15.07.2013 Views

Gallium Arsenide (GaAs) - Courses

Gallium Arsenide (GaAs) - Courses

Gallium Arsenide (GaAs) - Courses

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gallium</strong> <strong>Arsenide</strong> (<strong>GaAs</strong>)<br />

EDWARD D. PALIK<br />

Naval Research Laboratory<br />

Washington, D.C.<br />

The optical constants of pure (semi-insulating) <strong>GaAs</strong> are derived from a<br />

number of papers including the far-infrared reststrahlen work of Johnson<br />

et al. [1], Kachare et al. [2], and Holm et at. [3]; the mid-IR work of<br />

Cochran et at. [4]; the near-IR work of Pikhtin and Yas'kov [5]; the calorimetry<br />

work of Christensen et al. [6]; the fundamental band gap work of<br />

Casey et al. [7]; the visible-UV ellipsometry work of Theeten et al. [8]; the<br />

UV reflection work of Philipp and Ehrenreich [9]; and the synchrotron<br />

transmission work of Cardona et al. [10]. A smooth plot of the nand k data,<br />

given in Fig. 2, is obtained from the data of Table II.<br />

The measurements of Johnson et al. [1] to determine nand k were 300-K<br />

transmission measurements of thin samples of resistivity 3.5 x 108 n cm. Slab<br />

thickness was known to ± 1 %. The transmittance was measured to ± 5%<br />

with a Beckmann IR-ll spectrometer system. Surface preparation was described<br />

as optical polish. If this were a mechanical grit polish, then the surfaces<br />

were damaged, as discussed by Holm and Palik [11]. The effect of a<br />

damage layer thousands of angstroms thick can probably be neglected except<br />

at the reststrahlen peak itself. The n data listed were obtained from a graph<br />

of a calculated oscillator fit to the experimental points, the scatter of the<br />

points being ± 0.02 from the fit. The k data listed were read directly off a<br />

smooth-curve graph (no fit in this case). Similar less-detailed measurements<br />

for k have been made by Stolen [12], and his 294-K data (as read from a<br />

graph) are also listed for comparison.<br />

In the reststrahlen region reflectivity data have been fitted by an oscillator<br />

model of the form<br />

'2 [ (n - Ik) = Coo 1 + 2 wl-wiJ<br />

2 .<br />

(1)<br />

W T - W + Irw<br />

used by Kachare et al. [2] and Holm et at. [3]. We averaged these parameters<br />

to obtain W L = 292.1 cm - \ W T = 268.7 cm - \ r = 2.4 cm -1, and Coo = 11.0.<br />

Surfaces were chemically polished to remove saw-cut and grinding damage.<br />

The reference was an aluminum mirror whose reflectivity is given by Bennett<br />

HANDBOOK OF OPTICAL CONSTANTS OF SOLIDS ISBN 0-12·544420-6<br />

429


432 Edward D. Palik<br />

absolute reflectivity is quoted to ± 3%, which could account for much of the<br />

differences between KK analysis, between two laboratories, or between KK<br />

analysis and eIIipsometric measurements.<br />

Except for the spectral regions in which the minimum deviation and interference-fringe<br />

techniques are used, we are hard-pressed to quote n to better<br />

than two significant figures. Things are even worse for k that is generally not<br />

determined better than ± 30%. Physicists, who did most of the measurements<br />

cited, were more interested in positions of peaks to identify vibrational<br />

frequencies and interband transitions, so relative values of k were typically<br />

good but absolute values varied as has been discussed.<br />

The temperature dependence of n in the near IR between 5 and 20 /lm<br />

has been found by Cardona [20] to be<br />

(l/n)(dn/dT) = (4.5 ± 0.2) x 10- 5 (C- 1 ). (3)<br />

Near strong absorption features like band edges and lattice vibrations, the<br />

effects are no doubt even stronger. Data are usually quoted at 297 or 300 K,<br />

which would mean a variation of a few units in the fourth decimal place.<br />

Therefore, we cannot use this decimal place with confidence, although it is<br />

sometimes quoted in Table II.<br />

lt is clear that all samples probably have a native oxide in the form<br />

of Ga 20 3 and AS 20 3 of '" 20-A thickness. This layer presents little or no<br />

problems in the IR region but must be considered in the region above the<br />

band gap of this mixed oxide ('" 5 eV). Theeten et at. [8] and Philipp and<br />

Ehrenreich [9] prepared surfaces by chemical etching and polishing, but the<br />

samples may have been exposed to air before being put into the inert gas<br />

system or the vacuum system. Native oxides typically grow to their final<br />

thickness in a few hours in air but grow rapidly at first exposure. Therefore,<br />

we must assume that an oxide was growing on the samples. This may cause<br />

uncertainties in the determination of k in the UV. Only work with cleaved<br />

or evaporated surfaces in UHV would be free of oxides for a few hours.<br />

REFERENCES<br />

1. C. J. Johnson, G. H. Sherman, and R. Weil, Appl. Opt. 8, 1667 (1969).<br />

2. A. H. Kachare, W. G. Spitzer, F. K. Euler, and A. Kahan, J App/. Phys. 45, 2938 (1974).<br />

3. R. T. Holm, J. W. Gibson, and E. D. Palik, J. Appl. Phys. 48, 212 (1977).<br />

4. W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, J. Appl. Phys.<br />

Suppl. 32, 2102 (1961).<br />

5. A. N. Pikhtin and A. D. Yas'koy, Sov. Phys. Semicond. 12,622 (1978); A. N. Pikhtin and<br />

A. D. Yas'koy, Fiz. Tekh. Poluprovodn. 12, 1047 (1978).<br />

6. C. P. Christensen, R. Joiner, S. K. T. Nieh, and W. H. Steier, J. Appl. Phys. 45, 4957 (1974).<br />

7. H. C. Casey, D. D. Sell, and K. W. Wecht, J. App/. Phys. 46,250 (1975).<br />

8. J. B. Theeten, D. E. Aspnes, and R. P. H. Chang, J. Appl. Phys. 49, 6097 (1978); J. B. Theeten,<br />

D. E Aspnes, and R. P. H. Chang, priYate communication (1982).<br />

9. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).<br />

10. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, in Proc. Int. Con! Phys. Semicond., 10th<br />

Cambridge, 1970, p. 208. u.S. Atomic Energy Commission, Oak Ridge, Tennessee, 1970.


434 Edward D. Palik<br />

eV<br />

TABLE II<br />

Values of nand k for <strong>Gallium</strong> <strong>Arsenide</strong> Obtained from Various References·<br />

cm- 1<br />

!lm n k<br />

155 0.007999 0.0181 [10]<br />

150 0.008266 0.0193<br />

145 0.008551 0.0203<br />

144 0.008610 0.0204<br />

143 0.008670 0.0206<br />

142 0.008731 0.0204<br />

141 0.008793 0.0205<br />

140 0.008856 0.0206<br />

135 0.009184 0.0213<br />

130 0.009537 0.0224<br />

125 0.009919 0.0234<br />

120 0.01033 0.0245<br />

115 0.01078 0.0256<br />

113 0.01097 0.0263<br />

111 0.01117 0.0274<br />

110 0.01127 0.0278<br />

109 0.01137 0.0281<br />

108 0.01148 0.0283<br />

107 0.01159 0.0276<br />

106 0.01170 0.0288<br />

105 0.01181 0.0293<br />

104 0.01192 0.0284<br />

103 0.01204 0.0294<br />

102 0.01215 0.0289<br />

100 0.01240 0.0294<br />

95 0.01305 0.0308<br />

90 0.01378 0.0323<br />

85 0.01459 0.0338<br />

80 0.01550 0.0353<br />

75 0.01653 0.0368<br />

70 0.01771 0.0376<br />

65 0.01907 0.0387<br />

60 0.02066 0.0389<br />

55 0.02254 0.0407<br />

50 0.02480 0.0430<br />

48 0.02583 0.0448<br />

• The data of Philipp and 'Ehrenreich [9] given in Seraphin and Bennett [19] are<br />

specified by the wavelength (in micrometers). However, the original data were given in<br />

electron volts, and it is obvious that most of the n, k values were determined for energies<br />

in whole numbers or tenths of a whole number. They were rounded off to three significant<br />

figures and then given the wavelength listed in Seraphin and Bennett [19]. Sometimes<br />

we list these wavelengths and then recalculate energy (in electron volts), thus producing<br />

roundoff error in election volts. The reference is given at the beginning of a tabulation of<br />

nand k, for example, and is understood to refer to all n's and k's below it until a new<br />

reference appears in brackets. The value of k is frequently given as an exponent of 10.<br />

This value of exponent is understood to refer to all k's below it in the table until a new<br />

exponent appears or the number changes from 10- 2 to 10- 1 when a decimal only is used.


