15.07.2013 Views

History, quark model and the SU(3)-symmetry

History, quark model and the SU(3)-symmetry

History, quark model and the SU(3)-symmetry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

QCD<br />

<strong>History</strong>, <strong>quark</strong> <strong>model</strong> <strong>and</strong> <strong>the</strong> <strong>SU</strong>(3)-<strong>symmetry</strong><br />

Simela Aslanidou<br />

14.12.2006<br />

Simela Aslanidou 14.12.2006


Contents<br />

• development <strong>and</strong> motivation for <strong>the</strong> foundation<br />

of QCD<br />

• concepts<br />

• <strong>the</strong> <strong>SU</strong>(3)-colour group<br />

Simela Aslanidou 14.12.2006


<strong>History</strong><br />

• up to <strong>the</strong> beginning of <strong>the</strong> 20th century <strong>the</strong><br />

common view in physics was that <strong>the</strong><br />

Coulomb-force is responsible for <strong>the</strong> formation<br />

of atoms.<br />

• with <strong>the</strong> discovery of <strong>the</strong> neutron it became<br />

clear, that <strong>the</strong>re must be an unknown<br />

interaction “gluing” <strong>the</strong> nucleons in <strong>the</strong> core<br />

toge<strong>the</strong>r.<br />

• Quantumchromodynamics (QCD) was<br />

established much later but this was <strong>the</strong><br />

beginning.<br />

Simela Aslanidou 14.12.2006


<strong>History</strong><br />

• with <strong>the</strong> development of particle accelerators<br />

in <strong>the</strong> 1940´s <strong>and</strong> 1950´s a large number of<br />

particles was discovered, called <strong>the</strong><br />

“particle-zoo”.<br />

• great efforts have been made in order to<br />

classify <strong>the</strong> “zoo” according to simple<br />

principles<br />

Simela Aslanidou 14.12.2006


<strong>History</strong><br />

• 1950´s<br />

Robert Hofstadter performed elastic electronproton-scattering<br />

experiments to study <strong>the</strong><br />

structure of protons<br />

protons are not pointlike<br />

Simela Aslanidou 14.12.2006


<strong>History</strong><br />

• Murray Gell-Mann <strong>and</strong> Yuval Ne´eman<br />

postulated in 1964 that hadrons can be<br />

constructed from a number of fundamental<br />

particles called '<strong>quark</strong>s'.<br />

• almost at <strong>the</strong> same time George Zweig<br />

proposed <strong>the</strong> same idea <strong>and</strong> he coined <strong>the</strong><br />

fundamental particles 'aces'.<br />

Simela Aslanidou 14.12.2006


<strong>History</strong><br />

• both, Gell-Mann <strong>and</strong> Zweig, chose <strong>the</strong><br />

<strong>SU</strong>(3)-<strong>symmetry</strong> (flavour)group <strong>the</strong>ory to<br />

organise <strong>the</strong> increasing number of discovered<br />

particles.<br />

• <strong>the</strong>y made <strong>the</strong>ir predictions on <strong>the</strong> basis of <strong>the</strong><br />

known baryon <strong>and</strong> meson octets.<br />

• in <strong>the</strong>ir <strong>the</strong>ory of <strong>SU</strong>(3)-<strong>symmetry</strong> (flavor)<br />

<strong>the</strong>y could organize all known hadrons as<br />

states of three different constituents.<br />

Simela Aslanidou 14.12.2006


<strong>History</strong><br />

In <strong>the</strong> 1960´s experiments were performed at<br />

SLAC in order to obtain information on <strong>the</strong><br />

structure <strong>and</strong> <strong>the</strong> substructure of hadrons<br />

assuming that <strong>the</strong>y are made of constituents <strong>and</strong><br />

not fundamental particles.<br />

Simela Aslanidou 14.12.2006


<strong>History</strong><br />

• <strong>the</strong> method of <strong>the</strong> experiments at SLAC was<br />

