20.07.2013 Views

German Particle Physics School Maria Laach - Herbstschule Maria ...

German Particle Physics School Maria Laach - Herbstschule Maria ...

German Particle Physics School Maria Laach - Herbstschule Maria ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Beyond the<br />

Standard Model<br />

<strong>German</strong> <strong>Particle</strong> <strong>Physics</strong> <strong>School</strong><br />

<strong>Maria</strong> <strong>Laach</strong><br />

Ch!"ophe Grojean<br />

CERN-TH & CEA-Saclay/IPhT<br />

( christophe.grojean@cern.ch )


Two decades of experimental successes<br />

top discovery<br />

solar and atmospherical neutrino oscillations<br />

direct CP violation in the K system (ds) (K-long decaying into 2 pions)<br />

CP violation in the B system (db)<br />

evidence of an accelerated phase in the expansion of the Universe<br />

measure of the dark energy/dark matter composition of the Universe<br />

DRAFT<br />

These results have strengthened the SM as a successful<br />

description of Nature at the quantum level ... but<br />

Christophe Grojean Beyond the Standard Model 2<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

... these experimental results also concluded that there is a<br />

physics beyond the Standard Model.<br />

Christophe Grojean Beyond the Standard Model 3<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Experimental/Theoretical Needs for BSM<br />

Precisions measurements<br />

(gμ-2, LR asymmetries etc)<br />

Neutrinos masses<br />

Dark matter<br />

Dark energy<br />

Matter-antimatter asymmetry<br />

Inflation<br />

Stability of Higgs potential<br />

Fermion mass and mixing<br />

hierarchies<br />

Strong CP problem<br />

Charge quantization & GUT<br />

Quantization of gravity<br />

DRAFT<br />

the LHC won’t answer all these puzzles!<br />

Christophe Grojean Beyond the Standard Model 4<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


The questions addressed in these lectures<br />

we expect new physics to play a crucial role in<br />

the mechanism of electroweak symmetry breaking (EWSB).<br />

What is the scale of new physics in the EWSB sector?<br />

What is the population of this new scale? Which particles?<br />

Which interactions?<br />

Identifying the new spectroscopy should allow to decipher the<br />

organization principle that governs the EWSB sector<br />

DRAFT<br />

vector bosons gauge principle<br />

Higgs/EWSB sector<br />

↕<br />

↕<br />

Christophe Grojean Beyond the Standard Model 5<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

?<br />

strong dynamics, susy, xdims


1<br />

2<br />

3<br />

4<br />

First Lecture<br />

Lecture Outline<br />

Standard Model and EW symmetry breaking ➲<br />

Higgs mechanism ➲<br />

EW precision tests ➲<br />

Second Lecture<br />

Higgs as a UV moderator ➲<br />

UV behaviour of the Higgs ➲<br />

Connections between EWSB and the top sector ➲<br />

Third Lecture<br />

Supersymmetric Higgs(es) ➲<br />

DRAFT<br />

Little Higgs ➲, gauge-Higgs unification ➲, Higgsless ➲<br />

New physics & flavour ➲<br />

Fourth Lecture<br />

Composite Higgs models ➲<br />

Christophe Grojean Beyond the Standard Model 6<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

Standard Model & EW Symm. Breaking<br />

Christophe Grojean Beyond the Standard Model 7<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


The Standard Model<br />

the strong, weak and electromagnetic interactions of the<br />

elementary particles are described by gauge interactions<br />

SU(3)CxSU(2)LxU(1)Y<br />

DRAFT<br />

elastic scattering event observed by the Gargamelle [Gargamelle Collaboration [10] collaboration, at CERN. Muon ’73] neutrinos enter the<br />

ble chamber from the right. A recoiling electron appears near the center of the image and travels toward the<br />

Christophe Grojean Beyond the Standard Model 8<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

wer of curling branches.<br />

νμ e - → νμ e -<br />

e - e -<br />

νμ<br />

Z<br />

νμ


the strong, weak and electromagnetic interactions of the<br />

elementary particles are described by gauge interactions<br />

e +<br />

e -<br />

e + e - → W + W -<br />

e +<br />

e -<br />

ν<br />

Z, γ<br />

W +<br />

W -<br />

The Standard Model<br />

SU(3)CxSU(2)LxU(1)Y<br />

DRAFT<br />

W +<br />

W -<br />

Christophe Grojean Beyond the Standard Model 9<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


The Standard Model and the Mass Problem<br />

the strong, weak and electromagnetic interactions of the<br />

elementary particles are described by gauge interactions<br />

SU(3)CxSU(2)LxU(1)Y<br />

the masses of the quarks, leptons and gauge bosons<br />

don’t obey the full gauge invariance<br />

νe<br />

e<br />

<br />

is a doublet of SU(2)L but<br />

a mass term for the gauge field isn’t<br />

invariant under gauge transformation<br />

mνe<br />

DRAFT<br />

spontaneous breaking of gauge symmetry<br />

≪ me<br />

δA a µ = ∂µɛ a + gf abc A b µɛ c<br />

Christophe Grojean Beyond the Standard Model 10<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


The longitudinal polarization of massive W, Z<br />

c! c! c!<br />

a massless particle is never at rest: always possible to distinguish<br />

(and eliminate!) the longitudinal polarization<br />

v! 0!<br />

DRAFT<br />

the longitudinal polarization is physical for a massive spin-1 particle<br />

symmetry breaking: new phase with more degrees of freedom<br />

ɛ =<br />

<br />

|p| E<br />

,<br />

M M<br />

<br />

p<br />

|p|<br />

polarization vector grows with the energy<br />

(pictures: courtesy of G. Giudice)<br />

Christophe Grojean Beyond the Standard Model 11<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


The source of the Goldstone's<br />

symmetry breaking: new phase with more degrees of freedom<br />

massive W ± , Z: 3 physical polarizations=eaten Goldstone bosons SU(2)LxSU(2)R<br />

➾<br />

Where are these Goldstone's coming from?➾<br />

SU(2)V<br />

what is the sector responsible for the breaking SU(2)LxSU(2)R to SU(2)V?<br />

with which dynamics? with which interactions to the SM particles?<br />

H =<br />

common lore: from a scalar Higgs doublet<br />

h +<br />

h 0<br />

<br />

Higgs doublet = 4 real scalar fields<br />

3 eaten<br />

Goldstone bosons<br />

One physical degree of freedom<br />

the Higgs boson<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 12<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


PT<br />

Bounds on (Dangerous) New <strong>Physics</strong><br />

Heavy <strong>Particle</strong>s ➾ new interactions for SM particles<br />

broken symmetry operators scale Λ<br />

B, L (QQQL)/Λ 2 10 13 TeV<br />

flavor (1,2 nd family), CP ( ¯ ds ¯ ds)/Λ 2 1000 TeV<br />

flavor (2,3 rd family) mb(¯sσµνF µν b)/Λ 2 50 TeV<br />

DRAFT<br />

At colliders, it will mγ be difficult < 6 × 10to find direct evidence<br />

of new physics in these sectors...<br />

−17 eV<br />

m W ± = 80.425 ± .038 GeV<br />

mZ 0 = 91.1876 ± .0021 GeV<br />

Christophe Grojean Beyond the Standard Model 14<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


New <strong>Physics</strong> in the EW sector<br />

(H † σ a H)W a µνB µν /Λ 2<br />

H † DµH 2 /Λ 2<br />

Λ ~ few TeV only<br />

H † H 3 /Λ 2<br />

DRAFT<br />

high potential for direct detection at LHC, ILC !!!<br />

Christophe Grojean Beyond the Standard Model 15<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

Higgs Mechan%m. Standard Model Higgs<br />

Christophe Grojean Beyond the Standard Model 16<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