Gal li um <strong>Arsenide</strong> (<strong>GaAs</strong>)<br />

TABLE II (Continued )<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

eV cm - ! J.lm n k<br />

46 0.02695 0.0476<br />

44 0.02818 0.0518<br />

43 0.02883 0.0546<br />

42 0.02952 0.0470<br />

41 0.03024 0.0426<br />

40 0.03 100 0.0426<br />

38 0.03263 0.0452<br />

35 0.03542 0.0513<br />

30 0.04133 0.0648<br />

29 0.04275 0.0683<br />

28 0.04428 0.0740<br />

27 0.04592 0.0785<br />

26 0.04769 0.0872<br />

25 0.04959 0.0986<br />

24 0.05 166 0.115<br />

23.5 0.05276 0.126<br />

23 0.05391 1.037 [9, 19] 0.141<br />

0.228 [9, 19]<br />

22.5 0.05510 0.1 46 [ 10]<br />

22 0.05636 1.043 0. 148<br />

0.243 [9, 19]<br />

21.5 0.05767 0.147 [ 10]<br />

21 0.05904 1.058 0.162<br />

0.245 [9, 19]<br />

20.5 0.06048 0.164 [10]<br />

20 0.06199 1.025 0.144<br />

0.212 [9, 19]<br />

19.5 0.06358 0.147 [ 10]<br />

19 0.06526 0.981 0. 152<br />

0.234 [9, 19]<br />

18 0.06888 0.936 0.178 [10]<br />

0.267 [9, 19]<br />

17 0.07293 0.889 0.223 [10]<br />

0.324 [9, 19]<br />

16 0.07749 0.850 0.261 [10]<br />

0.411 [9, 19]<br />

15 0.08266 0.836 0.282 [ 10]<br />

0.503 [9, 19]<br />

14 0.08856 0.840 0.602<br />

13 0.09537 0.864 0.709<br />

12.0 0.1033 0.895 0.791<br />

10.8 0.1148 0.923 0.881<br />

10.0 0.1240 0.913 0.974<br />

9.0 0.1378 0.901 1.1 36<br />

8.0 0.1550 0.899 1.435<br />

7.0 0.1771 1.063 1.838<br />

435<br />

(continued)


436 Edward D. Palik<br />

eV<br />

cm- 1<br />

TABLE II (Continued)<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

lim n k<br />

6.6 0.1879 1.247 2.047<br />

6.3 0.1968 1.441 1.988<br />

6.2 0.2000 1.424 1.976<br />

6.0 48,390 0.2066 1.264 [8] 2.472 [8]<br />

1.395 [9, 19] 2.048 [9, 19]<br />

5.94 47,910 0.2087 1.287 [8] 2.523 [8]<br />

5.90 47,590 0.2101 1.288 2.556<br />

5.84 47,100 0.2123 1.304 2.592<br />

5.80 46,780 0.2138 1.311 2.625<br />

5.74 46,300 0.2160 1.321 2.673<br />

5.70 45,970 0.2175 1.325 2.710<br />

5.64 45,490 0.2198 1.339 2.772<br />

5.60 45,170 0.2214 1.349 2.815<br />

5.54 44,680 0.2238 1.367 2.885<br />

5.50 44,360 0.2254 1.383 2.936<br />

5.44 43,880 0.2279 1.410 3.019<br />

5.40 43,550 0.2296 1.430 3.079<br />

5.34 43,070 0.2322 1.468 3.181<br />

5.30 42,750 0.2339 1.499 3.255<br />

5.24 42,260 0.2366 1.552 3.384<br />

5.20 41,940 0.2384 1.599 3.484<br />

5.14 41,460 0.2412 1.699 3.660<br />

5.10 41,130 0.2431 1.802 3.795<br />

5.04 40,650 0.2460 2.044 3.992<br />

5.00 40,330 0.2480 2.273 4.084<br />

4.94 39,840 0.2510 2.654 4.106<br />

4.90 39,520 0.2530 2.890 4.047<br />

4.84 39,040 0.2562 3.187 3.898<br />

4.80 38,710 0.2583 3.342 3.770<br />

4.74 38,230 0.2616 3.511 3.574<br />

4.70 37,910 0.2638 3.598 3.452<br />

4.64 37,420 0.2672 3.708 3.280<br />

4.60 37,100 0.2695 3.769 3.169<br />

4.54 36,620 0.2731 3.850 3.018<br />

4.50 36,290 0.2755 3.913 2.919<br />

4.44 35,810 0.2792 4.004 2.715<br />

4.40 35,490 0.2818 4.015 2.563<br />

4.34 35,000 0.2857 3.981 2.368<br />

4.30 34,680 0.2883 3.939 2.260<br />

4.24 34,200 0.2924 3.864 2.132<br />

4.20 33,880 0.2952 3.810 2.069<br />

4.14 33,390 0.2995 3.736 2.001<br />

4.10 33,070 0.3024 3.692 1.969<br />

4.04 32,580 0.3069 3.634 1.935<br />

4.00 32,260 0.3100 3.601 1.920<br />

3.94 31,780 0.3147 3,559 1.907<br />

3.90 31,460 0.3179 3.538 1.904


<strong>Gallium</strong> <strong>Arsenide</strong> (<strong>GaAs</strong>) 437<br />

eV<br />

cm- 1<br />

TABLE II (Continued)<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

11m n k<br />

3.84 30,970 0.3229 3.512 1.905<br />

3.80 30,650 0.3263 3.501 1.909<br />

3.74 30,160 0.3315 3.488 1.920<br />

3.70 29,840 0.3351 3.485 1.931<br />

3.64 29,360 0.3406 3.489 1.950<br />

3.60 29,040 0.3444 3.495 1.965<br />

3.54 28,550 0.3502 3.513 1.992<br />

3.50 28,230 0.3542 3.531 2.013<br />

3.48 28,070 0.3563 3.541 2.024<br />

3.46 27,910 0.3583 3.553 2.036<br />

3.44 27,750 0.3604 3.566 2.049<br />

3.42 27,580 0.3625 3.580 2.062<br />

3.40 27,420 0.3647 3.596 2.076<br />

3.38 27,260 0.3668 3.614 2.091<br />

3.36 27,100 0.3690 3.635 2.107<br />

3.34 26,940 0.3712 3.657 2.123<br />

3.32 26,780 0.3734 3.681 2.142<br />

3.30 26,620 0.3757 3.709 2.162<br />

3.28 26,450 0.3780 3.740 2.183<br />

3.26 26,290 0.3803 3.776 2.207<br />

3.24 26,130 0.3827 3.818 2.232<br />

3.22 25,970 0.3850 3.871 2.260<br />

3.20 25,810 0.3875 3.938 2.288<br />

3.18 25,650 0.3899 4.023 2.307<br />

3.16 25,490 0.3924 4.126 2.304<br />

3.14 25,330 0.3949 4.229 2.270<br />

3.12 25,160 0.3974 4.313 2.212<br />

3.10 25,000 0.4000 4.373 2.146<br />

3.08 24,840 0.4025 4.413 2.082<br />

3.06 24,680 0.4052 4.439 2.029<br />

3.04 24,520 0.4078 4.462 1.988<br />

3.02 24,360 0.4105 4.483 1.961<br />

3.00 24,200 0.4133 4.509 1.948<br />

2.98 24,040 0.4161 4.550 1.952<br />

2.96 23,870 0.4189 4.626 1.967<br />

2.94 23,710 0.4217 4.755 1.960<br />

2.92 23,550 0.4246 4.917 1.885<br />

2.90 23,390 0.4275 5.052 1.721<br />

2.88 23,230 0.4305 5.107 1.529<br />

2.86 23,070 0.4335 5.102 1.353<br />

2.84 22,910 0.4366 5.065 1.206<br />

2.82 22,740 0.4397 5.015 1.088<br />

2.80 22,580 0.4428 4.959 0.991<br />

2.78 22,420 0.4460 4.902 0.912<br />

2.76 22,260 0.4492 4.845 0.846<br />

2.74 22,100 0.4525 4.793 0.789<br />

(continued)


438 Edward D. Palik<br />

eV<br />

cm- 1<br />

TABLE II (Continued)<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

pID n k<br />

2.72 21,940 0.4558 4.741 0.739<br />

2.70 21,780 0.4592 4.694 0.696<br />

2.68 21,660 0.4626 4.649 0.659<br />

2.66 21,450 0.4661 4.605 0.626<br />

2.64 21,290 0.4696 4.567 0.595<br />

2.62 21,130 0.4732 4.525 0.569<br />

2.60 20,970 0.4769 4.492 0.539<br />

2.58 20,810 0.4806 4.456 0.517<br />

2.56 20,650 0.4843 4.423 0.497<br />

2.54 20,490 0.4881 4.392 0.476<br />

2.52 20,330 0.4920 4.362 0.458<br />

2.50 20,160 0.4959 4.333 0.441<br />

2.48 20,000 0.4999 4.305 0.426<br />

2.46 19,840 0.5040 4.279 0.411<br />

2.44 19,680 0.5081 4.254 0.398<br />

2.42 19,520 0.5123 4.229 0.385<br />

2.40 19,360 0.5166 4.205 0.371<br />

2.38 19,200 0.5209 4.183 0.359<br />

2.36 19,030 0.5254 4.162 0.347<br />

2.34 18,870 0.5299 4.141 0.337<br />

2.32 18,710 0.5344 4.120 0.327<br />

2.30 18,550 0.5391 4.100 0.320<br />

2.28 18,390 0.5438 4.082 0.308<br />

2.26 18,230 0.5486 4.063 0.301<br />

2.24 18,070 0.5535 4.045 0.294<br />

2.22 17,910 0.5585 4.029 0.285<br />

2.20 17,740 0.5636 4.013 0.276<br />

2.18 17,580 0.5687 3.998 0.266<br />

2.16 17,420 0.5740 3.983 0.257<br />

2.14 17,260 0.5794 3.968 0.251<br />

2.12 17,100 0.5848 3.954 0.245<br />

2.10 16,940 0.5904 3.940 0.240<br />

2.08 16,780 0.5961 3.927 0.232<br />

2.06 16,610 0.6019 3.914 0.228<br />

2.04 16,450 0.6078 3.902 0.223<br />

2.02 16,290 0.6138 3.890 0.213<br />

2.00 16,130 0.6199 3.878 0.211<br />

1.98 15,970 0.6262 3.867 0.203<br />

1.96 15,810 0.6326 3.856 0.196<br />

1.94 15,650 0.6391 3.846 0.187<br />

1.92 15,490 0.6458 3.836 0.183<br />

1.90 15,320 0.6526 3.826 0.179<br />

1.88 15,160 0.6595 3.817 0.173<br />

1.86 15,000 0.6666 3.809 0.173<br />

1.84 14,840 0.6738 3.799 0.168<br />

1.82 14,680 0.6812 3.792 0.158<br />

1.80 14,520 6.8888 3.785 0.151


<strong>Gallium</strong> <strong>Arsenide</strong> (<strong>GaAs</strong>) 439<br />