<strong>the</strong> same as Ru<strong>the</strong>rford had used in his<br />

experiments to explore <strong>the</strong> structure of an<br />

atom. In case of hadrons lepton-hadronscattering<br />

was a suitable probe.<br />

• <strong>the</strong> idea was to apply a beam of structureless<br />

particles (leptons) at high energy <strong>and</strong> thus high<br />

momentum transfer to obtain a high space-time<br />

resolution.<br />

• this process is called <strong>the</strong> deep-inelastic<br />

electron-proton scattering.<br />

Simela Aslanidou 14.12.2006


Concepts<br />

• to probe <strong>the</strong> structure of a particle one has to<br />

measure <strong>the</strong> cross-section. If we want to<br />

explore <strong>the</strong> structure of a hadron we use<br />

structureless pointlike projectiles like leptons.<br />

• if <strong>the</strong> recoil effect is neglected <strong>and</strong> <strong>the</strong> target<br />

particle is assumed to be pointlike <strong>the</strong><br />

differential cross-section is given by <strong>the</strong> Mott-<br />

Formula<br />

dσ<br />

dΩ<br />

( )<br />

Mott<br />

=<br />

4Z<br />

2<br />

α<br />

2<br />

( )<br />

qc<br />

hc<br />

4<br />

2<br />

E′<br />

2<br />

cos<br />

θ<br />

2<br />

Simela Aslanidou 14.12.2006<br />

2


Concepts<br />

The proton is an extended object, so <strong>the</strong><br />

differential cross-section for <strong>the</strong> elastic scattering<br />

is given by <strong>the</strong> Rosenbluth-formula<br />

dσ<br />

⎛ dσ<br />

=<br />

⎞<br />

⎜ ⎟<br />

dΩ<br />

⎝dΩ⎠<br />

Mott<br />

⎡<br />

⎢G<br />

⎢<br />

⎣<br />

2<br />

M<br />

( 2<br />

Q )<br />

2<br />

Q<br />

2M<br />

2<br />

tan<br />

θ G<br />

+<br />

2<br />

( 2)<br />

2<br />

+ ( 2<br />

Q G Q )<br />

1+<br />

Q<br />

GM <strong>and</strong> GE are <strong>the</strong> magnetic <strong>and</strong> electric form<br />

factors respectively.<br />

2<br />

2<br />

E<br />

M<br />

⋅<br />

Q<br />

Simela Aslanidou 14.12.2006<br />

2<br />

4M<br />

2<br />

2<br />

4M<br />

2<br />

⎤<br />

⎥<br />

⎥<br />


Concepts<br />

• in electron-proton scattering experiments <strong>the</strong><br />

electrons are relativistic <strong>and</strong> <strong>the</strong> process is<br />

e +<br />

p → e′<br />

+<br />

• for <strong>the</strong> kinematics we use <strong>the</strong> four-momentum<br />

<strong>and</strong> <strong>the</strong> energy-momentum relation leads to <strong>the</strong><br />

invariant mass<br />

x<br />

Simela Aslanidou 14.12.2006


Concepts<br />

invariant mass<br />

W²<br />

c²<br />

= P + q ²<br />

W<br />

=<br />

( )<br />

invariant<br />

=<br />

mass<br />

M²<br />

c²<br />

• elastic scattering<br />

= W → 2M<br />

• inelastic scattering<br />

><br />

M → 2<br />

;<br />

+<br />

2Pq<br />

ν<br />

M ν − Q²<br />

=<br />

=<br />

W Mν<br />

− Q²<br />

><br />

+<br />

0<br />

q²<br />

Pq<br />

M<br />

0<br />

=<br />

M²<br />

c²<br />

+ 2Mν<br />

−<br />

Simela Aslanidou 14.12.2006<br />


Inelastic scattering<br />

The differential cross section is now given by<br />

2<br />

⎛ σ ⎞ ⎛ dσ<br />

⎞<br />

⎜<br />

⎟ = ⎜ ⎟<br />

⎝ dΩdE′<br />

⎠ ⎝ dΩ<br />

⎠<br />

d 2<br />

Mott<br />

⎡ ( 2 ) ( 2 ) θ⎤<br />

⎢<br />

W2<br />

Q , ν + 2W1<br />

Q , ν tan<br />

⎥<br />

⎣<br />

2⎦<br />

with W1, W2 <strong>the</strong> structure functions of <strong>the</strong><br />