Higgs Mechanism<br />

Symmetry of the Lagrangian Symmetry of the Vacuum<br />

SU(2)L × U(1)Y<br />

Higgs Doublet Vacuum Expectation Value<br />

H =<br />

h +<br />

h 0<br />

<br />

DµH = ∂µH − i<br />

2<br />

|DµH| 2 = 1<br />

<br />

3 gWµ + g ′ Bµ √<br />

− 2gWµ 4 g2v 2 W + µ W − µ + 1<br />

8<br />

Gauge boson spectrum<br />

electrically charged bosons<br />

electrically neutral bosons<br />

√ 2gW + µ<br />

−gW 3 µ + g ′ Bµ<br />

W 3 µ Bµ<br />

〈H〉 =<br />

0v√2<br />

DRAFT<br />

M 2 W = 1<br />

Weak mixing angle<br />

g<br />

c = √<br />

g2 +g ′2<br />

U(1)e.m.<br />

γµ = sW<br />

Christophe Grojean Beyond the Standard Model 17<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

3 µ + cBµ<br />

g<br />

s =<br />

′<br />

√ Mγ =0<br />

g2 +g ′2<br />

<br />

<br />

H with W ± µ = 1 √<br />

2<br />

g 2 v 2 −gg ′ v 2<br />

4 g2 v 2<br />

Zµ = cW 3 µ − sBµ<br />

−gg ′ v 2 g ′2 v 2<br />

with v ≈ 246 GeV<br />

W 3 µ<br />

W 1 µ ∓ W 2 µ<br />

B µ<br />

<br />

<br />

M 2 Z = 1<br />

4 (g2 + g ′2 )v 2


Interactions Fermions-Gauge Bosons<br />

Gauge invariance says: <br />

<br />

T3Li ¯ ψi¯σ µ <br />

ψi<br />

L = gW 3 µ<br />

Going to the mass eigenstate basis:<br />

Zµ = cW 3 µ − sBµ<br />

γµ = sW 3 µ + cBµ<br />

L = g 2 + g ′2 Zµ<br />

<br />

not protected by gauge invariance<br />

corrected by radiative corrections + new physics<br />

i<br />

i<br />

with<br />

(T3Li − s 2 Qi) ¯ ψi¯σ µ ψi<br />

+ g ′ Bµ<br />

DRAFT<br />

protected by U(1)em gauge invariance<br />

➾ no correction<br />

electric charge<br />

Christophe Grojean Beyond the Standard Model 18<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

<br />

c =<br />

s =<br />

√ g 2 +g ′2 γµ<br />

+ gg′<br />

e =<br />

<br />

i<br />

√ g<br />

g2 +g ′2<br />

g ′<br />

√<br />

g2 +g ′2<br />

gg ′<br />

<br />

g2 + g ′2<br />

yi ¯ ψi¯σ µ ψi<br />

<br />

<br />

Qi ¯ ψi¯σ µ <br />

ψi<br />

i<br />

<br />

Q = T3L + Y<br />

= sg = cg′


Rho parameter<br />

ρ ≡<br />

Custodial Symmetry<br />

M 2 W<br />

M 2 Z cos2 θw<br />

=<br />

1<br />

4g2 v2 1<br />

4 (g2 + g ′2 )v2 g 2<br />

g 2 +g ′2<br />

Consequence of an approximate global symmetry of the Higgs sector<br />

<br />

+ h<br />

H =<br />

Higgs doublet = 4 real scalar fields<br />

h0 <br />

<br />

V (H) =λ H † H − v2<br />

2<br />

2<br />

SU(2)L<br />

SU(2)R<br />

is invariant under the rotation of the four real components<br />

DRAFT<br />

iσ 2 H ⋆ H = Φ<br />

SO(4) ∼ SU(2)L × SU(2)R<br />

V (H) = λ<br />

2x2 matrix explicitly invariant under<br />

Christophe Grojean Beyond the Standard Model 19<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

=1<br />

Φ † Φ = H † H<br />

4<br />

1<br />

trΦ † Φ − v 2 2<br />

1<br />

<br />

SU(2)L ! SU(2)R


(Zµ γµ)<br />

<br />

2 MZ 0<br />

0 0<br />

Custodial Symmetry<br />

〈H〉 =<br />

0v√2<br />

Higgs vev<br />

<br />

unbroken symmetry in the broken phase<br />

DRAFT<br />

ρ = 1<br />

〈Φ〉 = v √ 2<br />

The hypercharge gauge coupling and the Yukawa couplings break the custodial SU(2)V,<br />

which will generate a (small) deviation to ρ = 1 at the quantum level.<br />

Christophe Grojean Beyond the Standard Model 20<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

1<br />

SU(2)L × SU(2)R → SU(2)V<br />

1<br />

Wµ,W 2 µ,W 3 <br />

µ transforms as a triplet<br />

Z µ<br />

γ µ<br />

<br />

1<br />

<br />

= W 3 <br />

µ Bµ<br />

c2M 2 Z −csM 2 Z<br />

−csM 2 Z<br />

s 2 M 2 Z<br />

W 3 µ<br />

The SU(2)V symmetry imposes the same mass term for all W i thus c 2 M 2 Z = M 2 W<br />

B µ


ion at(SM) the LHC Higgs Production @ the LHC<br />

eralities<br />

eff ∼√s/3 ∼ 5 TeV<br />

nd 100 fb−1 later<br />

.<br />

ls<br />

ts!<br />

! (fb)<br />

10 15<br />

10 14<br />

10 13<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

1<br />

10 -1<br />

jet ¬<br />

! jet<br />

(E > !s<br />

T<br />

! jet (E T<br />

pp/pp _<br />

! tot<br />

_ ! bb<br />

/20)<br />

! W<br />

! Z<br />

jet<br />

> 100GeV)<br />

jet ¬<br />

! jet<br />

(E > !s<br />

T<br />

_ ! tt<br />

/4)<br />

! Higgs (M H =150GeV)<br />

! Higgs (M H =500GeV)<br />

cross sections<br />

10 3<br />

Tevatron<br />

pp _<br />

pp<br />

7<br />

LHC<br />

14<br />

LHC<br />

DRAFT<br />

10 4<br />

!s ¬<br />

(GeV)<br />

Higgs <strong>Physics</strong> – A. Djouadi – p.20/47<br />

Christophe Grojean Beyond the Standard Model 21<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


(SM) Higgs Production<br />

3. Higgs 3. production Higgs production at LHC: at LHC: main main processes processes<br />

Production Production mechanisms mechanisms Cross sections Cross sections at the at LHC the LHC<br />

Higgs-strahlung<br />

QQ associated<br />

production<br />

Vector boson fusion<br />

ggs production at LHC: main processes<br />

n mechanisms Cross sections at the LHC<br />

Production mechanisms Cross sections at the L<br />

Gluon fusion<br />

DRAFT<br />

There are also subleading processes, gg → HH, etc...<br />

There are also subleading processes, gg → HH, etc...<br />

3. Higgs production at LHC: main processe<br />

SM Higgs at the Tevatron<br />

Current experimental information (limits @ 95% CL):<br />

forward jet tagging<br />

! ∝1/s: SM LEP Tevatron, direct LHC search: mH>114.4 GeV<br />

central jet veto<br />

! SM indirect constraint: mH


(SM) Higgs Production<br />

3. Higgs 3. production Higgs production at LHC: at LHC: main main processes processes<br />

Production Production mechanisms mechanisms Cross sections Cross sections at the at LHC the LHC<br />

Higgs-strahlung<br />

QQ associated<br />

production<br />

Vector 3. Higgs boson production fusion at LHC: main processes<br />

ggs production at LHC: main processes<br />

n mechanisms Cross sections at the LHC<br />

Production mechanisms Cross sections at the L<br />

∝1/s: Tevatron, LHC<br />

forward jet tagging<br />

central jet veto<br />

small hadronic activity<br />

Gluon fusion<br />

DRAFT<br />

There are also subleading processes, gg → HH, etc...<br />

There are also subleading processes, gg → HH, etc...<br />

(see for instance A. Djouadi, hep-ph/0503172)<br />

3. Higgs production at LHC: main processe<br />

Production mechanisms Cross sections at the LHC<br />

Higgs production @ LHC<br />

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs <strong>Physics</strong> – A. Djouadi – p.23/47<br />