eV<br />

CID- 1<br />

TABLE II (Continued)<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

/lID n k<br />

1.78 14,360 0.6965 3.779 0.152<br />

1.76 14,200 0.7045 3.772 0.134<br />

1.74 14,030 0.7126 3.762 0.127<br />

1.72 13,870 0.7208 3.752 0.118<br />

1.70 13,710 0.7293 3.742 0.112<br />

1.68 13,550 0.7380 3.734 0.105<br />

1.66 13,390 0.7469 3.725 0.101<br />

1.64 13,230 0.7560 3.716 0.097<br />

1.62 13,070 0.7653 3.707 0.093<br />

1.60 12,900 0.7749 3.700 0.091<br />

1.58 12,740 0.7847 3.693 0.089<br />

1.56 12,580 0.7948 3.685 0.087<br />

1.54 12,420 0.8051 3.679 0.085<br />

1.52 12,260 0.8157 3.672 0.083<br />

1.50 12,100 0.8266 3.666 0.080<br />

7.89 x 10- 2 [7]<br />

1.49 12,020 0.8321 7.28<br />

1.48 11,940 0.8377 6.86<br />

1.47 11,860 0.8434 6.64<br />

1.46 11,780 0.8492 6.28<br />

1.45 11,690 0.8551 6.12<br />

1.44 11,610 0.8610 5.68<br />

1.435 11,570 0.8640 5.57<br />

1.43 11,530 0.8670 5.72<br />

1.425 11,490 0.8700 5.54<br />

1.42 11,450 0.8731 2.71 x 10- 2<br />

1.41 11,370 0.8793 5.95 x 10- 3<br />

1.40 11,290 0.8856 3.6140 [5] 1.69 x 10- 3<br />

1.39 11,210 0.8920 5.68 x 10- 4<br />

1.38 11,130 0.8984 2.50<br />

1.37 11,050 0.9050 1.33 x 10- 4<br />

1.35 10,890 0.9184 3.5690<br />

1.30 10,490 0.9537 3.5388<br />

1.25 10,080 0.9919 3.5138<br />

1.20 9,679 1.033 3.4920<br />

1.15 9,275 1.078 3.4724<br />

1.10 8,872 1.127 3.4546<br />

1.05 8,469 1.181 3.4383<br />

1.00 8,065 1.240 3.4232<br />

0.95 7,662 1.305 3.4094<br />

0.90 7,259 1.378 3.3965<br />

0.85 6,856 1.459 3.3847<br />

0.80 6,452 1.550 3.3737<br />

0.75 6,049 1.653 3.3636<br />

0.70 5,646 1.771 3.3543<br />

0.65 5,243 1.907 3.3457<br />

(continued)


440 Edward D. Palik<br />

eV<br />

cm- 1<br />

TABLE II (Continued)<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

Jim n k<br />

0.60 4,839 2.066 3.3378<br />

0.55 4,436 2.254 3.3306<br />

0.50 4,033 2.480 3.3240<br />

0.45 3,629 2.755 3.3180<br />

0.40 3,226 3.100 3.3125<br />

0.35 2,823 3.542 3.3075<br />

0.30 2,420 4.133 3.3027<br />

0.29 2,339 4.275 3.3017<br />

0.28 2,258 4.428 3.3008<br />

0.27 2,178 4.592 3.2998<br />

0.26 2,097 4.768 3.2988<br />

0.25 2,016 4.959 3.2978<br />

0.24 1,936 5.166 3.2968<br />

0.23 1,855 5.391 3.2954<br />

0.22 1,774 5.636 3.2946<br />

0.21 1,694 5.904 3.2934<br />

0.20 1,613 6.199 3.2921<br />

0.19 1,532 6.526 3.2907<br />

0.18 1,452 6.888 3.2891<br />

0.17 1,371 7.293 3.2874<br />

0.16 1,290 7.749 3.2854<br />

0.15 1,210 8.266 3.2831<br />

0.14 1,129 8.856 3.2803<br />

0.1347 1,087 9.2 4.4 x 10- 7 [6]<br />

0.13 1,048 9.537 3.2769<br />

0.1239 1,042 9.6 6.1<br />

0.12 967.9 10.33 3.2727<br />

0.1169 943.4 10.6 7.6 x 10- 7<br />

0.11 887.2 11.27 3.2671<br />

0.100 806.5 12.40 3.2597 4.93 x 10- 6 [4]<br />

0.098 790.4 12.65 1.61 x 10- 5<br />

0.096 774.3 12.91 3.49<br />

0.095 766.2 13.05 3.63<br />

0.094 758.2 13.19 2.72<br />

0.092 742.0 13.48 1.61<br />

0.090 725.9 13.78 3.2493 1.64<br />

0.088 709.8 14.09 2.24<br />

0.086 693.6 14.42 2.40<br />

0.084 677.5 14.76 2.11<br />

0.082 661.4 15.12 2.16<br />

0.080 645.2 15.50 3.2336 2.83<br />

0.Q78 629.1 15.90 4.55<br />

0.076 613.0 16.31 7.66<br />

0.074 596.8 16.75 9.46 x 10- 5<br />

0.073 588.8 16.98 1.00 x 10- 4<br />

0.072 580.7 17.22 1.50<br />

0.071 572.6 17.46 2.05


<strong>Gallium</strong> <strong>Arsenide</strong> (<strong>GaAs</strong>) 441<br />

TABLE II (Continued)<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

eV em-I !lID n k<br />

0.Q70 564.6 17.71 3.2081 2.32<br />

0.069 556.5 17.97 6.00 x 10- 4<br />

0.068 548.5 18.23 1.17 x 10- 3<br />

0.067 540.4 18.51 2.59<br />

0.066 532.3 18.79 4.18<br />

0.0655 528.3 18.93 6.10<br />

0.065 524.3 19.07 3.1886 8.27<br />

0.0645 520.2 19.22 3.205 [2, 3] 6.27<br />

0.064 516.2 19.37 4.85<br />

0.0635 512.2 19.53 4.83<br />

0.063 508.1 19.68 4.85<br />

0.0625 504.1 19.84 4.23<br />

0.062 500.1 20.00 4.17<br />

0.0615 496.0 20.16 4.18<br />

0.061 492.0 20.33 4.09<br />

0.060 483.9 20.66 3.1609 [5] 3.45<br />

0.0595 480.0 20.84 3.176 [2, 3] 3.18<br />

0.059 475.9 21.01 3.19<br />

0.058 467.8 21.38 3.57<br />

0.057 459.7 21.75 3.157 4.50<br />

0.0565 455.7 21.94 4.78<br />

0.056 451.7 22.14 4.84<br />

0.0555 447.6 22.34 4.97<br />

0.055 443.6 22.54 5.32<br />

0.054 435.5 22.96 3.126 4.56<br />

0.053 427.5 23.39 3.68<br />

0.0525 423.4 23.62 3.38<br />

0.052 419.4 23.84 3.100 3.43<br />

0.051 411.3 24.31 3.71<br />

0.050 403.3 24.80 2.74<br />

0.0495 399.2 25.05 3.058 2.07<br />

0.049 395.2 25.30 2.07<br />

0.0485 391.2 25.56 2.17<br />

0.048 387.1 25.83 2.10<br />

0.047 379.1 26.38 2.997 2.33<br />

0.046 371.0 26.95 2.91<br />

0.045 362.9 27.55 3.94<br />

0.04463 360 27.78 2.913 6.50 [2, 3]<br />

0.044 354.9 28.18 5.15 [4]<br />

0.04339 350 28.57 2.851 8.40 [2, 3]<br />

0.043 346.8 28.83 8.95 x 10- 3 [4]<br />

0.04215 340 29.41 2.770 1.13 x 10- 2 [2, 3]<br />

0.04092 330 30.30 2.659 1.59<br />

0.03968 320 31.25 2.495 2.43<br />

0.03906 315 31.75 2.380 3.14<br />

(continued)