hadron <strong>and</strong> ν=Pq/M <strong>the</strong> energy transfer.<br />

Simela Aslanidou 14.12.2006


Inelastic scattering<br />

Displaying <strong>the</strong> ratio<br />

d²<br />

σ<br />

dΩdE′<br />

⎛ dσ<br />

⎞<br />

⎜ ⎟<br />

⎝ dΩ<br />

⎠<br />

Mott<br />

as a function of <strong>the</strong> invariant mass shows an<br />

unexpected behaviour for a pointlike<br />

particle as <strong>the</strong>re is only a small dependence in Q².<br />

Simela Aslanidou 14.12.2006


Inelastic scattering<br />

Electron-proton-scattering:<br />

cross-sections for inelastic<br />

scattering for different<br />

invariant masses in<br />

comparison with elastic<br />

scattering<br />

Simela Aslanidou 14.12.2006


Inelastic scattering<br />

d²<br />

σ<br />

dΩdE′<br />

⎛ dσ<br />

⎞<br />

⎟<br />

⎝dΩ<br />

⎠<br />

• <strong>the</strong> ratio ⎜ is independent from Q²<br />

lepton is scattered on a pointlike object<br />

• hadrons are extended objects<br />

<strong>the</strong>y must have pointlike constituents<br />

Mott<br />

Simela Aslanidou 14.12.2006


Bjorken scaling<br />

Structure-Function<br />

F2 as function of <strong>the</strong><br />

Bjorken Variable x<br />

here called ξ for<br />

different Q² values.<br />

2<br />

x : = Q 2Mν<br />

is <strong>the</strong> additive term<br />

from <strong>the</strong> invariant<br />

mass<br />

Simela Aslanidou 14.12.2006


Quarks<br />

Existence of Quarks<br />

<strong>the</strong>re is empirical evidence since <strong>the</strong> momentum<br />

transfer realised at SLAC was much larger than<br />

<strong>the</strong> nucleon-mass<br />

Q²>>M²<br />

this result is interpreted at <strong>the</strong> following way:<br />

<strong>the</strong> nucleon must have a substructure of<br />

quasi-free, point-like particles.<br />

Simela Aslanidou 14.12.2006


Quark <strong>model</strong><br />

• <strong>quark</strong>s come in 6 flavours<br />

up, down, strange, charm, bottom top,<br />

<strong>the</strong>se are <strong>the</strong> six different kinds of <strong>quark</strong>s<br />

• according to <strong>the</strong> regularity of <strong>the</strong> leptons<br />

<strong>quark</strong>s show <strong>the</strong> same family structure<br />

⎛<br />

⎜<br />

⎝<br />

u<br />

d<br />

⎞<br />

⎟<br />

⎠<br />

,<br />

⎛<br />

⎜<br />

⎝<br />

c<br />

s<br />

⎞<br />

⎟<br />

⎠<br />

,<br />

⎛ t ⎞<br />

⎜ ⎟<br />

⎝b<br />

⎠<br />

m<br />

m<br />

m<br />

u<br />

s<br />

b<br />

=<br />

1,<br />

5 to 4 MeV<br />

=<br />

=<br />

80 to130<br />

4.<br />

1 to 4.<br />

4<br />

MeV<br />

GeV<br />

m<br />

m<br />

m<br />

= 4 to 8 MeV<br />

= 1.<br />

15 to1.<br />

35 GeV<br />

= ( 174.<br />

3 ± 5.<br />

1)GeV<br />

Simela Aslanidou 14.12.2006<br />

d<br />

c<br />

t


Quark <strong>model</strong><br />

Problems<br />

• non-observation of isolated <strong>quark</strong>s<br />

• discrepancy between predicted <strong>and</strong><br />

experimental data on cross-sections<br />

• problem in constructing baryon wave functions<br />

(violation of <strong>the</strong> Pauli principle)<br />

Simela Aslanidou 14.12.2006


Quark <strong>model</strong><br />

Most of <strong>the</strong> difficulties can be resolved by<br />

introduction of a new quantum number called<br />

colour.<br />

Simela Aslanidou 14.12.2006


Necessity of <strong>the</strong> colour<br />

Quarks are required to be fermions with spin ½<br />

<strong>and</strong> according to <strong>the</strong> Pauli principle <strong>the</strong>y cannot<br />

occupy <strong>the</strong> same state.<br />

The quantum state has to be antisymmetric with<br />

respect to <strong>the</strong> exchange of all quantum numbers<br />

of <strong>the</strong> <strong>quark</strong>s.<br />

Simela Aslanidou 14.12.2006


Necessity of <strong>the</strong> colour<br />

Example : pion-proton resonance Δ ++<br />

3<br />

charge Q=2, isospin I = <strong>and</strong> strangeness S=0<br />

2<br />

3<br />

+ +<br />

Δ , J = 3<br />

2<br />

= u ↑ u ↑ u ↑<br />

is symmetric under exchange in contradiction<br />

to <strong>the</strong> Pauli principle<br />

Simela Aslanidou 14.12.2006


Colour<br />

• in 1965 O.W.Greenberg introduced <strong>the</strong> property of<br />

colour charge.<br />

• arbitrary denomination to assign an additional<br />

quantum number for which <strong>the</strong> state is antisymmetric:<br />

3<br />

2<br />

Δ = = ε ↑ ↑<br />

+ + k j i<br />

,<br />

J3<br />

ijk u u u<br />

εijk is <strong>the</strong> total antisymmetric tensor <strong>and</strong> <strong>the</strong> indices<br />