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs <strong>Physics</strong> – A. Djouadi – p.23/47<br />

There are also subleading processes, gg → HH, etc...<br />

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs <strong>Physics</strong> – A. Djouadi – p.23/47<br />

single final state<br />

large NLO enhancement<br />

so subleading processes, ggThere → HH, are also etc... subleading processes, gg → HH, etc...<br />

Christophe Grojean Beyond the Standard Model 24<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


(SM) Higgs Decays<br />

Higgs couples proportionally to masses:<br />

4. Higgs at the LHC: decay modes<br />

it decays into the heaviest particle available by phase space<br />

BRs<br />

Higgs decays in the SM:<br />

light Higgs<br />

H<br />

H<br />

H<br />

•<br />

•<br />

•<br />

f=t,b,c,τ<br />

¯f<br />

V=W,Z<br />

V<br />

V=W,Z<br />

V ¯f ∗<br />

f<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 25<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

g/γ<br />

• H decays into the heaviest particle<br />

available by phase space: g ∝ m.<br />

• MH < ∼ 130 GeV, H → b¯ b<br />

– H → cc, τ + τ − •<br />

¯f<br />

heavy Higgs H f=t,b,c,τ<br />

•<br />

H<br />

, gg = O(few ¯f • %) V<br />

– H → γγ = O(0.1%) H<br />

decay into VV below threshold<br />

• MH > ∼<br />

130 GeV, H → WW, ZZ f<br />

– below threshold decays •<br />

• t<br />

possible<br />

– decays into t¯t for heavy Higgs.<br />

• t<br />

• Total Higgs decay width:<br />

– very small for a light Higgs<br />

f=t,b,c,τ<br />

- comparable to mass for heavy Higgs.<br />

H<br />

V=W,Z<br />

H<br />

•<br />

V=W,Z H<br />

V=W,Z<br />

V=W,Z<br />

V ¯f ∗<br />

decay into massless particles (γ, gluons) at 1-loop<br />

H<br />

H<br />

•<br />

V<br />

V ∗<br />

¯ f<br />

f<br />

g/γ<br />

g/γ<br />

g/γ<br />

g/γ<br />

Ors<br />

Orsay, 1


(SM) Higgs Decays<br />

Higgs couples proportionally to masses:<br />

4. Higgs at the LHC: decay modes<br />

it decays into the heaviest particle available by phase space<br />

BRs<br />

Higgs decays in the SM:<br />

light Higgs<br />

H<br />

H<br />

H<br />

•<br />

•<br />

•<br />

f=t,b,c,τ<br />

¯f<br />

V=W,Z<br />

V<br />

V=W,Z<br />

V ¯f ∗<br />

f<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 26<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

g/γ<br />

H<br />

H<br />

H<br />

H<br />

• H decays into the heaviest particle<br />

available by phase space: g ∝ m.<br />

• MH < ∼ 130 GeV, H → b¯ b<br />

– H → cc, τ + τ − heavy Higgs Total width<br />

, gg = O(few %)<br />

•<br />

f=t,b,c,τ<br />

¯f<br />

– H → γγ = O(0.1%)<br />

• MH > V=W,Z<br />

V ∼<br />

•<br />

130 GeV, H → WW, ZZ<br />

– below V=W,Z threshold decays possible<br />

•<br />

V ∗<br />

¯ f<br />

– decays f into t¯t for heavy Higgs.<br />

g/γ<br />

t • Total Higgs decay width:<br />

•<br />

g/γ<br />

light Higgs: narrow – very small for a light Higgs<br />

heavy Higgs:<br />

-<br />

broadOrsay,<br />

19/12/08<br />

comparable to mass for heavy Higgs.


(SM) Higgs Searches @ Tevatron<br />

Low Mass Higgs<br />

1 high p T lepton<br />

MET 1 high pT lepton<br />

ET<br />

2 b-jets<br />

2 b-jets<br />

95%CL Limits at m H = 115 GeV<br />

Analysis Lum<br />

(fb-1 Limit ( /SM)<br />

Higg Mass Higgs<br />

) Exp. Obs.<br />

WH l bb (CDF) 2.7 4.8 5.6<br />

WH l bb (DØ) 2.7 6.4 6.7<br />

ZH bb (CDF) 2.1 5.6 6.9<br />

ZH bb (DØ) 2.1 8.4 7.5<br />

ZH l + l - bb (CDF) 2.7 9.9 7.1<br />

ZH l + l - bb (DØ) 2.3 12.3 11.0<br />

SM Low Mass Higgs<br />

2 high p T leptons<br />

High MET<br />

2 high 2 b-jets pT leptons/high 2 ET b-jets<br />

2 b-jets<br />

Issues:<br />

lepton identification<br />

b-tagging performance<br />

dijet mass resolution<br />

Key issues:<br />

! Lepton identification<br />

! B-tagging performance<br />

! Dijet mass resolution<br />

! Background modeling<br />

! W/Z+heavy-flavor jets<br />

! Multijets (ZH bb)<br />

! All analyses use multivariate<br />

techniques for signal-to-bckg<br />

discrimination.<br />

ZH bb (CDF)<br />

SM High Mass Higgs<br />

DRAFT<br />

ee, , e<br />

At early stage of selection:<br />

49<br />

Best individual channels have expected limits ~5-6xSM<br />

Christophe Grojean Beyond the Standard Model 27<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


(SM) Higgs Searches @ the LHC<br />

What can we measure at<br />

due to the overwhelming QCD background, need to use clean but rare decay modes<br />

DRAFT<br />

With 10fb -1 , the LHC cannot miss a SM Higgs<br />

If there is a Higgs like particle<br />

Christophe Grojean Beyond the Standard Model 29<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

SM &EW prec%ion data<br />

Christophe Grojean Beyond the Standard Model 30<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


TH vs. EXP: SM @ the classical level<br />

How good is the agreement of the SM with exp. data?<br />

SM has 3 parameters: g, g' and v (forgetting the fermions)<br />

several observables<br />

α (Coulomb potential), GF (µ decay), mZ, mW, (LR asymmetry in Z decay),<br />

SM<br />

at the<br />

classical level<br />

SM<br />

at the<br />

classical level<br />

s 2 eff<br />

g, g' and v are extracted from α, GF and mZ<br />

Γ(Z → l + l − )<br />

α =1/137.03599911(46) GF =1.16637(1) × 10 −5 GeV −2 mZ = 91.181876(21) GeV<br />

v =<br />

α = e2<br />

4π<br />

, e =<br />

gg ′<br />

<br />

g2 + g ′2 , GF = 1<br />

√<br />

2v2 , m2Z = 1<br />

4 (g2 + g ′2 )v 2<br />

DRAFT<br />

1<br />

√<br />

2GF<br />

g =<br />

<br />

1 −<br />

<br />

√ 8πα<br />

1 − 4πα/( √ 2GF m 2 Z )<br />

Christophe Grojean Beyond the Standard Model 31<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

g ′ =<br />

<br />

1+<br />

<br />

√ 8πα<br />

1 − 4πα/( √ 2GF m 2 Z )


TH vs. EXP: SM @ the classical level<br />

How good is the agreement of the SM with exp. data?<br />

SM has 3 parameters: g, g' and v (forgetting the fermions)<br />

several observables<br />

α (Coulomb potential), GF (µ decay), mZ, mW, (LR asymmetry in Z decay),<br />

s 2 eff<br />

g, g' and v are extracted from α, GF and mZ<br />

and we can predict the values of other observables<br />

Γ(Z → l + l − )<br />

α =1/137.03599911(46) GF =1.16637(1) × 10 −5 GeV −2 mZ = 91.181876(21) GeV<br />

mW = 1<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 32<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