442 Edward D. Palik<br />

eV<br />

cm- 1<br />

TABLE II (Continued)<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

)lm n k<br />

0.03844 310 32.26 2.229 4.21<br />

0.03782 305 32.79 2.020 6.02<br />

0.03720 300 33.33 1.707 9.59 x 10- 2<br />

0.03707 299 33.44 1.623 0.107<br />

0.03695 298 33.56 1.529 0.122<br />

0.03682 297 33.67 1.422 0.141<br />

0.03670 296 33.78 1.298 0.166<br />

0.03658 295 33.90 1.151 0.201<br />

0.03645 294 34.01 0.975 0.257<br />

0.03633 293 34.13 0.761 0.357<br />

0.03620 292 34.25 0.536 0.552<br />

0.03608 291 34.36 0.391 0.826<br />

0.03596 290 34.48 0.323 1.09<br />

0.03583 289 34.60 0.291 1.34<br />

0.03571 288 34.72 0.275 1.57<br />

0.03558 287 34.84 0.267 1.79<br />

0.03546 286 34.96 0.266 2.01<br />

0.03534 285 35.09 0.270 2.23<br />

0.03521 284 35.21 0.278 2.46<br />

0.03509 283 35.33 0.290 2.69<br />

0.03496 282 35.46 0.307 2.94<br />

0.03484 281 35.59 0.329 3.20<br />

0.03472 280 35.71 0.358 3.48<br />

0.03459 279 35.84 0.395 3.79<br />

0.03447 278 35.97 0.443 4.14<br />

0.03434 277 36.10 0.506 4.52<br />

0.03422 276 36.23 0.592 4.97<br />

0.03409 275 36.36 0.713 5.49<br />

0.03397 274 36.50 0.890 6.12<br />

0.03385 273 36.63 1.17 6.91<br />

0.03372 272 36.76 1.64 7.94<br />

0.03360 271 36.90 2.56 9.32<br />

0.03348 270 37.04 4.66 11.0<br />

0.03341 269.5 37.10 6.63 11.6<br />

0.03335 269 37.17 9.30 11.3<br />

0.03329 268.5 37.24 11.6 9.37<br />

0.03323 268 37.31 12.4 6.74<br />

0.03317 267.5 37.38 12.0 4.66<br />

0.03310 267 37.45 11.3 3.30<br />

0.03304 266.5 37.52 10.6 2.43<br />

0.03298 266 37.59 9.90 1.87<br />

0.03286 265 37.74 8.87 1.20<br />

0.03273 264 37.88 8.12 0.844<br />

0.03261 263 38.02 7.55 0.629<br />

0.03248 262 38.17 7.11 0.489<br />

0.03236 261 38.31 6.76 0.393<br />

0.03224 260 38.46 6.47 0.323


<strong>Gallium</strong> <strong>Arsenide</strong> (<strong>GaAs</strong>)<br />

eV<br />

cm - 1<br />

TABLE II (Continued)<br />

<strong>Gallium</strong> <strong>Arsenide</strong><br />

/lm n k<br />

0.03 162 255 39.22 5.57 0.t53<br />

0.03100 250 40.00 5.08 9.02 x 10- 2<br />

0.02976 240 41.67 4.57 4.26<br />

0.02852 230 43.48 4.30 2.49<br />

0.02728 220 45.45 4.13 1.63<br />

0.02604 210 47.62 4.02 U S x 10- 2<br />

0.02480 200 SO.OO 3.93<br />

3.87 [1 ]<br />

8.49 x 10 - 3<br />

0.02356 190 52.63 1.09 x 10 - 2 [1 2]<br />

0.02232 180 55.56 1.22<br />

0.02108 170 58.82 1.25 x 10- 2<br />

0.02066 166.7 60 3.77 [2, 3] 3.89 x 10- 3 [2, 3]<br />

3.74 [ 1] 6.92 x 10- 3 [1 ]<br />

0.01984 160 62.S0 US x 10- 2 [12J<br />

0.01860 150 66.67 6.4 x 10- 3<br />

0.0177 1 142.9 70 3.71 [ 2, 3J<br />

3.68 [IJ<br />

3.79 [ 1 J<br />

0.01736 140 71.43 5.0 [12J<br />

0.01612 130 76.92 4.4<br />

0.01550 125 80 3.681 [ 2, 3J 1.84 [2, 3J<br />

3.65 [1 J 3.18 [IJ<br />

0.0 1488 120 83.33 3.9 [ 12J<br />

0.01378 111.1 90 3.662 [2, 3]<br />

3.635 [1 J 2.86 [1 J<br />

0.01364 110 90.91 3.6 [12J<br />

0.01240 100 100 3.650 [2, 3J 3.6<br />

3.625 [ IJ 2.78 [ IJ<br />

0.01116 90 11 1.1 3.8 [1 2J<br />

0.009919 80 125.0 4.2<br />

0.008679 70 142.9 3.5<br />

0.008266 66.67 150 3.623 [ 2, 3J<br />

3.62 [IJ<br />

2.14[IJ<br />

0.007439 60 166.7 2.1 [ 12J<br />

0.006199 50.00 200 3.615 [ 2, 3J<br />

3.61 [ IJ<br />

1.8 [ 12J<br />

0.004959 40 250.0 1.4<br />

0.004133 33.33 300 3.611 [2, 3]<br />

3.60 [1]<br />

0.003720 30 333.3 l.l<br />

0.003 100 25 400 1.2<br />

0.002480 20 500 3.607 [ 2, 3J 1.3<br />

0.001 860 15 667 1.2<br />

0.001240 10 1000 3.606<br />

443


446 A. Borghesi and G. Guizzetti<br />

in concentrated bromine. In the other cases no description of the surface<br />

treatment was given.<br />

The R values in the infrared from various labs agree to within the experimental<br />

uncertainty. It was determined that differences in the free-carrier concentration<br />

had no effect on R. The n values for A :::::: 50 Jim from Parsons and<br />

Coleman [3] and Abagyan et al. [4] present a difference of 0.28% at A =<br />

50 Jim, which lowers to 0.2% at A = 1000 Jim. In Abagyan et al. [4] the error<br />

fln in n, resulting from the measurement of the sample thickness and of wavelength<br />

A, is quoted not exceeding 0.005, while in Parsons and Coleman [3] n<br />

is quoted with four decimal places and its values are those reported in Table<br />

IV for 50 Jim S; A S; 400 Jim.<br />

Parsons and Coleman [3] fit the infrared data and the accurate n data<br />

from Bond [9] and Nelson and Turner [13] in the 0.5-4.0-Jim range by<br />

using for the complex dielectric function g the following form proposed by<br />

Barker [2]:<br />

i.e., a classical-oscillator equation, where Si' vf, and Yi are the osciIIator<br />

strength, restoring force, and linewidth, respectively. The second term in Eq.<br />

(1) represents the electronic contribution and the third one the lattice contribution<br />

with frequency-dependent damping. The fit parameters, given in<br />

Table III, are the same used by Barker [2] to fit IX, R, and Raman data near<br />

the transverse optic mode, except So, which had to be increased from 2.01 to<br />

2.056 for best fit. The net result of this fit is that the refractive index of GaP<br />

can be calculated from Eq. (1) to an accuracy somewhat better than four<br />

figures from microwave to visible frequencies. In particular, in the range<br />

30-200 Jim the fit agrees with the experimental n to a few units in the fourth<br />

decimal place (±0.03%) and yields the precise value eo = 11.147 for the static<br />

relative dielectric constant. In Table IV we have labeled this fit with nf for<br />

the data of Barker [2].<br />

Also, Pikhtin et al. [7] proposed an analytic dispersion relationship for<br />

n in the 0.5-1000-Jim spectral range; it has only six parameters and is simpler<br />

than Eq. (1) but less accurate (±0.8%). However, it is useful to report it,<br />

since by means of a relation in Pikhtin et al. [7] it has been possible also<br />

to fit spectra at 105 K. The fit parameters are from Pikhtin et al. [7].<br />

For frequencies above or below V T == vo, the k spectrum has considerable<br />

structure and values much higher than those predicted from Eq. (1).<br />

Since the same bands are observed in compensated and uncompensated<br />

samples, they are attributed to absorption by the lattice (combination bands)<br />

[1, 2]. However, the IX spectra from different labs are in qualitative but not<br />

in quantitative agreement. In the 12-20-Jim region we have tabulated the


<strong>Gallium</strong> Phosphide (GaP) 447<br />

data from Pikhtin and Yas'kov [15] because the n-type sample was monocrystalline,<br />

not intentionally doped, with the lowest carrier concentration<br />

(1.15 x 10 17 cm- 3 ). Besides, T spectra were obtained with a double-beam<br />

spectrophotometer, and R was checked against accurate measurements of n.<br />

Near V T the reported values (labeled kr) were obtained from Eq. (1).<br />

As for the 4-23-pm range, Table IV contains experimental values of n<br />

deduced from the positions of interference peaks in T [5,7J. The thickness<br />

of the samples and the interference order were accurately determined by<br />

comparing, in the 0.5-4-pm range, the results obtained with this method and<br />

with the more precise results obtained by using the prism method. The data<br />

from Abagyan et at. [5] and Pikhtin et at. [7] agree to within the 0.1 %, with<br />

an error [7] of ±0.2% at 4 pm and of ±0.47% at 23 pm. The samples were<br />

n type, undoped, and high resistivity (N < 5 x 10 16 cm - 3). Measurements<br />

performed on low-resistivity samples, doped both n- and p-type up to 1.7 X<br />

10 18 cm - 3 have shown that for )" :;::: 3-pm doping reduces n [5, 7]. For this<br />

reason we have disregraded older data for n [22, 23] that are '" 2% lower.<br />

The absorption coefficient between 1 and 12 pm is free-carrier-like; it typically<br />

increases with wavelength and with free-carrier concentration. Besides,<br />

all the n-type samples show a broad absorption band in the 1-4-pm region<br />

that does not occur in p-type material. In this region there are many measurements<br />

of a [8, 12, 15] on crystals doped with different impurities and<br />

with carrier densities ranging from 10 17 to 10 18 cm - 3. We have tabulated<br />

those from Pikhtin and Yas'kov [15] on the basis of the same reasons that<br />

determined the choice in the 12-20-pffi region.<br />

In the 0.53-4-pm range, where GaP is nearly transparent, n measurements<br />

were carried out by the method of prism minimum deviation [7, 9, 13] and<br />

by interference spacing [11] at 2.24 eV (0.5536 pm) and 2.62 eV (0.4733 pm).<br />

The scattering of n data from different authors is within ± 0.0025. In Pikhtin<br />

et at. [7] the absolute values of n were determined to within ±0.0025; in<br />

Bond [9J n was measured to the fourth decimal. In Nelson and Turner [13J<br />

the uncertainty in the individual value was ±0.0002; however, the value<br />

obtained for different prisms differed by substantially more than this. The<br />

differences are believed to be real and to reflect the variation that can be<br />

expected from different samples of GaP. To include the value for all of the<br />

prisms, an uncertainty of ±0.0012 would have to be assigned to the n values<br />

from 0.545 to 0.70 pm in Table IV. These variations were not correlated with<br />

the level of doping, which varied from no intentional doping to 10 18 cm - 3<br />

with the type of dopant (Te, Sn, Zn) or the method of crystal growth (highpressure<br />

boat growth, floating zone, or solution growth).<br />

The intrinsic electronic absorption edge of single crystals was presented<br />

and analyzed by Spitzer et al. [8] at 300 K, by Dean and Thomas [10J between<br />