represent <strong>the</strong> colour<br />

↑<br />

Simela Aslanidou 14.12.2006


Colour<br />

• idea:hadrons are colour-neutral. Each <strong>quark</strong><br />

carries colour (red, blue, green) such that <strong>the</strong>ir<br />

combination gives white<br />

• in <strong>the</strong> case of <strong>the</strong> mesons made of <strong>quark</strong>anti<strong>quark</strong>-pair,<br />

<strong>the</strong> anti<strong>quark</strong> carries <strong>the</strong><br />

complementary colour<br />

Simela Aslanidou 14.12.2006


Colour<br />

The additive<br />

colour <strong>model</strong><br />

Simela Aslanidou 14.12.2006


Name<br />

up<br />

down<br />

charm<br />

strange<br />

top<br />

bottom<br />

Quantum numbers of Quarks<br />

Charge<br />

+2/3e<br />

-1/3e<br />

+2/3e<br />

-1/3e<br />

+2/3e<br />

-1/3e<br />

Isospin I<br />

1/2<br />

1/2<br />

0<br />

0<br />

0<br />

0<br />

Iz<br />

+1/2<br />

-1/2<br />

+1/2<br />

-1/2<br />

+1/2<br />

-1/2<br />

charm<br />

0<br />

0<br />

+1<br />

0<br />

0<br />

0<br />

strangeness<br />

+1<br />

Simela Aslanidou 14.12.2006<br />

0<br />

0<br />

0<br />

0<br />

0<br />

colour<br />

r, g, b<br />

r, g, b<br />

r, g, b<br />

r, g, b<br />

r, g, b<br />

r, g, b


Quark <strong>model</strong><br />

• why are <strong>the</strong>re three flavours (at least in <strong>the</strong> beginning)<br />

<strong>and</strong> three colours?<br />

π02γ decays<br />

e + + e- The factor of three appears<br />

- annihilation}<br />

Simela Aslanidou 14.12.2006


Quark <strong>model</strong><br />

e + e--Annihilation At high energies electrons <strong>and</strong> positrons<br />

annihilate into hadrons<br />

e + + e-hadrons Simela Aslanidou 14.12.2006


Simela Aslanidou 14.12.2006<br />

Quark <strong>model</strong><br />

Cross section<br />

More common<br />

( ) ∑<br />

πα<br />

=<br />

→<br />

σ<br />

−<br />

+<br />

f<br />

N<br />

i<br />

i<br />

c<br />

²<br />

Q<br />

N<br />

s<br />

3<br />

²<br />

4<br />

hadrons<br />

e<br />

e<br />

( )<br />

²<br />

Q<br />

N<br />

s<br />

3<br />

4<br />

hadrons<br />

e<br />

e<br />

R<br />

f<br />

N<br />

i<br />

i<br />

c ∑<br />

=<br />

πα<br />

→<br />

σ<br />

=<br />

−<br />

+<br />

3<br />

1<br />

Q<br />

3<br />

2<br />

Q<br />

3<br />

1<br />

Q<br />

3<br />

2<br />

Q<br />

3<br />

1<br />

Q<br />

3<br />

2<br />

Q<br />

<strong>quark</strong>s<br />

of<br />

charge<br />

Q<br />

colours<br />

of<br />

number<br />

N<br />

4<br />

e<br />

bottom<br />

top<br />

strange<br />

charm<br />

down<br />

up<br />

i<br />

i<br />

2<br />

−<br />

=<br />

=<br />

−<br />

=<br />

=<br />

−<br />

=<br />

=<br />

=<br />

=<br />

π<br />

=<br />

α


Ratio of <strong>the</strong> cross section<br />

Simela Aslanidou 14.12.2006


Ratio of <strong>the</strong> cross section<br />

Comparison of R with experimental data<br />

Energy=


Gluons<br />

ano<strong>the</strong>r experimental result from<br />

deep-inelastic electron-proton scattering was,<br />

that <strong>quark</strong>s only carry 50% of <strong>the</strong> momentum in<br />

