16.07.2013 Views

(Converted)-5 - Journal of Cell and Molecular Biology - Haliç ...

(Converted)-5 - Journal of Cell and Molecular Biology - Haliç ...

(Converted)-5 - Journal of Cell and Molecular Biology - Haliç ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

76 Nihal Büyükuslu<br />

Ovchinnikov YA, Monastryskaya GS, Gubanov VV,<br />

Guryev SO, Salomanita IS, Shuvaeva TM, Lipkin VM<br />

<strong>and</strong> Sverdlov ED. The primary structure <strong>of</strong> E. coli RNA<br />

polymerase. Nucleotide sequence <strong>of</strong> the rpoC gene<br />

<strong>and</strong> amino acid sequence <strong>of</strong> the b' subunit. Nucl Acid<br />

Res. 10: 4035-4044, 1982.<br />

Panny SR, Heil A, Mazus B, Palm P, Zillig W, Mindlin SZ.<br />

Ilyina TS <strong>and</strong> Khesin RB. A temperature sensitive<br />

mutation <strong>of</strong> the β' subunit <strong>of</strong> DNA-dependent RNA<br />

polymerase from E. coli T116. FEBS letter. 48: 241-245,<br />

1974.<br />

Petersen SK <strong>and</strong> Flemming GH. A missense mutation in the<br />

rpoC gene affects chromosomal replication control in<br />

E. coli. J Bacteriol. 173: 5200-5206, 1991.<br />

Polyakov A, Nikiforov V <strong>and</strong> Goldfarb A. Disruption <strong>of</strong><br />

substrate binding site in E. coli RNA polymerase by<br />

lethal alanine substitutions in carboxy terminal domain<br />

<strong>of</strong> the β subunit. FEBS letter. 444: 189-194, 1999.<br />

Polyakov A, Severinova E <strong>and</strong> Darst SA. 3-dimensional<br />

structure <strong>of</strong> E. coli core RNA-polymerase-promoter<br />

binding <strong>and</strong> elongation conformations <strong>of</strong> the enzyme.<br />

<strong>Cell</strong>. 83: 365-373, 1995.<br />

Popham DL, Szeto D, Keener J <strong>and</strong> Kustu S. Function <strong>of</strong> a<br />

bacterial activator protein that binds to transcriptional<br />

enhancers. Science. 243: 629-635, 1989.<br />

Ross W, Gosink KK, Salomon J, Igarashi K, Zou C,<br />

Ishihama A, Severinov K <strong>and</strong> Gourse RL. A third<br />

recognition element in bacterial promoters-DNAbinding<br />

by α subunit <strong>of</strong> RNA polymerase. Science. 262:<br />

1407-1413, 1993.<br />

Sasse-Dwight σ <strong>and</strong> Gralla JD. Role <strong>of</strong> eukaryotic-type<br />

functional domains found in the prokaryotic enhancer<br />

receptor factor σ 54 . <strong>Cell</strong> 62: 945-954, 1990.<br />

Severinov K, Fenyo D, Severinova E, Mustaev A, Chait BT<br />

<strong>and</strong> Goldfarb DS. The σ-subunit conserved region-3 is<br />

part <strong>of</strong> 5'-face <strong>of</strong> active-center <strong>of</strong> E. coli RNApolymerase.<br />

J Biol Chem. 269: 20826-20828, 1994.<br />

Severinov K, Mustaev A, Kashlev M, Borukhov S,<br />

Nikiforov V <strong>and</strong> Goldfarb A. Dissection <strong>of</strong> the β subunit<br />

in the E. coli RNA polymerase into domains by<br />

proteolytic cleavage. J Biol Chem. 267: 12813-12819,<br />

1992.<br />

Severinov K, Mustaev A, Severinov E, Kozlov M <strong>and</strong><br />

Darst SA. The β subunit rif-cluster-I is only angstroms<br />

away from the active center <strong>of</strong> E. coli RNA-polymerase.<br />

J Biol Chem. 270: 29428-29432, 1995.<br />

Severinov K, Soushko M, Goldfarb A <strong>and</strong> Nikiforov V.<br />

Rifampicin region revisited- new rifampicin-resistant<br />

<strong>and</strong> streptolydigin-resistant mutants in the β subunit <strong>of</strong><br />

