16.07.2013 Views

(Converted)-5 - Journal of Cell and Molecular Biology - Haliç ...

(Converted)-5 - Journal of Cell and Molecular Biology - Haliç ...

(Converted)-5 - Journal of Cell and Molecular Biology - Haliç ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

core <strong>and</strong> holoenzyme (Burgess, 1969). The omega<br />

subunit was for many years considered a curiosity<br />

since no function could be ascribed to it. Therefore, the<br />

available literature on the ω subunit as regards to its<br />

structure <strong>and</strong> function is rare. The ω subunit is not<br />

required for the function <strong>of</strong> the transcriptional<br />

apparatus both in vivo <strong>and</strong> in vitro. Strain lacking ω,<br />

that is, a rpoZ null mutant is viable, suggesting a nonessential<br />

nature <strong>of</strong> the protein or that there might also<br />

be a redundancy in function. The only known<br />

phenotype ascribed to the rpoZ null mutant is a slower<br />

growth time (Mukherjee et al., 1999). However, it is<br />

now known that omega is necessary to restore<br />

denatured RNA polymerase in vitro to its fully<br />

functional form. It may function by binding<br />

simultaneously to the N-terminus <strong>and</strong> C-terminus <strong>of</strong><br />

the β' subunit. The omega subunit is a part <strong>of</strong> the<br />

Thermus aquaticus enzyme whose structure was<br />

recently determined (Murakami et al., 2002).<br />

A study by Mukharjee <strong>and</strong> Chatterji (1999) showed<br />

that ω-less holoenzyme has lesser affinity towards the<br />

DNA template <strong>and</strong> external addition <strong>of</strong> ω destabilizes<br />

the open complex for both the wild-type <strong>and</strong> ω-less<br />

enzyme. The ω-less core enzyme interacts with the σ 70<br />

subunit to expose the –35 recognition domain (domain<br />

4·2) unlike that observed in the wild-type interaction.<br />

Thus the absence <strong>of</strong> the ω subunit leads to the<br />

formation <strong>of</strong> an enzyme which has altered DNA<br />

binding <strong>and</strong> σ 70 binding properties. Circular dichroic<br />

measurements also indicate a major conformational<br />

alteration <strong>of</strong> both holo <strong>and</strong> core RNA polymerase in<br />

the presence <strong>and</strong> absence <strong>of</strong> the ω subunit.<br />

References<br />

Attey A, Belyaeva T, Savery N, Hoggett J, Fujita N,<br />

Ishihama A <strong>and</strong> Busby S. Interactions between the cyclic<br />

AMP receptor protein <strong>and</strong> the α subunit <strong>of</strong> RNA<br />

polymerase at the E. coli galactose operon P1 promoter.<br />

Nucl Acid Res. 22: 4375-4380, 1994.<br />

Borukhov S, Lee J <strong>and</strong> Goldfarb A. Mapping <strong>of</strong> a contact for<br />

the RNA 3' terminus in the largest subunit <strong>of</strong> RNA<br />

polymerase. J Biol Chem. 266: 23932-23935, 1991.<br />

Brennan RT <strong>and</strong> Matthews BW. The helix-turn-helix DNA<br />

binding motif. J Biol Chem. 264: 1903-1906, 1989.<br />

Burgess RR. Separation <strong>and</strong> characterization <strong>of</strong> the subunits<br />

<strong>of</strong> RNA polymerase. J Biol Chem. 244: 2168-2176,<br />

1969.<br />

Busby S, West D, Lawes M, Webster C, Ishihama A <strong>and</strong><br />

Kolb A. Transcription activation by the E. coli cyclic-<br />

E. coli RNA polymerase 73<br />

amp protein-receptors bound in t<strong>and</strong>em at promoters can<br />

interact synergistically. J Mol Biol. 241: 341-352, 1994.<br />

Büyükuslu N, Trigwell SM, Lim PP, Fujita N, Ishihama A,<br />

Ralphs N <strong>and</strong> Glass RE. Physical mapping <strong>of</strong> a<br />

collection <strong>of</strong> MaeI-generating mutations in the β gene <strong>of</strong><br />