1.6 and 300 K, and by Pikhtin and Yas'kov [14J between 4.2 and<br />

500 K. The results agree qualitatively, although there is some quantitative<br />

difference. In Table IV we have reported in the 0.54-0.57-pm range the values<br />

from Dean and Thomas [lOJ that are a little lower than those reported


448 A. Borghesi and G. Guizzetti<br />

by Spitzer et al. [8J and Pikhtin and Yas'kov [14J and were obtained with<br />

exceptionally perfect single crystals grown by a modified wet-hydrogen<br />

transport process. All crystals had very high resistivities and three different<br />

thicknesses (0.0212,0.0724, and 0.362 cm).<br />

The 0.8-0.2-/lm region straddling the fundamental band gap has been<br />

measured more recently by ellipsometry on surfaces containing native oxides<br />

that are mathematically "removed" in the analysis, or samples are chemically<br />

polished to remove this oxide and then put into an inert atmosphere while<br />

the measurement of the ellipsometric parameters !/J and d are performed<br />

[24]. We have included these values and at the ends of this spectral region<br />

have overlapped other data for comparison.<br />

The optical properties from the fundamental absorption edge (0.53 /lm)<br />

to about 0.08 pm can be determined by KK analysis of normal-incidence<br />

reflectance data. The R data between 0.53 and 0.21 /lm obtained with a sensitive<br />

double-beam spectrophotometer by Stokowski and Sell [19J provide<br />

a considerable improvement in sensitivity over the older measurements reported<br />

by Philipp and Ehrenreich [16J and Seraphin and Bennett [23]. The<br />

samples used in Stokowski and Sell [19J were grown by the Czochralski<br />

method, were sliced parallel to a {111} face, and a weak ( '" 0.2%) brominemethanol<br />

solution was used as a polishing etch. The absolute-reflectance values<br />

were accurate to within ± 3% of the reflectivity. The data were about<br />

10% higher than those in Philipp and Ehrenreich [16J, in agreement within<br />

1% with those calculated from n at 0.4733 /lm as measured by Dean et al.<br />

[11]. In the 0.21-0.08-/lm range no other R data are available except those<br />

from Philipp and Ehrenreich [16].<br />

Absorption and !"eflection measurements in the 0.08-0.03-/lm range [18,<br />

20J and only absorption measurements in the 0.08-0.008-/lm range [17J<br />

were performed with synchrotron radiation and with a typical resolution of<br />

2 A over the whole spectral range. The crystalline samples for transmission<br />

were obtained by flash evaporation and samples of at least three different<br />

thicknesses between 500 and 1500 A were used. The thicknesses were determined<br />

with a Tolansky interferometer with an accuracy of about 10% and<br />

also during evaporation with a calibrated quartz-crystal monitor. The absolute<br />

values determined for the absorption coefficient were affected by an<br />

error of less than 20%, which arose mainly from uncertainties in the thicknesses.<br />

The R measurements [20J were performed under nearly normal incidence<br />

[15J on polished bulk samples, etched in bromine-methanol solution.<br />

Since the incoming and reflected intensities were not determined simultaneously,<br />

no accurate absolute values of R were obtained (± 50%); therefore<br />

the measured reflectivities were scaled so as to coincide around the first<br />

maximum at 0.059 /lm with the ones calculated by the KK analysis transforms<br />

from II data. Some discrepancies between scaled Rand R from KK<br />

analysis may be due to a structural difference between the thin films used<br />

to measure T and the bulk samples for R. Also, there may be some influence<br />

of the surface treatment and of light scattering. Larger discrepancies be-


<strong>Gallium</strong> Phosphide (GaP) 449<br />

tween the a experimental data from Cardona et al. [17, 18] and the a values<br />

obtained from KK processing of early R data [16] can be attributed to<br />

R-limited range of R spectra and to the inadequacy of the conventional gasdischarge<br />

spectroscopic sources; in fact, hot-cathode argon lamps have typical<br />

separation of about 1 e V between adjacent lines, equal to the expected<br />

spin-orbit splitting of core levels (0.53 e V for Ga) and to separation between<br />

peaks in the density of conduction states.<br />

In Table IV nand k values in the 0.44-0.08-J-lm range have been obtained<br />

by KK transform on R spectra from Philipp and Ehrenreich [16J and<br />

Stokowski and Sell [19J, extended to shorter wavelengths with the data of<br />

Gudat et al. [20] and longer wavelengths (visible and infrared) with those of<br />

Kleiman and Spitzer [lJ, Giehler and lahne [6J, and Bond [9]. The results<br />

are in fair agreement with the dielectric function ellipsometrically determined<br />

between 0.36 and 0.31 J-lm [21].<br />

REFERENCES<br />

1. D. A. Kleinman and W. G. Spitzer, Phys. Rev. lIS, 110 (1960).<br />

2. A. S. Barker, Jr., Phys. Rev. 165,917 (1968).<br />

3. D. F. Parsons and P. D. Coleman, App/. Opt. 10, 1683 (1971).<br />

4. S. A. Abagyan, G. A. Ivanov, Y. E. Shanurin, and V. I. Amosov, Sov. Phys. Semicond. 5, 889<br />

(1971).<br />

5. S. A. Abagyan, G. A. Ivanov, A. P. Izergin, and Y. E. Shanurin, Sov. Phys. Semicond. 6, 985<br />

(1972).<br />

6. M. Giehler and E. Jahne, Phys. Status Solidi B 73,503 (1976).<br />

7. A. N. Pikhtin, V. T. Prokopenko, and A. D. Yas'kov, Sov. Phys. Semicond. 10, 1224 (1976).<br />

8. W. G . Spitzer, M. Gershenzon, C. 1. Forsch, and D. F. Gibbs, J. Phys. Chem. Sol. 11, 339<br />

(1959).<br />

9. W. L. Bond, J. Appl. Phys. 36, 1674 (1965).<br />

10. P.1. Dean and D. G. Thomas, Phys. Rev. 150,690 (1966).<br />

11. P.1. Dean, G. Kaminsky, and R. B. Zetterstrom, J. Appl. Phys. 3S, 3551 (1967).<br />

12. A. D. Remenyuk, L. G. Zabelina, Yu. 1. Ukhanov, and Y. V. Shmartzev, Sov. Phys. Semicond.<br />

2, 557 (1968).<br />

13. D. F. Nelson and E. H. Turner, J. App/. Phys. 39, 3337 (1968).<br />

14. A. N. Pikhtin and D. A. Yas'kov. Sov. Phys. Solid State 11, 455 (1969).<br />

15. A. N. Pikhtin and D. A. Yas'kov. Phys. Status Solidi 34, 815 (1969).<br />

16. H. R. Philipp and H. Ehrenreich, in "Semiconductors and Semimetals" (R. K. Willardson<br />

and A. C. Beer, eds.), Vol. 3, Chapter 4. Academic, New York, 1967.<br />

17. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, Proc. Int. ConI Phys. Semicond. Cambridge,<br />

1970, p. 208. U.S. Atomic Energy Commission, Oak Ridge, Tennessee, 1970.<br />

18. M. Cardona, W. Gudat, E. E. Koch, M. Skibowski, B. Sonntag, and P. Yu, Phys. Rev.<br />

Lett. 25, 659 (1970).<br />

19. S. E. Stokowski and D. D. Sell, Phys. Rev. B 5, 1636 (1972).<br />

20. W. Gudat, E. E. Koch, P. Y. Yu, M. Cardona, and C. M. Penchina, Phys. Status Solidi<br />

B 52,505 (1972).<br />

21. G. Jungk, Phys. Status Solidi B 67,85 (1975).<br />

22. H. Welker, J. Electron. I, 181 (1955).<br />

23. B. O. Seraphin and H. E. Bennett, in "Semiconductors and Semi metals" (R. K. Willardson<br />

and A. C. Beer, eds.), Vol. 3, p. 219. Academic, New York, 1967.<br />

24. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983); D. E. Aspnes and A. A. Studna,<br />

private communication (1982).


466 Roy F. Potter<br />

cut as polished prisms having included angles ranging between 5 and 18°.<br />

The angle of minimum deviation was measured to obtain the refractive index.<br />

Data of Icenogle et al. [4] at 297 K and some data of Edwin et al. [5] at<br />

25°C, originally given in tabular form, are listed in Table V. The tabulated<br />

data are plotted in Fig. 4.<br />

The precision of the data of Icenogle et al. [4] was such that Barnes and<br />

Piltch [6] used them as a basis for evaluating the coefficients of a temperaturedependent,<br />

Sellmeier-type equation<br />

n 2 = A + BA 2 /(J.? - C) + DA 2 /(A 2 - E).<br />

Using the temperature-dependent values of n, they found the following<br />

values for the coefficients:<br />

A = -6.040 x 1O- 3 T + 11.05128,<br />

B = 9.295 x 1O- 3 T + 4.00536,<br />

C = -5.392 x 1O- 4 T + 0.5999034,<br />

D = 4.151 x 1O- 4 T + 0.09145,<br />

E = 1.51408T + 3426.5.<br />

We have evaluated this expression for "room temperture" of 18°C (291 K),<br />

over a large infrared wavelength range, and these values are included in<br />

Table V. Some comparison with the results from the several experiments<br />

outlined here can be made in the table. The Sellmeier equation represents<br />

the accurate values for high-grade optical-quality germanium within 0.025%,<br />

or better, over the infrared spectral range 2.5-14 p.m and can be extrapolated<br />

to 2.0 and 40 p.m.<br />

Many more measurements have been reported for this spectral range, but<br />

in most cases the specimens were thin films, amorphous material, or heavily<br />

doped. Evaporated films do not, in general, have properties representative<br />

of bulk material, so such results are applicable only to material evaporated<br />

or sputtered by a given recipe. Li [7] tabulates most such measurements<br />

that have appeared in the literature in the past half-century. Li [7] also gives<br />

a table of recommended values for the infrared at various temperatures.<br />

In the infrared spectral region there are two contributions to the intrinsic<br />

absorption properties of germanium. When the infrared radiation field interacts<br />

