<br />

0<br />

d<br />

1<br />

dw<br />

i,j=1<br />

0<br />

i s<br />

s<br />

0<br />

1 s<br />

+ 1<br />

2 t3/2<br />

−t<br />

+t<br />

d<br />

i,j=1<br />

0<br />

1<br />

d<br />

i,j=1<br />

− 1<br />

2 t3/2<br />

+ 1<br />

2 t<br />

d<br />

i=1<br />

0<br />

d<br />

i,j=1<br />

1<br />

0<br />

Z i s<br />

1 − s ds<br />

Z i s<br />

1 − s ds<br />

1<br />

0<br />

∂jai(z + √ tZu)dw j u<br />

∂jai(z + √ tZu) Zj u<br />

1 − u du<br />

0<br />

s<br />

0<br />

Z i s<br />

1 − s ds<br />

∂ 2 j ai(z + √ tZu)du<br />

∂jai(z + √ tZu)dw j u<br />

∂jai(z + √ tZu) Zj u<br />

1 − u du<br />

s<br />

∂iai(z + √ tZu)ds.<br />

0<br />

∂ 2 j ai(z + √ tZu)du<br />

Since Z i s is the Gaussian random variable of mean 0 and variance s(1 − s),<br />

we have<br />

E[|Z i s| 2m ] = (2m − 1)!!(s(1 − s)) m for m = 1, 2, . . . .<br />

Using this equality, the Hölder inequality and (A.2), we can prove the lemma.<br />

<br />

Lemma 3.3. <strong>For</strong> every x ∈ R n , put A |x| = − 1<br />

2 ∆y + c|x| 2p |y| 2q on L 2 (R m )<br />

where c is a positive constant and let e −tA |x|(y, y ′ ) be the kernel of e −tA |x|<br />

and J(t; |x|, y) = e −tA |x|(y, y). Then, we have following:<br />

(i) There exist constants Cj (j = 1, 2, 3) such that<br />

(3.5)<br />

(ii) <strong>For</strong> every λ > 0,<br />

(3.6)<br />

|J(t; 1, y)| ≤ C1t −m/2 −C2t|y| 2q<br />

e + e −C3|y| 2 /t .<br />

J(t; |x|, y) = λ −m J(λ −2 t; |λ (1+q)/p x|, λ −1 y) for all t > 0, (x, y) ∈ R n × R m .<br />

Proof. <strong>For</strong> (i), see Matsumoto [6, Lemma 3.1]. <strong>For</strong> (ii), it follows from the<br />

Feynman-Kac formula that<br />

J(t; |x|, y) = (2πt) −m/2 E e −t R 1<br />

0 c|x|2p |y+ √ tYs| 2q ds .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!