E. coli RNA polymerase <strong>and</strong> the functional effect <strong>of</strong><br />

internal deletions constructed through their<br />

manipulation. Genes <strong>and</strong> Function 1: 119-129, 1997.<br />

Callaci S, Heyduk E <strong>and</strong> Heyduk T. Conformational changes<br />

<strong>of</strong> E. coli RNA polymerase σ 70 factor induced by binding<br />

to the core enzyme. J Biol Chem. 273: 329995-33001,<br />

1998.<br />

Callaci S, Heyduk E <strong>and</strong> Heyduk T. Core RNA polymerase<br />

from E. coli induces a major change in the domain<br />

arrangement <strong>of</strong> the σ 70 subunit. <strong>Molecular</strong> <strong>Cell</strong>. 3: 229-<br />

238, 1999.<br />

Cannon W, Claveriemartin F, Austin S <strong>and</strong> Buck M.<br />

Identification <strong>of</strong> a DNA-contacting surface in the<br />

transcription factor σ 54 . Mol Microbiol. 11: 227-236,<br />

1994.<br />

Clerget M, Jin DJ <strong>and</strong> Weisber RA. A zinc-binding region in<br />

the β' subunit <strong>of</strong> RNA polymerase is involved in<br />

antitermination <strong>of</strong> early transcription <strong>of</strong> phage HK022. J<br />

Mol Biol. 248: 768-780, 1995.<br />

Coppard JR <strong>and</strong> Merrick MJ. Casette mutagenesis implicates<br />

a helix-turn-helix motif in promoter recognition by the<br />

novel RNA-polymerase σ-factor σ 54 . Mol Microbiol. 5:<br />

1309-1317, 1991.<br />

Cromie K, Ahmad K, Malik T, Büyükuslu N <strong>and</strong> Glass RE.<br />

Trans-dominant mutations in the 3'-terminal region <strong>of</strong><br />

the rpoB gene define highly conserved, essential residues<br />

in the β subunit <strong>of</strong> RNA polymerase: the GEME motif.<br />

Genes to <strong>Cell</strong>s. 4: 145-159, 1999.<br />

Daniels D, Zuber R <strong>and</strong> Losick R. Two amino acids in an<br />

RNA polymerase σ factor involved in the recognition <strong>of</strong><br />

adjacent base pairs in the –10 region <strong>of</strong> a cognate<br />

promoter. Proc Nat Acad Sci. USA 87: 8075-8079, 1990.<br />

Darst SA, Edwards AM <strong>and</strong> Kornberg RD. Threedimensional<br />

structure <strong>of</strong> E. coli RNA polymerase<br />

holoenzyme determined by electron crystallography.<br />

Nature. 340: 730-732, 1989.<br />

Dombroski AJ, Walter WA, Record MT, Jr. Siegele DA <strong>and</strong><br />

Gross CA. Polypeptides containing highly conserved<br />

regions <strong>of</strong> transcription initiation factor sigma 70 exhibit<br />

specificity <strong>of</strong> binding to promoter DNA. <strong>Cell</strong>. 70: 501-<br />

512, 1992.<br />

Dombroski AJ, Walter WA <strong>and</strong> Gross CA. Amino-terminal<br />

amino acids modulate sigma-factor DNA-binding<br />

activity. Genes Dev. 7: 2446-2455, 1993.<br />

Fukuda R <strong>and</strong> Ishihama A. Subunits <strong>of</strong> RNA polymerase in<br />

function <strong>and</strong> structure. V. Maturation in vitro <strong>of</strong> core<br />

enzyme from E. coli. J Mol Biol. 87: 523-540, 1974.<br />

Glass RE, Honda A <strong>and</strong> Ishihama A. Genetic studies on the<br />

β subunit <strong>of</strong> E. coli RNA polymerase. IX The role <strong>of</strong> the<br />

carboxy-terminus in enzyme assembly. Mol Gen Genet.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!