with the crystal lattice, it is described as a photon-phonon interaction.<br />

Since selection rules include the conservation of energy and wave vector or<br />

momentum, the spectrum will include features related to the photon excitation<br />

of multiple phonons. Such "phonon" bands have been observed for Ge.<br />

Collins and Fan [8] reported absorption coefficients for phonon bands for<br />

300 K. These have been read from a graph and are listed in Table V. Values<br />

of Lax and Burstein [9] are comparable. More recently, Aronson et al. [10]<br />

have measured the absorption coefficient for high-resistivity Ge ( '" 50 n em)<br />

at 300 K. They used samples of different thickness measuring the transmit-


468 Roy F. Potter<br />

[19] are listed in Table V. Room temperature was not stated. Archer [20]<br />

also measured the optical properties over a reduced spectral range with less<br />

spectral detail. Cardona et al. [21] prepared crystalline and amorphous Ge<br />

films on heated and room-temperature KCI substrates, respectively. Samples<br />

were floated off and picked up with a copper mesh. Transmission measurements<br />

were done with synchrotron radiation. The data in Table V were read<br />

from a graph. Room temperature was not stated.<br />

Lukirskii et al. [22] have measured the unpolarized reflectance for Ge as<br />

a function of angle of incidence at four x-ray wavelengths (since e < 1, this<br />

gives a type of external attenuated total reflection). Samples were deposited<br />

on glass substrates. Room temperature was not specified. Note that the angles<br />

as given in Lukirskii et al. [22] are grazing angles, i.e., nl2 - <br />

0.41 flm (1.5-3eV). When the extinction coefficient is low, the agreement in<br />

n between the two sets is quite good (better than 0.25% for 0.83 flm > A ><br />

0.74 flm). As k becomes larger, the discrepancy increases to about 1% at 2 eV<br />

and 4% at 3 eV. At the longer wavelengths Archer's data [20] are about 4%<br />

below those of Aspnes and Studna [19], coming into reasonable agreement<br />

(less than 1% difference) for 0.54 flm > A > 0.36 flm. Thus, the data of Aspnes<br />

and Studna [19] for 0.82 flm > A > 0.2 flm appear to be the best choice for<br />

refractive-index values. Data of Philipp and Taft [17] appear to be too low.<br />

In the spectral region of interband transitions the extinction coefficient<br />

becomes quite large (k > 4), corresponding to absorption coefficients of the<br />

order of 10 6 cm - 1. Reflectance-type measurements must be used. However,<br />

some overlap with transmittance measurements exists for comparison. Measurements<br />

of Dash and Newman [15] extend to 0.69 flm, which permits<br />

comparison with Potter [18J as well as with Aspnes and Studna [19]. The<br />

former appears to be low by about a factor of 2, whilte the agreement with<br />

the latter is within 10-20%, which, given sample treatment and technique<br />

differences, must be considered good. As k becomes larger, Potter's data [18J<br />

come closer to agreeing with those of Aspnes and Studna [19]. For 0.62 flm ><br />

A> 0.4 flm, Potter's data [18J are consistently larger than the data of Aspnes<br />

and Studna [19J by 10-20%. Again, it seems that the data of Aspnes and<br />

Studna [19J would be the choice for values of k.<br />

For values of n overlap regions occur for the data of Briggs [1], Potter<br />

[18J, and the Sellmeier fit. Given that the data of Briggs [lJ and Potter [18]<br />

were taken at 20°C or more, the agreement is good. Below about 2 flm, the<br />

Sellmeier results would increasingly deviate from the measured values. That<br />

the reflectance method agrees with the angle-of-deviation method better than<br />

0.25% in this spectral region establishes the compatibility of the two methods.


Germanium (Ge) 469<br />

Reflectivity-type experiments can presents serious problems to the unwary<br />

for reducing the experimental data to intrinsic material parameters such as<br />

nand k. The condition of the reflecting surface must be well established. Any<br />

damage layer present due to grinding, polishing, etc., must be removed. Chemical<br />

polishes can avoid this problem. Another incipient problem is the likely<br />

presence of a native oxide. A stable oxide grows on germanium to thicknesses<br />

of 50 to 100 A in ambient air. For high-index materials such as Ge,<br />

such a layer must be removed or accounted for. Aspnes et al. [19J stripped<br />

the oxide and took steps to inhibit the oxide growth during the experimental<br />

run. While ellipsometry is very sensitive to the presence of a low-index layer,<br />

reflectance measurements also become quite sensitive to such a layer as k<br />

becomes significant. Both Potter [18J and Archer [20J assumed the presence<br />

of an oxide on their specimens and corrected for it. Archer [20J assumed a<br />

thickness of 10 to 20 A, while Potter [18J assumed a layer with thickness of<br />

50 A and an index of 2.0. (See Aspnes and Stunda [19J for further discussion.)<br />

REFERENCES<br />

1. H. B. Briggs, Phys. Rev. 77, 286 (1950).<br />

2. C. D. Salzberg and J. J. Villa, J. Opt. Soc. Am. 47, 244 (1957).<br />

3. M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem. Solids 8, 204 (1959).<br />

4. H. W. Icenogle, B. C. Platt, and W. L. Wolfe, Appl. Opt. 15, 2348 (1976).<br />

5. R. P. Edwin, M. T. Dudermel, and M. Lamare, Appl. Opt 17, 1066 (1978).<br />

6. N. P. Barnes and M. S. Piltch, J. Opt. Soc. Am. 69,178 (1979).<br />

7. H. H. Li, J. Phys. Chem. Ref Data, 9,561 (1980).<br />

8. R. J. Collins and H. Y. Fan, Phys. Rev. 93, 674 (1954).<br />

9. M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).<br />

10. 1. R. Aronson, H. G. McLinden, and P.1. Gielisse, Phys, Rev. 135, A 785 (1964).<br />

11. D. L. Stierwalt and Roy F. Potter, Rep. Int. Conf Phys. Semicond., Exter, 1962, p.513.<br />

Institute of Physics and Physical Society, London. 1962.<br />

12. C. M. Randall and R. D. Rawcliffe, Appl. Opt. 6,1889 (1967).<br />

13. M. N. Afsar, D. D. Honijk, W. F. Passchier, and J. Goulon, IEEE Trans. Micro. Theor.<br />

Tech. MTT-25, 505 (1977).<br />

14. G. G. MacFarlane and V. Roberts, Phys. Rev. 98, 1865 (1955).<br />

15. W. C. Dash and R. Newman, Phys. Rev. 99,' 1151 (1955).<br />

16, M, Cardona, in "Optical Properties of Solids" (S, Nudelman and S. S. Mitra, eds,), p, 137,<br />

Plenum, New York, 1969.<br />

17. H. R, Philipp and E. A, Taft, Phys. Rev. 113, 1002 (1959),<br />

18. Roy F. Potter, Phys. Rev, 150, 562 (1966),<br />

19, D, E. Aspnes and A, A. Studna, Phys, Rev, B 27, 985 (1983); D. E. Aspnes, private communication<br />

(1983).<br />

20. R,1. Archer, Phys, Rev, 110, 354 (1958).<br />

21. M. Cardona, W. Gudat, B. Sonntag, and p, y, Yu, Proc. 10th Int. Can! Phys. Semicond.,<br />

Cambridge, 1970, p. 208, U.S, Atomic Energy Commission, Oak Ridge, Tennessee, 1970.<br />

22. A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Y. F. ShepeJov, Opt. Spectrosc. 16, 168<br />

(1964); A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Y. F. Shepelov, Opt. Spektrosk. 16,<br />

310 (1964).


Germanium (Ge) 471<br />

eV<br />

TABLE V<br />

Values of nand k for Germanium Obtained from Various References·<br />

cm- 1<br />

Jim n k k<br />

525.3 0.00236 0.99741 [22] 9.8 x 10- 4 [22]<br />

394.8 0.00314 0.99590 2.05 x 10- 3<br />

281.8 0.0044 0.99385 4.30<br />

185.1 0.0067 0.99050 9.50 x 10- 3<br />

155 0.007999 1.47 x 10- 2 [21]<br />

150 0.008266 1.55<br />

145 0.008550 1.63<br />

140 0.008856 1.71<br />

135 0.009184 1.77<br />

130 0.009537 1.98<br />

127.5 0.009725 1.94<br />

125 0.009919 1.98<br />

122.5 0.01012 2.02<br />

120 0.01033 1.99<br />

115 0.01078 2.06<br />

110 0.01127 2.21<br />

105 0.01181 2.37<br />

100 0.01240 2.57<br />

97.5 0.01272 2.65<br />

95 0.01305 2.71<br />

90 0.01378 2.79<br />

85 0.01459 3.03<br />

80 0.01550 3.26<br />

75 0.01653 3.39<br />

70 0.01771 3.52<br />

65 0.01907 3.67<br />

60 0.02066 3.94<br />

55 0.02254 4.23<br />

50 0.02480 4.52<br />

45 0.02755 5.04<br />

40 0.03100 6.04<br />

38 0.03263 6.51<br />

36 0.03444 7.40<br />

34 0.03647 8.56<br />

32 0.03875 9.99 x 10- 2<br />

31 0.04000 0.106<br />

30 0.04133 0.102<br />

29 0.04275 7.14 x 10- 2<br />

28 0.04428 7.47 x 10- 2<br />

26 0.04769 0.110<br />

24 0.05166 0.144<br />

22 0.05636 0.179<br />

20 0.06199 0.237<br />

10 0.1240 0.93 [17] 0.86 [17]<br />

9.5 0.1305 1.0<br />

(continued)<br />

• References are indicated in brackets. Data from Stierwalt and Potter [11] obtained at 50 0e<br />

are included because no room-temperature data were available in the 1O-15-Jim region.