2 gv<br />

gL = −1/2+s 2 , gR = s 2 ALR = (−1/2+s2 eff )2 − s4 eff<br />

(−1/2+s2 eff )2 − s4 eff<br />

Γ(Z → l + l − )=<br />

√<br />

2GF<br />

6π m3Z(g 2 L + g 2 R)<br />

s 2 eff = s 2 W = g′2<br />

g2 + g ′2


TH vs. EXP: SM @ the classical level<br />

How good is the agreement of the SM with exp. data?<br />

SM has 3 parameters: g, g' and v (forgetting the fermions)<br />

several observables<br />

α (Coulomb potential), GF (µ decay), mZ, mW, (LR asymmetry in Z decay),<br />

s 2 eff<br />

g, g' and v are extracted from α, GF and mZ<br />

and we can predict the values of other observables<br />

Γ(Z → l + l − )<br />

α =1/137.03599911(46) GF =1.16637(1) × 10 −5 GeV −2 mZ = 91.181876(21) GeV<br />

m 2 W =<br />

1 −<br />

√ −1<br />

2παGF <br />

1 − 4πα/( √ 2GF m2 Z )<br />

DRAFT<br />

Γ(Z → l + l − )=<br />

s 2 eff =1/2 −<br />

√ 2GF m 3 Z<br />

12π<br />

<br />

1/4 − πα/( √ 2GF m2 Z )<br />

<br />

1/2 −<br />

1 − 4πα( √ 2GF m2 Z )<br />

2 Christophe Grojean Beyond the Standard Model <strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

+1/4


TH vs. EXP: SM @ the classical level<br />

How good is the agreement of the SM with exp. data?<br />

SM has 3 parameters: g, g' and v (forgetting the fermions)<br />

several observables<br />

α (Coulomb potential), GF (µ decay), mZ, mW, (LR asymmetry in Z decay),<br />

s 2 eff<br />

g, g' and v are extracted from α, GF and mZ<br />

and we can predict the values of other observables<br />

SM at tree-level<br />

DRAFT<br />

experiment (LEPEWWG’05)<br />

15 σ 120 σ 9 σ<br />

Γ(Z → l + l − )<br />

α =1/137.03599911(46) GF =1.16637(1) × 10 −5 GeV −2 mZ = 91.181876(21) GeV<br />

mW = 80.938 GeV s 2 eff =0.21215 Γ(Z → l + l − ) = 84.841 MeV<br />

mW = 80.425 ± 0.034 GeV s 2 eff =0.23153 ± 0.00016 Γ(Z → l + l − ) = 83.992 ± 0.010 MeV<br />

Christophe Grojean Beyond the Standard Model <strong>Maria</strong> <strong>Laach</strong>, Sept. '10


TH vs. EXP: importance of quantum corrections<br />

Quantum corrections have to be included in the previous analysis<br />

accuracy in EW data: 1‰<br />

mW = mW | SM<br />

s 2 eff = s2 eff |SM<br />

Γ l + l − = Γ l + l − | SM<br />

SM loop corrections:<br />

Many physicists have devoted<br />

their lives to compute them.<br />

Require a deep knowledge of<br />

all areas of high energy physics<br />

typical size of EW loops:<br />

O(g few ‰<br />

2 /16π 2 ) ∼<br />

new physics corrections:<br />

O(v 2 /M 2 NP)<br />

<br />

<br />

tree + ∆mW SM<br />

loop + ∆mW |New <strong>Physics</strong><br />

tree + ∆s2 <br />

<br />

eff SM<br />

loop + ∆s2 eff |New <strong>Physics</strong><br />

<br />

<br />

tree + ∆Γ l + l −<br />

DRAFT<br />

Test of SM:<br />

Are these NP comtributions<br />

needed to fit EW data?<br />

Christophe Grojean Beyond the Standard Model 35<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

SM<br />

loop + ∆Γ l + l − |New <strong>Physics</strong>


∆Γll = −<br />

TH vs. EXP: EW fit - II<br />

Usually, EW fits don’t use<br />

∆mW |NP, ∆s 2 eff|NP , ∆Γ l + l − |NP<br />

instead introduce perverse linear combinations S, T, U<br />

∆mW = − αmW<br />

4(c2 0 − s20 ) S + αc20mW 2(c2 0 − s2 αmW<br />

T +<br />

0 ) 8s2 0<br />

∆s 2 α<br />

eff =<br />

4(c2 0 − s20 ) S − αc20s 2 0<br />

c2 0 − s2 T<br />

0<br />

2(1 − 4s2 0)αΓ0 <br />

ll<br />

8(1 − 4s<br />

S + 1+<br />

) 2 0)s2 0c2 0<br />

(1 + (1 − 4s 2 0 )2 )(c 2 0 − s2 0<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 37<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

U<br />

(1 + (1 − 4s 2 0 )2 )(c 2 0 − s2 0 )<br />

<br />

αΓ 0 ll T


0.0005<br />

∆Γll 0.002=<br />

−<br />

Out[125]=<br />

0.001<br />

∆Γll<br />

0.000<br />

Γll<br />

0.001<br />

0.002<br />

0.0000<br />

TH vs. EXP: EW fit - II<br />

Usually, EW fits don’t use<br />

∆mW |NP, ∆s 2 eff|NP , ∆Γ l + l − |NP<br />

instead introduce perverse linear combinations S, T, U<br />

∆s2 eff<br />

s2 eff<br />

0.0000<br />

0.0005<br />

0.0010<br />

∆mW = −<br />

mtop=171.4 GeV<br />

αmW<br />

4(c2 0 − s20 ) S + αc20mW 2(c2 0 − s2 αmW<br />

T +<br />

0 ) 8s2 0<br />

∆s 2 α<br />

eff =<br />

4(c2 0 − s20 ) S − αc20s 2 0<br />

c2 0 − s2 T<br />

0<br />

2(1 − 4s2 0)αΓ0 <br />

ll<br />

8(1 − 4s<br />

S + 1+<br />

) 2 0)s2 0c2 0.5<br />

0.0015<br />

m =171.4 GeV<br />

top<br />

0.4<br />

0.3<br />

0<br />

0.2<br />

(1 + (1 − 4s 2 0 )2 )(c 2 0 − s2 0<br />

0.0005<br />

∆mW<br />

mW<br />

DRAFT<br />

0.0010<br />

Christophe Grojean Beyond the Standard Model 38<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

T<br />

0.1<br />

−0.1<br />

−0.2<br />

U<br />

(1 + (1 − 4s 2 0 )2 )(c 2 0 − s2 0 )<br />

0<br />

100<br />

from scalars<br />

68 % CL<br />

95 % CL<br />

95% CL<br />

68% CL<br />

m EWPT,eff<br />

500<br />

from cutoff<br />

from fermions?<br />

<br />

−0.3<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4<br />

S<br />

αΓ 0 ll T


Oblique Parameters<br />

are useful to perform a EW fit<br />

but cumbersome to compute explicitly in a given model<br />

∆mW |NP, ∆s 2 eff|NP , ∆Γ l + l − |NP<br />

S,T (and U) are directly related to the Lagrangian<br />

(=friendly objects for theorists)<br />

oblique parameters=modified propagators of W ± and Z<br />

L = W µ<br />

+ Π+−(p 2 ) W− µ + 1 µ<br />

2W 3 Π33(p 2 ) W3 µ + W µ<br />

3 Π3B(p 2 ) Bµ + 1<br />

2Bµ ΠBB(p 2 S =4s<br />

) Bµ<br />

2 w S/αem ≈ 119 S, T = T/αem ≈ 129 T , U = −4s 2 w U/αem ≈−119 U<br />

S = g<br />

Coefficients Dim. 6 Operators SU(2)c SU(2)L<br />

g ′ Π ′ 3B (0) OWB = (H † τ a H)W a µν Bµν/gg ′ + −<br />

DRAFT<br />

T = 1<br />

M 2 (Π33(0) − Π+−(0)) OH = |H<br />

W<br />

† DµH| 2 − −<br />

U = Π ′ +− (0) − Π′ 33 (0) dim. 8 − −<br />

<br />

′′ Π 33(0) − Π ′′ +−(0) <br />

<br />

<br />

dim. 10 − −<br />

V = M 2 W<br />

X = M 2 W<br />

S =4s 2<br />

2 w S/αem ≈ 119 S, T = T/αem ≈ 129 T , U = −4s 2 w U/αem ≈−119 U<br />

2 Π′′ 3B<br />

(0) dim. 8 + −<br />

Y = M 2 W Π ′′ BB (0) OBB = (∂ρBµν) 2 /2g ′2 + +<br />

Christophe Grojean Beyond the Standard Model 39<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