E. coli RNA polymerase. J Biol Chem. 268: 14820-<br />

14825, 1993.<br />

Siebenlist U, Simpson R <strong>and</strong> Gilbert W. E. coli RNA<br />

polymerase interacts homologously with two different<br />

promoters. <strong>Cell</strong>. 20: 269-272, 1980.<br />

Siegele DA, Hu JC, Walter WA <strong>and</strong> Gross CA. Altered<br />

promoter recognition by mutant forms <strong>of</strong> the σ 70 subunit<br />

<strong>of</strong> E. coli RNA polymerase. J Mol Biol. 206: 591-603,<br />

1989.<br />

Sparkovski J <strong>and</strong> Das A. Simultaneous gain <strong>and</strong> loss <strong>of</strong><br />

functions caused by a single amino acid substitution in<br />

the β subunit <strong>of</strong> E. coli RNA polymerase: Suppression <strong>of</strong><br />

NusA <strong>and</strong> rho mutations <strong>and</strong> conditional lethality.<br />

Genetics. 130: 411-428, 1992.<br />

Straiger S, Kunkel B, Kroos L, <strong>and</strong> Losick R. Chromosomal<br />

rearrangement generating a composite gene for a<br />

developmental σ factor. Science. 243: 507-512, 1989.<br />

Straiger P, Parsot C, <strong>and</strong> Bouvier J. Two functional domains<br />

conserved in major <strong>and</strong> alternate bacterial σ factors.<br />

FEBS letters. 187: 11-15, 1985.<br />

Squires CH, Defelice M, Wessler SR <strong>and</strong> Calvo JM. Physical<br />

characterisation <strong>of</strong> the ilvH1 operon <strong>of</strong> E. coli K12. J<br />

Bacteriol. 147: 797-804, 1981.<br />

Sweetser D, Nonet M <strong>and</strong> Young RA. Prokaryotic <strong>and</strong><br />

eukaryotic RNA polymerases have homologous core<br />

subunits. Proc Natl Acad Sci. USA 84: 1192-1196, 1987.<br />

Tatti KM, Jones CH <strong>and</strong> Moran PC. Genetic evidence for<br />

interaction <strong>of</strong> σE with the spoIIID promoter in B.<br />

subtilis. J Bacteriol. 173: 7828-7833, 1991.<br />

Thomas M <strong>and</strong> Glass RE. E. coli rpoA mutation which<br />

impairs transcription <strong>of</strong> positively regulated systems.<br />

Mol Microbiol. 5: 2719-2725, 1991.<br />

Tichelar W <strong>and</strong> Heel MV. Characteristic views <strong>of</strong> E. coli<br />

RNA polymerase core enzyme in the scanning<br />

transmission electron microscope. J Structural Biol.<br />

103: 180-184, 1990.<br />

Toketo M <strong>and</strong> Ishihama A. Biosynthesis <strong>of</strong> RNA polymerase<br />

in E. coli IV. Accumulation <strong>of</strong> intermediates in mutants<br />

defective in the subunit assembly. J Mol Biol. 102: 297-<br />

310, 1976.<br />

Vassylyev DG, Sekine S, Laptenko O, Lee J,<br />

Vassylyeva MN, Borukhov σ <strong>and</strong> Yokoyama S. Crystal<br />

structure <strong>of</strong> a bacterial RNA polymerase holoenzyme at<br />

2.6Å resolution. Nature. 417: 712-719, 2002.<br />

Waldburger C, Gardella T, Wang R <strong>and</strong> Suskind MM.<br />

Changes in conserved region 2 <strong>of</strong> E. coli σ 70 affecting<br />

promoter recognition. J Mol Biol. 215: 267-276, 1990.<br />

Weilbaecher R, Hebron C, Feng GH <strong>and</strong> L<strong>and</strong>ick R.<br />

Termination-altering amino-acid substitutions in the β'<br />

subunit <strong>of</strong> Escherichia coli RNA-polymerase identify<br />

regions involved in RNA chain elongation. Genes Dev. 8:<br />

2913-2927, 1994.<br />

Wellman A <strong>and</strong> Meares CF. Footprint on the sigma protein: a<br />

re-examination. Biochem Biophys Res Comm. 177:<br />

140-144, 1991.<br />

Wigneshweraraj SR, Nechaev S, Severinov K <strong>and</strong> Buck M.<br />

The β subunit residues 186-433 <strong>and</strong> 436-445 are<br />

commonly used by σ 54 <strong>and</strong> σ 70 RNA polymerase<br />

holoenzyme for open promoter complex formation. J<br />

Mol Biol. 319: 1067-1083, 2002.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!