472 Roy F. Potter<br />

TABLE V (Continued)<br />

Germanium<br />

eV cm-! pm n k k<br />

9 0.1378 0.92 1.14<br />

8.5 0.1459 0.92 1.2<br />

8 0.1550 0.92 1.4<br />

7.5 0.1653 1.6<br />

7 0.1771 1.0 1.8<br />

6.5 0.1907 1.1 2.05<br />

6 48,390 0.2066 1.3 2.34<br />

1.022 [19] 2.774 [19]<br />

5.94 47,910 0.2087 1.073 2.801<br />

5.9 47,590 0.2101 1.108 2.831<br />

5.84 47,100 0.2123 1.167 2.862<br />

5.8 46,780 0.2138 1.209 2.873<br />

5.75 46,380 0.2156 1.48 [17] 2.4 [17]<br />

5.74 46,300 0.2160 1.273 [19] 2.874 [19]<br />

5.7 45,970 0.2175 1.293 2.163<br />

5.64 45,490 0.2198 1.345 2.852<br />

5.6 45,170 0.2214 1.360 2.846<br />

5.54 44,680 0.2238 1.372 2.842<br />

5.5 44,360 0.2254 1.380 2.842<br />

1.55 [17] 2.4 [17]<br />

5.44 43,880 0.2279 1.387 [19] 2.849 [19]<br />

5.4 43,550 0.2296 1.383 2.854<br />

5.34 43,070 0.2322 1.377 2.877<br />

5.3 42,750 0.2339 1.371 2.897<br />

5.25 42,340 0.2362 1.57 [17] 2.7 [17]<br />

5.24 42,260 0.2366 1.366 [19] 2.938 [19]<br />

5.2 41,940 0.2384 1.364 2.973<br />

5.14 41,460 0.2412 1.366 3.031<br />

5.1 41,130 0.2431 1.370 3.073<br />

5.04 40,650 0.2460 1.382 3.146<br />

5.0 40,330 0.2480 1.394 3.197<br />

1.6 [17] 2.86 [17]<br />

4.94 39,840 0.2510 1.417 [19] 3.282 [19]<br />

4.9 39,520 0.2530 1.435 3.342<br />

4.84 39,040 0.2562 1.470 3.439<br />

4.8 38,710 0.2583 1.498 3.509<br />

4.74 38,230 0.26i6 1.546 3.624<br />

4.7 37,910 0.2638 1.586 3.709<br />

4.64 37,420 0.2672 1.659 3.852<br />

4.6 37,100 0.2695 1.720 3.960<br />

4.54 36,620 0.2731 1.839 4.147<br />

4.5 36,290 0.2755 1.953 4.297<br />

4.44 35,910 0.2792 2.226 4.543<br />

4.4 35,080 0.2818 2.516 4.669<br />

4.34 35,000 0.2857 3.038 4.653<br />

4.3 34,680 0.2883 3.338 4.507<br />

4.24 34,200 0.2924 3.633 4.207<br />

4.2 33,880 0.2952 3.745 4.009<br />

4.14 33,390 0.2995 3.837 3.756


Germanium (Ge) 473<br />

eV<br />

cm-!<br />

TABLE V (Continued)<br />

Germanium<br />

11m n k k<br />

4.1 33,070 0.3024 3.869 3.614<br />

4.04 32,580 0.3069 3.896 3.436<br />

4.0 32,260 0.3100 3.905 3.336<br />

3.94 31,780 0.3147 3.916 3.209<br />

3.9 31,460 0.3179 3.920 3.137<br />

3.84 30,970 0.3229 3.930 3.043<br />

3.8 30,650 0.3263 3.936 2.986<br />

3.74 30,160 0.3315 3.949 2.909<br />

3.7 29,840 0.3351 3.958 2.863<br />

3.64 29,360 0.3406 3.974 2.799<br />

3.6 29,040 0.3444 3.985 2.759<br />

3.54 28,550 0.3502 4.005 2.702<br />

3.5 28,230 0.3542 4.020 2.667<br />

3.44 27,750 0.3604 4.048 2.615<br />

3.4 27,420 0.3647 4.070 2.579<br />

3.34 26,940 0.3712 4.106 2.517<br />

3.3 26,620 0.3757 4.128 2.469<br />

3.24 26,130 0.3827 4.150 2.392<br />

3.2 25,810 0.3875 4.157 2.340<br />

3.14 25,330 0.3949 4.153 2.262<br />

3.1 25,000 0.4000 4.141 2.215<br />

3.04 24,520 0.4078 4.107 2.164<br />

3.0 24,200 0.4133 4.082 2.145<br />

2.94 23,710 0.4217 4.052 2.135<br />

2.9 23,390 0.4275 4.037 2.140<br />

2.84 22,910 0.4366 4.030 2.162<br />

2.8 22,580 0.4428 4.035 2.181<br />

2.74 22,100 0.4525 4.058 2.215<br />

2.7 21,780 0.4592 4.082 2.240<br />

2.64 21,290 0.4696 4.133 2.281<br />

2.6 20,970 0.4769 4.180 2.309<br />

2.54 20,490 0.4881 4.267 2.353<br />

2.5 20,160 0.4959 4.340 2.384<br />

2.44 19,680 0.5081 4.482 2.429<br />

2.4 19,360 0.5166 4.610 2.455<br />

2.34 18,870 0.5299 4.883 2.434<br />

2.3 18,550 0.5391 5.062 2.318<br />

2.24 18,070 0.5535 5,198 2.125<br />

2.2 17,740 0.5636 5.283 2.049<br />

2.14 17,260 0.5794 5.554 1.924<br />

2.1 16,940 0.5904 5.748 1.634<br />

2.05 16,530 0.6048 5.9 [18J 1.1 [18J<br />

2.04 16,450 0.6078 5.708 [19] 1.150 [19]<br />

2.0 16,130 0.6199 5.588 0.933<br />

5.64 [18] 0.8<br />

1.95 15,730 0.6358 5.5 0.66<br />

1.9 15,320 0.6526 5.38 0.54<br />

5.294 [19J 0.638<br />

(continued)