unitary<br />

gauge<br />

S & T from higher dimensional Operators<br />

exercise<br />

L = (g2 + g ′2 )v4 Z 2 µ<br />

16Λ 2<br />

L = 1<br />

Λ2 ➩ ➩<br />

we need to write observables in terms of α, GF and mZ<br />

DRAFT<br />

➩<br />

T measured the deviation to ρ=1:<br />

<br />

H † DµH 2<br />

2 mZ = 1<br />

4 (g2 + g ′2 )v2 + 1<br />

8Λ2 (g2 + g ′2 )v4 m 2 W<br />

∆mW =<br />

1 = 4g2 v2 s 2 eff = g′2<br />

c 2 0mW<br />

4 √ 2(c 2 0 − s2 0 )GF Λ 2<br />

g 2 + g ′2<br />

∆Π33 = − g2 v 4<br />

∆s 2 −s<br />

eff = −<br />

2 0c2 0<br />

2 √ 2(s2 0 − c20 )GF Λ2 ρ =<br />

Christophe Grojean Beyond the Standard Model 40<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

m2W c2 W m2 Z<br />

≈ 1+αT<br />

8Λ 2<br />

1<br />

T = −<br />

2 √ 2αGF Λ2 }<br />

1<br />

T = −<br />

2 √ 2αGF Λ2


S & T from higher dimensional Operators<br />

exercise<br />

L = 1<br />

unitary<br />

gauge<br />

L = − kinetic mixing ➩<br />

v2<br />

2Λ2 BµνW 3 µν ∆Π ′ 30 = − v2<br />

Z =<br />

γ =<br />

because of the kinetic mixing, the Z<br />

and the γ are not obtained from the<br />

usual weak rotation from W3 and B<br />

g<br />

g 2 + g ′2<br />

g ′<br />

g 2 + g ′2<br />

<br />

1 − gg′<br />

<br />

1+<br />

g 2 + g ′2<br />

g 3<br />

v2 <br />

Λ 2<br />

v2 <br />

g ′ (g2 + g ′2 ) Λ2 W3 −<br />

W3 −<br />

m 2 Z = 1<br />

4 (g2 + g ′2 <br />

) 1+<br />

g ′<br />

g 2 + g ′2<br />

<br />

g<br />

1 −<br />

g2 + g ′2<br />

<br />

1 − gg′<br />

Λ 2 H† WµνHBµν<br />

g 2 + g ′2<br />

v2 <br />

B<br />

the definition of the electric charge<br />

is also affected (check that the γ still<br />

couples to Q=T3L+Y)<br />

DRAFT<br />

expressing mW in terms of α, GF and mZ, we arrive at<br />

g ′3<br />

2gg ′ <br />

√<br />

2(g2 + g ′2 )Λ2 Λ 2<br />

g(g2 + g ′2 ) Λ2 v2 <br />

B<br />

Christophe Grojean Beyond the Standard Model 41<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

e =<br />

∆mW = − s! c! mW<br />

√<br />

2(c "<br />

! − s "<br />

! )Λ"<br />

➩<br />

Λ 2<br />

➩<br />

gg ′<br />

<br />

g2 + g ′2<br />

S =<br />

S =<br />

<br />

1 − gg′<br />

4s0c0<br />

√<br />

2αGF Λ2 g 2 + g ′2<br />

4s0c0<br />

√<br />

2αGF Λ2 v 2<br />

Λ 2


EW Precision Measurements & Higgs Mass<br />

The SM 1-loop corrections are computed for a reference Higgs mass.<br />

A variation of the Higgs mass can be seen as a contribution to S and T.<br />

Higgs contribution<br />

δS = 1<br />

δT = − 3<br />

➾ constraints on the Higgs mass<br />

12π log m2 h<br />

m 2 h0<br />

16π c 2 log m2 h<br />

m 2 h0<br />

DRAFT<br />

The SM Higgs cannot get too heavy<br />

unless there exist other<br />

(tuned) contributions to S and T<br />

−0.3<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4<br />

S<br />

Christophe Grojean Beyond the Standard Model 42<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

T<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

mtop=171.4 m =171.4 GeV<br />

top GeV<br />

mH<br />

100<br />

100<br />

from scalars<br />

68 % CL<br />

95 % CL<br />

95% CL<br />

68% CL<br />

m EWPT,eff<br />

500<br />

500<br />

from cutoff<br />

from fermions?


T<br />

EW Precision Measurements & Higgs Mass<br />

The SM 1-loop corrections are computed for a reference Higgs mass.<br />

A variation of the Higgs mass can be seen as a contribution to S and T.<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

mtop=171.4 m =171.4 GeV<br />

top GeV<br />

mH<br />

100<br />

100<br />

from scalars<br />

68 % CL<br />

➾ constraints on the Higgs mass<br />

95 % CL<br />

95% CL<br />

68% CL<br />

m EWPT,eff<br />

DRAFT<br />

500<br />

500<br />

from cutoff<br />

from fermions?<br />

−0.3<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4<br />

S<br />

Is the Higgs R<br />

• Standard Model with a li<br />

fit to all data, indirect de<br />

Christophe Grojean Beyond the Standard Model 43<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


EW Precision Measurements & Higgs Mass<br />

The SM 1-loop corrections are computed for a reference Higgs mass.<br />

A variation of the Higgs mass can be seen as a contribution to S and T.<br />

2<br />

" !<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

LEP 95% CL<br />

Tevatron 95% CL<br />

➾ constraints on the Higgs mass<br />

Theory uncertainty<br />

G fitter SM<br />

DRAFT<br />

Fit including theory errors<br />

Fit excluding theory errors<br />

50 100 150 200 250 300<br />

M<br />

H<br />

Mar 09<br />

[GeV]<br />

3#<br />

2#<br />

1#<br />

100 150 200 250 300<br />

Christophe Grojean Beyond the Standard Model 44<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

2<br />

" !<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

LEP exclusion at 95% CL<br />

Tevatron exclusion at 95% CL<br />

Theory uncertainty<br />

G fitter SM<br />

Fit including theory errors<br />

Fit excluding theory errors<br />

Figure 1: Dependence on MH of the ∆χ2 function obtained from the global fit of the SM<br />

parameters to precision electroweak data [ 3], excluding (left) or including (right) the results<br />

from direct searches at LEP and the Tevatron.<br />

M<br />

H<br />

Mar 09<br />

[GeV]<br />

3#<br />

2#<br />

1#


only SM particles<br />

+<br />

SM Higgs<br />

➾<br />

all Higgs couplings<br />

fixed<br />

➾<br />

SM Higgs & EW fits<br />

Quite a good fit to EW precision data... but<br />

best fit obtained for a Higgs mass already<br />

excluded by direct search<br />

tension between leptonic and hadronic<br />

asymmetries<br />

Is the Higgs R<br />

• Standard Model with a l<br />

fit to all data, indirect de<br />

MH < 186 GeV<br />

DRAFT<br />

Chanowitz ’08<br />

Christophe Grojean Beyond the Standard Model 45<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

&<br />

leptonic asym.<br />

hadronic asym.