<strong>the</strong> proton<br />

<strong>the</strong>re must be o<strong>the</strong>r constituents called<br />

“gluons”<br />

Simela Aslanidou 14.12.2006


Gluons<br />

• gluons are <strong>the</strong> gauge bosons of <strong>the</strong> strong<br />

interaction<br />

• gluons are <strong>the</strong> force carriers between <strong>quark</strong>s.<br />

• gluons are responsible for <strong>the</strong> <strong>quark</strong><br />

confinement.<br />

Simela Aslanidou 14.12.2006


Gluons<br />

gluons carry colour <strong>and</strong> anticolour at <strong>the</strong> same<br />

time<br />

gluons interact with each o<strong>the</strong>r (in<br />

contrast to photons)<br />

a) a <strong>quark</strong> radiates a gluon ; b) a gluon splits into a <strong>quark</strong>-anti<strong>quark</strong> pair<br />

c) three-gluon-interaction ; d) four-gluon-interaction<br />

Simela Aslanidou 14.12.2006


<strong>SU</strong>(N)<br />

• group of <strong>the</strong> non-abelian Lie-Algebra.<br />

• group of unitary NxN matrices with detU=±1<br />

<strong>and</strong> N²-1 parameters.<br />

• <strong>the</strong> N²-1 dimensional space is formed by <strong>the</strong><br />

N²-1 generators of <strong>the</strong> Algebra.<br />

Simela Aslanidou 14.12.2006


<strong>SU</strong>(3)<br />

The algebra is generated by <strong>the</strong> 8 Gell-Mann<br />

matrices λi , i=1,...,8.<br />

Define<br />

1<br />

Ti = λ<br />

2<br />

i<br />

The algebra satisfy <strong>the</strong> commutation relations<br />

[ T ] i,<br />

Tj<br />

=<br />

ifijkTk<br />

Simela Aslanidou 14.12.2006


<strong>SU</strong>(3)<br />

Why <strong>SU</strong>(3)-flavour?<br />

With <strong>the</strong> <strong>SU</strong>(3)-flavour it is possible to construct<br />

all hadron states from <strong>the</strong> fundamental triplet.<br />

Simela Aslanidou 14.12.2006


Ladder Operators<br />

Define <strong>the</strong> ladder operators T±, U±, V±<br />

(± st<strong>and</strong>s for step-up/step-down operator)<br />

Fˆ Fˆ Fˆ Vˆ Fˆ Fˆ Tˆ = ±<br />

±<br />

= 1 ± i 2 ;<br />

± = 4 ± i 5 ; Û±<br />

Applying <strong>the</strong> operators to <strong>the</strong> hadron states steps<br />

up or steps down <strong>the</strong> states <strong>and</strong> <strong>the</strong> multiplet can<br />

be constructed.<br />

Simela Aslanidou 14.12.2006<br />

6<br />

Fˆ i<br />

7


The Baryon-Oktet<br />

Start from <strong>the</strong><br />

fundamental triplet <strong>and</strong><br />

applying <strong>the</strong> ladder<br />

operators leads to <strong>the</strong><br />

states of a multiplet as it is<br />

shown in <strong>the</strong> figure for <strong>the</strong><br />

example of <strong>the</strong> baryon octet<br />

Simela Aslanidou 14.12.2006


<strong>SU</strong>(3)c<br />

• strong interaction is governed by <strong>the</strong> colour<br />

<strong>and</strong> not by <strong>the</strong> flavour.<br />

• two fundamental triplets<br />

colour ci , I=1,2,3 ;<br />

complementary colour c<br />

i , i=1,2,3<br />

Simela Aslanidou 14.12.2006


References<br />

T. Muta, World Scientific Lectures Notes in Physics-Vol 57<br />

„Foundations of quantumchromodynamics“<br />

W. Greiner, Theoretische Physik B<strong>and</strong> 6<br />

„Symmetrien“<br />

W. Greiner, Theoretische Physik B<strong>and</strong> 10<br />

„Quantenchromodynamik“<br />

B. Povh, K. Rith, C. Scholz, F. Zetsche<br />

„Teilchen und Kerne“<br />

G. Musiol, J. Ranft, R. Reif, D. Seeliger<br />

„Kern- und Elementarteilchenphysik“<br />

G. Zweig, Cern-Libraries, Geneva<br />

„An <strong>SU</strong>(3) Model of strong interaction <strong>symmetry</strong> <strong>and</strong> ist breaking“<br />

http://www.personal.uni-jena.de<br />

M. E. Peskin, PiTP Summer School, July 2005<br />

Simela Aslanidou 14.12.2006


THE END<br />

Simela Aslanidou 14.12.2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!