474 Roy F. Potter<br />

eV<br />

cm- 1<br />

TABLE V (Continued)<br />

Germanium<br />

JIm n k k<br />

1.85 14,920 0.6702 5.21 [18] 0.4<br />

1.84 14,840 0.6738 5.152 [19] 0.537<br />

1.8 14,520 0.6888 5.067 0.500<br />

5.08 [18] 0.26<br />

0.466 [15]<br />

1.75 14,110 0.7085 4.99 0.2<br />

1.74 14,030 0.7126 4.961 [19] 0.430 [19]<br />

1.7 13,710 0.7293 4.897 0.401<br />

4.95 [18] 0.18<br />

0.389 [15J<br />

1.64 13,230 0.7560 4.816 [19] 0.364 [19]<br />

1.6 12,900 0.7749 4.763 0.345<br />

4.75 [18] 0.308 [15]<br />

1.54 12,420 0.8051 4.684 [19] 0.316 [19]<br />

1.5 12,100 0.8266 4.653 0.298<br />

4.64 [18] 0.237 [IS]<br />

1.4 11,280 0.8856 4.56 0.190<br />

1.3 10,490 0.9537 4.495 0.167<br />

1.240 10,000 1.0 4.61733 [6]<br />

1.2 9,679 1.033 4.42 [18] 0.123<br />

I.l 8,872 1.127 4.385 0.103<br />

1.033 8,333 1.2 4.35673 [6]<br />

1.0 8,065 1.240 4.325 [18] 8.09 x 10- 2<br />

0.9 7,259 1.378 4.285 7.45<br />

0.8856 7,143 1.4 4.23840 [6]<br />

0.88 7,098 1.409 6.73<br />

0.86 6,936 1.442 6.88<br />

0.84 6,775 1.476 6.58<br />

0.82 6,614 1.512 5.66 x 10- 2<br />

0.8 6,452 1.550 4.275 [16] 5.67 x 10- 3<br />

0.78 6,291 1.590 3.42 x 10- 3<br />

0.775 6,251 1.600 4.17262 [6] 8.15 x 10- 4 [19]<br />

0.76 6,130 1.631 7.79 x 10- 4<br />

0.75 6,049 1.653 5.06<br />

0.74 5,968 1.675 6.67<br />

0.725 5,847 1.710 3.01<br />

0.72 5,807 1.722 4.66<br />

0.7 5,646 1.771 4.18 [18] 2.82 1.27 x 10- 4<br />

0.6888 5,556 1.8 4.13164 [6]<br />

4.143 [I]<br />

0.68 5,485 1.823 1.31 x 10- 4<br />

0.675 5,444 1.837 4.22 x 10- 5<br />

0.6702 5,405 1.85 4.135<br />

0.66 5,323 1.879 6.73 x 10- 5<br />

0.6525 5,263 1.90 4.129<br />

0.65 5,243 1.907 9.71 x 10- 6<br />

0.64 5,162 1.937 7.71 x 10- 6<br />

0.625 5,041 1.984 1.42 x 10- 6<br />

0.6199 5,000 2.0 4.116


Germanium (Ge)<br />

eV<br />

cm - 1<br />

TABLE V (Continued)<br />

Germanium<br />

Jlm n k k<br />

4.10415 [6]<br />

0.6 4,8 39 2.066 6.58 x 10- 7<br />

0.5904 4,762 2.1 4.104 [1]<br />

0.5636 4,545 2.2 4.092<br />

4.08469 [6]<br />

0.5391 4,348 2.3 4.085 [1]<br />

0.5166 4,167 2.4 4.078<br />

4.07038 [6]<br />

0.4959 4,000 2.5 4.072 [1]<br />

0.4854 3,9 15 2.554 4.06230 [4]<br />

0.4769 3,846 2.6 4.068 [1]<br />

4.05951 [6]<br />

0.4675 3,771 2.652 4.05754 [4]<br />

0.4538 3,660 2.732 4.05310<br />

0.4428 3,571 2.8 4.05105 [6]<br />

0.4341 3,501 2.856 4.04947 [4]<br />

0.4191 3,381 2.958 4.04595<br />

0.4133 3,333 3.0 4.04433 [6]<br />

0.4012 3,236 3.09 4.04292 [4]<br />

0.3874 3,125 3.2 4.03889 [6]<br />

0.3647 2,94 1 3.4 4.03443<br />

0.3444 2,778 3.6 4.03072<br />

0.3263 2,632 3.8 4.02760<br />

0.3100 2,500 4.0 4.02495<br />

0.3009 2,427 4.12 4.02457 [4]<br />

0.2952 2,381 4.2 402268 [6]<br />

0.2818 2,273 4.4 4.02072<br />

0.2695 2,174 4.6 4.01901<br />

0.2583 2,083 4.8 4.01751<br />

0.2480 2,000 5.0 4.01619<br />

0.2389 1,927 5.19 4.01617 [4]<br />

0.2384 1,923 5.2 4.01503 [6]<br />

0.2296 1,852 5.4 4.01399<br />

0.2214 1,786 5.6 4.01305<br />

0.2138 1,724 5.8 4.01222<br />

0.2066 1,667 6.0 4.01146<br />

0.2000 1,613 6.2 4.01078<br />

0.1937 1,563 6.4 4.01015<br />

0.1879 1,515 6.6 4.00958<br />

0.1823 1,471 6.8 4.00906<br />

0.1771 1,429 7.0 4.00858<br />

0.1722 1,389 7.2 4.00814<br />

0.1675 1,351 7.4 4.00773<br />

0.1631 1,316 7.6 4.00736<br />

0.1590 1,282 7.8 4.00701<br />

0.1550 1,250 8.0 4.00668<br />

4.00748 [5]<br />

0.1512 1,220 8.2 4.00637 [6]<br />

475<br />

(continued)


476 Roy F. Potter<br />

eV<br />

cm- 1<br />

TABLE V (Continued)<br />

Germanium<br />

pm n k k<br />

0.1506 1,215 8.23 4.00743 [4]<br />

0.1476 1,190 8.4 4.00609 [6]<br />

0.1442 1,163 8.6 4.00582<br />

0.1409 1,136 8.8 4.00556<br />

0.1378 1,111 9.0 4.00533<br />

4.00620 [5]<br />

0.1348 1,087 9.2 4.00510 [6]<br />

0.1319 1,064 9.4 4.00489<br />

0.1292 1,042 9.6 4.00469<br />

0.1265 1,020 9.8 4.00449<br />

0.1240 1,000 10.0 4.00431<br />

4.00525 [5] 1.43 x 10- 5 [11]<br />

0.1207 973.7 10.27 4.00571 [4]<br />

0.1181 952.4 10.5 4.00389 [6]<br />

0.1137 917.4 10.9 1.30<br />

0.1127 909.1 11.0 4.00351<br />

4.00436 [5]<br />

0.1078 869.6 11.5 4.00316 [6]<br />

0.1033 833.3 12.0 4.00285 3.82<br />

4.00398 [5]<br />

0.1003 809.1 12.36 4.00627 [4]<br />

0.09919 800.0 12.5 4.00255 [6]<br />

0.09840 793.7 12.6 3.51<br />

0.09537 769.2 13.0 4.00228<br />

4.00352 [5]<br />

0.09460 763.4 13.1 4.59<br />

0.09184 740.7 13.5 4.00202 [6]<br />

0.08920 719.4 13.9 3.98<br />

0.08856 714.3 14.0 4.00177<br />

4.00315 [5]<br />

0.08551 689.7 14.5 4.00153 [6] 5.77<br />

0.08431 680 14.71 2.34 x 10- 5 [8]<br />

0.08307 670 14.93 3.56<br />

0.08266 666.7 15.0 4.00130 9.78 x 10- 5<br />

0.08183 660 15.15 5.30<br />

0.08157 657.9 15.2 1.2 x 10- 4<br />

0.08059 650 15.38 6.24<br />

0.07999 645.2 15.5 4.00107 1.71 x 10- 4<br />

0.07935 640 15.63 7.34<br />

0.07811 630 15.87 7.33<br />

0.07749 625.0 16.0 4.00086 9.55 x 10- 5<br />

0.07687 620 16.13 6.54<br />

0.07563 610 16.39 5.61<br />

0.07514 606.1 16.5 1.58 x 10- 4<br />

0.07439 600 16.67 4.91<br />

0.07377 595 16.81 6.02<br />

0.07315 590 16.95 9.44 x 10- 5<br />

0.07293 588.2 17.0 4.00043 2.57<br />

0.07191 580 17.24 1.64 x 10- 4


Germanium (Ge) 477<br />

eV<br />

cm-!<br />

TABLE V (Continued)<br />

Germanium<br />

11m n k k<br />

0.07085 571.4 17.5 3.90<br />

0.07067 570 17.54 2.09<br />

0.06943 560 17.86 2.56<br />

0.06888 555.6 18.0 4.00001 3.01<br />

0.06819 550 18.18 2.68<br />

0.06757 545 18.35 2.63<br />

0.06702 540.5 18.5 4.27<br />

0.06695 540 18.52 2.51<br />

0.06633 535 18.69 2.68<br />

0.06571 530 18.87 3.00<br />

0.06526 526.3 19.0 3.99958 4.53<br />

0.06447 520 19.23 3.21<br />

0.06358 512.8 19.5 4.03<br />

0.06323 510 19.61 3.12<br />

0.06199 500 20.00 3.99915 2.39 3.98<br />

0.06075 490 20.41 1.94<br />

0.06048 487.8 20.5 3.92<br />

0.05951 480 20.83 2.49<br />

0.05904 476.2 21 5.01<br />

0.05827 470 21.28 3.39<br />

0.05767 465.1 21.5 7.70 x 10- 4<br />

0.05703 460 21.74 4.67<br />

0.05636 454.5 22.0 3.99825 1.02 x 10- 3<br />

0.05579 450 22.22 5.84 6.0 x 10- 4 [10]<br />

0.05455 440 22.73 7.24 x 10- 4 8.0 X 10- 4<br />

0.05331 430 23.26 1.11 x 10- 3 1.1 X 10- 3<br />

0.05269 425 23.53 1.27<br />

0.05207 420 23.81 1.10 x 10- 3 1.35<br />

0.05166 416.7 24.0 3.99728<br />

0.05083 410 24.39 7.77 x 10- 4 1.4 x 10- 3<br />

0.05021 405 24.69 9.0 x 10- 4<br />

0.04959 400 25.00 6.17 8.0 x 10- 4<br />

0.04897 395 25.32 8.06 x 10- 4 1.5 X 10- 3<br />

0.04835 390 25.64 1.73 x 10- 3 2.0<br />

0.04769 384.6 26.0 3.99621<br />

0.04711 380 26.32 2.30 2.1<br />

0.04587 370 27.03 2.80 2.5<br />

0.04463 360 27.78 3.76 3.4<br />

0.04428 357.1 28.0 3.99500<br />

0.04401 355 28.17 5.5<br />

0.04370 352.5 28.37 6.7<br />

0.04339 350 28.57 5.23 6.3<br />

0.04308 347.5 28.78 6.7<br />

0.04277 345 28.99 6.92 6.5<br />

0.04215 340 29.41 4.68 3.2<br />

0.04133 333.3 30.0 3.99363<br />

0.04092 330 30.30 3.62 2.95<br />

0.03968 320 31.25 2.98 2.9<br />

(continued)


478 Roy F. Potter<br />

eV<br />

cm- 1<br />

TABLE V (Continued)<br />

Germanium<br />

/Lm n k k<br />

0.03844 310 32.26 2.82 2.7<br />

0.03782 305 32.79 3.00<br />

0.03720 300 33.33 3.18 2.75<br />

0.03658 295 33.90 2.83<br />

0.03596 290 34.48 2.74 3.05<br />

0.03542 285.7 35 3.98925<br />

0.03534 285 35.09 3.45<br />

0.03472 280 35.71 3.55<br />

0.03410 275 36.36 3.3<br />

0.03348 270 37.04 2.75<br />

0.03224 260 38.46 1.55<br />

0.03100 250 40.00 3.98272 0.85<br />

0.02976 240 41.67 0.7<br />

0.02852 230 43.48 0.65<br />

0.02728 220 45.45 0.85<br />

0.02604 210 47.62 1.25<br />

0.02480 200 50.00 1.5<br />

0.02356 190 52.63 1.53<br />

0.02232 180 55.56 1.55<br />

0.02108 170 58.82 1.6<br />

0.01984 160 62.50 1.6<br />

0.1860 150 66.67 1.5<br />

0.01736 140 71.43 4.0060 [12] 1.02 [12] 1.5<br />

0.01643 132.5 75.47 4.0060 1.14<br />

0.01612 130 76.92 1.55<br />

0.01550 125 80.00 4.0060 1.27<br />

0.01488 120 83.33 1.7<br />

0.01457 117.05 85.11 4.0060 1.62<br />

0.01364 110 90.91 4.0063 2.10 2.4<br />

0.01302 105 95.24 2.8<br />

0.01271 102.5 97.56 4.0064 2.41<br />

0.01240 100 100.0 3.0<br />

0.01178 95 105.3 4.0067 2.01 2.5<br />

0.01116 90 111.1 2.1 x 10- 3<br />

0.01085 87.5 114.3 4.0068 1.73<br />

0.009919 80 125.0 4.0067 1.59<br />

0.008989 72.5 137.9 4.0067 1.43<br />

0.008059 65 153.8 4.0065 1.34<br />

0.007129 57.5 173.9 4.0061 1.10<br />

0.006199 50 200.0 4.0059 1.11<br />

0.005269 42.5 235.3 4.0056 1.50<br />

0.004339 35 285.7 4.0052 2.04<br />

0.003410 27.5 363.6 4.0047 2.89<br />

0.002480 20 500.0 4.0043 4.77 x 10- 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!