σ (e + e − → hZ)<br />

A SM-like Higgs with modified BRs<br />

SM-like=unitarity properties unchanged<br />

σSM<br />

Direct exclusion bound<br />

is very sensitive to Higgs BR’s<br />

Suppressing SM BR’s to 20%<br />

allows for a Higgs around 90 GeV<br />

For a light Higgs, it is very easy to<br />

modify Higgs BR’s without modifying<br />

its couplings to SM particles<br />

a light Higgs can decay only to light SM<br />

particles, light particles to which it couples<br />

weakly (eg. coupling to b quark is only ~1/60)<br />

DRAFT<br />

new particles with mild couplings to the Higgs<br />

will significantly affect Higgs BR’s<br />

ΓZ ∼ 1000 × ΓH(mH = 115 GeV)<br />

easy to modify Higgs BR’s<br />

without destroying EW data<br />

Christophe Grojean Beyond the Standard Model 46<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


A SM-like Higgs with modified BRs<br />

Many physics-motivated models:<br />

MSSM:<br />

NMSSM:<br />

h → χχ → 6q/2l4q/4l2ν<br />

h → aa → 2b2 ¯ b/4τ/4g<br />

Little Higgs/Composite Higgs (SO(6)/SO(5)):<br />

Many signatures-motivated models: Higgs=portal to New Sector<br />

New sector with string-like confinement: “Quirks”<br />

New sector with QCD-like confinement: “Hidden valleys”<br />

DRAFT<br />

New sector = CFT, ie no confinement: “Unparticles”<br />

h → ! !<br />

Harnik, Luty<br />

Strassler, Zurek<br />

Georgi<br />

(courtesy: J. Terning, talk @ Aspen’09)<br />

Christophe Grojean Beyond the Standard Model 47<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Higgs Mechanism: a model without dynamics<br />

Why is EW symmetry broken ?<br />

Because µ 2 is negative<br />

Why is µ 2 negative ?<br />

Because otherwise, EW symmetry won’t be broken<br />

V (h) = 1<br />

2 µ2h 2 + 1<br />

4λh4 DRAFT<br />

The Higgs mechanism is a description of EWSB. It is not an<br />

explanation. No dynamics to explain the instability at the origin.<br />

Christophe Grojean Beyond the Standard Model 48<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


H =<br />

h +<br />

h 0<br />

<br />

Higgs doublet = 4 real scalar fields<br />

3 eaten<br />

Goldstone bosons<br />

One physical degree of freedom<br />

the Higgs boson<br />

DRAFT<br />

Higgs as a UV moderator<br />

Christophe Grojean Beyond the Standard Model 49<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


Indeed a massive<br />

spin 1 particle has<br />

3 physical polarizations:<br />

Why do we need a Higgs ?<br />

The W and Z masses are inconsistent with the known particle<br />

content! Need more particles to soften the UV behavior of<br />

massive gauge bosons.<br />

µ<br />

ikµx<br />

Aµ = ɛµ e<br />

ɛ µ ɛµ = −1 k µ ɛµ =0<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 50<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

with<br />

2 transverse:<br />

1 longitudinal:<br />

( in the R-ξ gauge, the time-like polarization ( ) is arbitrarily massive and decouple )<br />

Bad UV behavior for<br />

the scattering of the longitudinal<br />

polarizations<br />

ɛ µ ɛµ =1 k µ ɛµ = M<br />

k µ =(E,0, 0,k)<br />

kµk µ = E 2 − k 2 = M 2<br />

ɛ µ<br />

WL<br />

WL<br />

=(k M<br />

ɛ µ<br />

1<br />

ɛ µ<br />

2<br />

, 0, 0, E<br />

= (0, 1, 0, 0)<br />

= (0, 0, 1, 0)<br />

M<br />

WL<br />

WL<br />

) ≈ kµ<br />

M<br />

+ O( E<br />

M )


Why do we need a Higgs ?<br />

Bad UV behavior for<br />

the scattering of the longitudinal<br />

polarizations<br />

A = ɛ µ<br />

(k)ɛν (l) ig2 (2ηµρηνσ − ηµνηρσ − ηµσηνρ) ɛ ρ<br />

DRAFT<br />

A = g<br />

2 E4<br />

4M 4 W<br />

violations of perturbative unitarity around E ~ M<br />

(p)ɛσ (q)<br />

Christophe Grojean Beyond the Standard Model 51<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

WL<br />

WL<br />

k µ<br />

l ν<br />

p ρ<br />

q σ<br />

WL<br />

WL


+<br />

W + W +<br />

W -<br />

W + W +<br />

W -<br />

γ, Z 0<br />

h 0<br />

Why do we need a Higgs ?<br />

W -<br />

W -<br />

W + W +<br />

W -<br />

W + W +<br />

DRAFT<br />

W -<br />

The Higgs boson unitarize the W scattering<br />

(if its mass is below ~ 700 GeV)<br />

h 0<br />

W -<br />

WL scattering = pion scattering<br />

Goldstone equivalence theorem<br />

Aµ → Aµ + ∂µɛ<br />

Aµ → Aµ + ∂µɛ<br />

Aµ → Aµ + ∂µɛ<br />

A = g 2<br />

A = g 2<br />

A = g 2<br />

A = −g 2<br />

A = −g 2<br />

A = −g 2<br />

A = g 2<br />

A = g 2<br />

A = g 2<br />

E<br />

E<br />

E<br />

MW<br />

MW<br />

E<br />

E<br />

MW<br />

MW<br />

MW<br />

<br />

MH<br />

MH<br />

<br />

2MW MH<br />

2MW<br />

2MW<br />

Christophe Grojean Beyond the Standard Model 53 X<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

W -<br />

W + W +<br />

W -<br />

γ, Z 0<br />

W -<br />

MW<br />

E<br />

2<br />

2<br />

2<br />

+<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

Lewellyn Smith ‘73<br />

Dicus, Mathur ‘73<br />

Cornwall, Levin, Tiktopoulos ‘73


massive W, Z<br />

Higgs as UV moderator<br />

massless W, Z gauge invariance<br />

low energy<br />

large distance<br />

Puzzle:<br />

compatiblity between<br />

high and low energy<br />

high energy<br />

small distance<br />

A ∝ g 2 E 2 /M 2<br />

non sense<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 54<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


massive W, Z<br />

Higgs as UV moderator<br />

massless W, Z gauge invariance<br />

low energy<br />

large distance<br />

Higgs<br />

mechanism<br />

high energy<br />

small distance<br />

A ∝ g 2 E 2 /M 2<br />

non sense<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 55<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


<strong>Physics</strong> Beyond the Higgs?<br />

Is the Standard Model with a Higgs a UV finite theory?<br />

i.e. valid to arbitrarily high energies<br />

Of course, the SM will fail around the Planck scale<br />

but the real question is<br />

Is there any reason to think there is new physics<br />

between the weak scale and the Planck scale?<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 56<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

UV behavi&r of ' Higgs boson<br />

Christophe Grojean Beyond the Standard Model 57<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


Quantum Behavior of the Higgs 4 Coupling (I)<br />

=<br />

V (h) =− 1<br />

2 dλ<br />

16π<br />

d ln Q = 24λ2 − (3g ′2 +9g 2 − 12y 2 t )λ + 3<br />

8g′4 + 3<br />

4g′2 g 2 + 9<br />

8g4 − 6y 4 t +<br />

Large mass (λ dominated RGE)<br />

Higher loops<br />

Small Yukawa<br />

DRAFT<br />

16π<br />

2 dλ<br />

d ln Q<br />

= 24λ2<br />

λ increases with Q: IR-free coupling<br />

λ(Q) =<br />

2 µ2h 2 + 1!<br />

4<br />

h4<br />

vev: v 2 = µ 2 /λ mass: m 2 H =2λv 2<br />

Christophe Grojean Beyond the Standard Model 58<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

m 2 H<br />

2v2 − 3<br />

2π2 m2 H ln(Q/v)


Quantum Behavior of the Higgs 4 Coupling (II)<br />

2 dλ<br />

16π<br />

d ln Q = 24λ2 − (3g ′2 +9g 2 − 12y 2 t )λ + 3<br />

8g′4 + 3<br />

4g′2 g 2 + 9<br />

8g4 − 6y 4 t +<br />

(<br />

16π<br />

2 dyt<br />

d ln Q<br />

= 9<br />

Small mass (yt dominated RGE)<br />

16π<br />

2 dλ<br />

d ln Q<br />

λ decreases with Q.<br />

Higher loops<br />

Small Yukawa<br />

= −6y4<br />

2 y3 t + y 2 (Q) =<br />

Higher loops<br />

Small Yukawa<br />

DRAFT<br />

λ(Q) =λ0 −<br />

3<br />

8π2 y4 0 ln Q<br />

1 − 9<br />

16π2 y2 0<br />

Christophe Grojean Beyond the Standard Model 60<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

!<br />

y 2 (Q0)<br />

1 − 9<br />

16π2 y2 (Q0) ln !<br />

Q0<br />

ln Q<br />

Q0<br />

) ! 0


Figure 6: Summary of the uncertainties connected to the bounds on MH. The up-<br />

per solid area indicates the sum of theoretical uncertainties in the MH upper bound<br />

when keeping mt = 175 GeV fixed. The cross-hatched area shows the additional<br />

DRAFT<br />

uncertainty when varying mt from 150 to 200 GeV. The upper edge corresponds to<br />

Higgs masses for which the SM Higgs sector ceases to be meaningful at scale Λ (see<br />

text), and the lower edge indicates a value of MH for which perturbation theory is<br />

certainly expected to be reliable at scale Λ. The lower solid area represents the the-<br />

oretical uncertaintites in the MH lower bounds derived from stability requirements<br />

[30, 31, 32] using mt = 175 GeV and αs =0.118.<br />

Only a light Higgs (160 GeV


survival<br />

collapse<br />

[GeV]<br />

H<br />

M<br />

350<br />

300<br />

250<br />

200<br />

150<br />

$ = #<br />

LEP exclusion<br />

at >95% CL<br />

$ = 2#<br />

blow-up<br />

Perturbativity bound<br />

Stability bound<br />

Finite-T metastability bound<br />

Zero-T metastability bound<br />

Shown are 1"<br />

error bands, w/o theoretical errors<br />

Tevatron exclusion at >95% CL<br />

100<br />

4 6 8 10 12 14 16 18<br />

log ( ! / GeV)<br />

DRAFT<br />

Figure 2: The scale Λ at which the two-loop RGEs drive the quartic SM Higgs coupling<br />

non-perturbative, and the scale Λ at which the RGEsEllis, createEspinosa, an instability Giudice, in the Hoecker electroweak & Riotto ’09<br />

vacuum (λ < 0). The width of the bands indicates the errors induced by the uncertainties<br />

in mt and αS (added quadratically). The perturbativity upper bound (sometimes referred to<br />

as ‘triviality’ bound) is given for λ = π (lower bold line [blue]) and λ =2π (upper bold line<br />

Only a light Higgs (130 GeV


Solution to the Higgs 4 Coupling Instabilities<br />

find a symmetry such that<br />

the Higgs quartic will inherit the good UV asymptotically free<br />

behavior of the gauge coupling<br />

supersymmetry<br />

λ ≡ g 2<br />

Examples of such symmetry:<br />

DRAFT<br />

gauge-Higgs unification: the Higgs is identified as a component of<br />

the gauge field along some extra-dimensions.<br />

Christophe Grojean Beyond the Standard Model 64<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Quantum Instability of the Higgs Mass<br />

so far we looked only at the RG evolution of the Higgs quartic coupling (dimensionless<br />

parameter). The Higgs mass has a totally different behavior: it is higly dependent on the<br />

UV physics, which leads to the so called hierarchy problem<br />

=<br />

h W ± Z<br />

h h<br />

<br />

d 4 k<br />

(2π) 4<br />

h h<br />

<br />

1<br />

k2 − m<br />

2 ∝ Λ2<br />

m 2 H ∼ m 2 0 − (115 GeV) 2<br />

Higher loops<br />

Smaller Yukawa<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 65<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

top<br />

h h<br />

d 4 k<br />

(2π) 4<br />

Λ 2<br />

400 GeV<br />

k2 (k2 − m2 )<br />

2<br />

+<br />

2 ∝ Λ2


Quantum Instability of the Higgs Mass<br />

Λ = 1 TeV<br />

=<br />

h W ± Z<br />

h h<br />

<br />

d 4 k<br />

(2π) 4<br />

h h<br />

<br />

1<br />

k2 − m<br />

2 ∝ Λ2<br />

20000<br />

Higher loops<br />

Smaller Yukawa<br />

DRAFT<br />

-20000<br />

-40000<br />

GeV<br />

Christophe Grojean Beyond the Standard Model <strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

2<br />

physical<br />

bare<br />

top<br />

W<br />

Z<br />

-60000<br />

-80000<br />

Higgs<br />

66<br />

0<br />

40000<br />

top<br />

h h<br />

d 4 k<br />

(2π) 4<br />

k2 (k2 − m2 )<br />

m 2 H ∼ m 2 0 − (115 GeV) 2<br />

+<br />

2 ∝ Λ2<br />

Λ 2<br />

400 GeV<br />

2


Quantum Instability of the Higgs Mass<br />

=<br />

Λ = 10 TeV<br />

h W ± Z<br />

h h<br />

<br />

d 4 k<br />

(2π) 4<br />

h h<br />

<br />

1<br />

k2 − m<br />

2 ∝ Λ2<br />

2000000<br />

DRAFT<br />

-2000000<br />

-4000000<br />

physical<br />

bare<br />

top<br />

W<br />

Z<br />

-6000000<br />

-8000000<br />

GeV<br />

Christophe Grojean<br />

Higgs<br />

Beyond the Standard Model <strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

2<br />

67<br />

0<br />

6000000<br />

4000000<br />

top<br />

h h<br />

d 4 k<br />

(2π) 4<br />

k2 (k2 − m2 )<br />

m 2 H ∼ m 2 0 − (115 GeV) 2<br />

+<br />

2 ∝ Λ2<br />

Higher loops<br />

Smaller Yukawa<br />

Λ 2<br />

400 GeV<br />

2


1<br />

2<br />

3<br />

Beyond the Higgs: The hierarchy problem<br />

need new degrees of freedom to cancel Λ 2 divergences<br />

and ensure the stability of the weak scale<br />

h W ± Z<br />

h h<br />

add a sym. such that a Higgs mass is forbidden until this sym. is broken<br />

supersymmetry<br />

[Witten, ’81]<br />

gauge-Higgs unification<br />

[Manton, ’79, Hosotani ’83]<br />

Higgs as a pseudo Nambu-Goldstone boson<br />

lower the UV scale<br />

[Georgi-Kaplan, ’84]<br />

DRAFT<br />

large extra-dimension<br />

1032 species<br />

remove the Higgs<br />

technicolor<br />

h h<br />

[Dvali ’07]<br />

top<br />

h h<br />

[Arkani-Hamed-Dimopoulos-Dvali, ’98]<br />

[Weinberg ’79, Susskind ’79]<br />

m 2 H ∼ m 2 0 − (115 GeV) 2<br />

Λ 2<br />

400 GeV<br />

Christophe Grojean Beyond the Standard Model 68<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

2


DRAFT<br />

Symmet!es for a natural EWSB<br />

Christophe Grojean Beyond the Standard Model 69<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


How to Stabilize the Higgs Potential<br />

Goldstone’s Theorem<br />

spontaneously broken global symmetry massless scalar<br />

The spin trick<br />

a particle of spin s:<br />

... but the Higgs has sizable non-derivative<br />

couplings<br />

2s+1 polarization states<br />

...with the only exception of a particle moving at the<br />

speed of light<br />

... fewer polarization states<br />

Spin 1 Gauge invariance no longitudinal polarization<br />

Spin 1/2<br />

DRAFT<br />

Chiral symmetry only one helicity<br />

... but the Higgs is a spin 0 particle<br />

m=0<br />

Christophe Grojean Beyond the Standard Model 70<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Symmetries to Stabilize a Scalar Potential<br />

Supersymmetry<br />

Higher Dimensional<br />

Lorentz invariance<br />

fermion ~ boson<br />

Aµ ∼ A5<br />

4D spin 1 4D spin 0<br />

gauge-Higgs<br />

unification models<br />

DRAFT<br />

These symmetries cannot be exact symmetry of the Nature.<br />

They have to be broken. We want to look for a soft breaking in<br />

order to preserve the stabilization of the weak scale.<br />

Christophe Grojean Beyond the Standard Model 71<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

➾<br />

[Manton ’79, Fairlie 79, Hosotani ’83 +...]


Ghost symmetry<br />

Other symmetries?<br />

SM particle ~ ghost<br />

[Grinstein, O’Connell, Wise ‘07]<br />

It was known since Pauli-Villars that ghosts can soften the UV<br />

behavior of the propagators. But they are unstable per se.<br />

Lee-Wick in the 60’s proposed a trick to stabilize the ghosts (at<br />

the price of of a violation of causality at the microscopic scale).<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 72<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

Connections between EWSB and Top physics<br />

Christophe Grojean Beyond the Standard Model 73<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


1<br />

Why should (P.) Higgs care about the top?<br />

It might help him getting a Nobel prize!<br />

Direct probe of the Higgs/EWSB sector<br />

stants can be determined in a model–independent way. This is crucial in e<br />

mass generation mechanism for elementary particles and very useful to expl<br />

yond the SM. For instance, radion-Higgs mixing in warped extra dimensiona<br />

reduce the magnitude of the Higgs couplings to fermions and gauge bosons in a<br />

[56, 57] and such effects can be probed only if absolute coupling measuremen<br />

Another example is related to the electroweak baryogenesis scenario to expl<br />

number of the universe: to be successful, the SM Higgs sector has to be exte<br />

a strong first-order phase transition and the change of the Higgs potential c<br />

servable effects in the triple Higgs coupling [111, 112]. Finally, the loop induc<br />

photonic decay channels are sensitive to scales far beyond the Higgs mass and<br />

particles that are too heavy to be produced directly [113].<br />

top=heaviest fermion, i.e., largest coupling to the Higgs boson<br />

controls the Higgs production<br />

Coupling Mass Relation<br />

DRAFT<br />

1 10<br />

Mass (GeV)<br />

100<br />

Christophe Grojean Beyond the Standard Model 74<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

Coupling constant to Higgs boson<br />

1<br />

0.1<br />

0.01<br />

c<br />

!<br />

b<br />

W Z<br />

FIGURE 2.16. The relation between the Higgs couplings and the particle masses as dete<br />

high–precision ILC measurements [4]; on the y axis, the coupling κi of the particle i<br />

defined in a such a way that the relation mi = vκi with v 246 GeV holds in the SM.<br />

2.3 THE HIGGS BOSONS IN SUSY THEORIES<br />

H t


(SM) Higgs Production<br />

3. Higgs 3. production Higgs production at LHC: at LHC: main main processes processes<br />

Production Production mechanisms mechanisms Cross sections Cross sections at the at LHC the LHC<br />

Higgs-strahlung<br />

QQ associated<br />

production<br />

Vector boson fusion<br />

ggs production at LHC: main processes<br />

n mechanisms Cross sections at the LHC<br />

Production mechanisms Cross sections at the L<br />

Gluon fusion<br />

DRAFT<br />

There are also subleading processes, gg → HH, etc...<br />

There are also subleading processes, gg → HH, etc...<br />

3. Higgs production at LHC: main processe<br />

SM Higgs at the Tevatron<br />

Current experimental information (limits @ 95% CL):<br />

forward jet tagging<br />

! ∝1/s: SM LEP Tevatron, direct LHC search: mH>114.4 GeV<br />

central jet veto<br />

! SM indirect constraint: mH


(SM) Higgs Production<br />

3. Higgs 3. production Higgs production at LHC: at LHC: main main processes processes<br />

Production Production mechanisms mechanisms Cross sections Cross sections at the at LHC the LHC<br />

Higgs-strahlung<br />

QQ associated<br />

production<br />

Vector 3. Higgs boson production fusion at LHC: main processes<br />

ggs production at LHC: main processes<br />

n mechanisms Cross sections at the LHC<br />

Production mechanisms Cross sections at the L<br />

∝1/s: Tevatron, LHC<br />

forward jet tagging<br />

central jet veto<br />

small hadronic activity<br />

Gluon fusion<br />

DRAFT<br />

There are also subleading processes, gg → HH, etc...<br />

There are also subleading processes, gg → HH, etc...<br />

(see for instance A. Djouadi, hep-ph/0503172)<br />

3. Higgs production at LHC: main processe<br />

Production mechanisms Cross sections at the LHC<br />

Higgs production @ LHC<br />

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs <strong>Physics</strong> – A. Djouadi – p.23/47<br />

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs <strong>Physics</strong> – A. Djouadi – p.23/47<br />

There are also subleading processes, gg → HH, etc...<br />

ISSCSMB ’08, Mugla, 10–18/09/08 Higgs <strong>Physics</strong> – A. Djouadi – p.23/47<br />

single final state<br />

large NLO enhancement<br />

so subleading processes, ggThere → HH, are also etc... subleading processes, gg → HH, etc...<br />

Christophe Grojean Beyond the Standard Model 76<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


1<br />

Why should (P.) Higgs care about the top?<br />

It might help him getting a Nobel prize!<br />

Direct probe of the Higgs/EWSB sector<br />

top=heaviest fermion, i.e., largest coupling to the Higgs boson<br />

controls the Higgs production<br />

Hierarchy problem<br />

m 2 H = m 2 Hbare − 3GF Λ 2<br />

4 √ 2π 2<br />

2<br />

2mW + m 2 Z + m 2 H − 4m 2 t<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 77<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


1<br />

Why should (P.) Higgs care about the top?<br />

It might help him getting a Nobel prize!<br />

Direct probe of the Higgs/EWSB sector<br />

top=heaviest fermion, i.e., largest coupling to the Higgs boson<br />

controls the Higgs production<br />

Hierarchy problem<br />

Indirect probe of the Higgs/EWSB sector<br />

EW precision data<br />

δS = 1<br />

δT = − 3<br />

12π log m2 h<br />

16π c 2 W<br />

m 2 h0<br />

DRAFT<br />

log m2 h<br />

m 2 h0<br />

+ 1<br />

+<br />

6π log m2t m2 Z<br />

3<br />

16πs 2 W c2 W<br />

m 2 t<br />

m 2 Z<br />

160<br />

10 10 2<br />

Excluded<br />

Christophe Grojean Beyond the Standard Model 78<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

m t [GeV]<br />

200<br />

180<br />

July 2010<br />

High Q 2 except mt 68% CL<br />

m H [GeV]<br />

m t (Tevatron)<br />

10 3


1<br />

Why should (P.) Higgs care about the top?<br />

It might help him getting a Nobel prize!<br />

Direct probe of the Higgs/EWSB sector<br />

top=heaviest fermion, i.e., largest coupling to the Higgs boson<br />

controls the Higgs production<br />

Hierarchy problem<br />

Indirect probe of the Higgs/EWSB sector<br />

EW precision data<br />

top rare decays and anomalous couplings<br />

flavour physics, CP violation<br />

LHC≈1 tt pair/s<br />

DRAFT<br />

sensitive to rare decays with BR~10 -(6÷7)<br />

t Zc, Hc, γc, gc 10 -13 ÷10 -10 for SM<br />

channel 95%CL sensitivity on BR @ LHC14TeV<br />

10 fb -1<br />

t Zq t γq t gq<br />

3.1x10 -4 4.1x10 -5 1.3x10 -3<br />

[ATLAS coll. ’07]<br />

Christophe Grojean Beyond the Standard Model 79<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


1<br />

Why should (P.) Higgs care about the top?<br />

It might help him getting a Nobel prize!<br />

Direct probe of the Higgs/EWSB sector<br />

top=heaviest fermion, i.e., largest coupling to the Higgs boson<br />

iggs production at LHC: main processes<br />

controls the Higgs production<br />

on mechanisms Hierarchy problem Cross sections at the LHC<br />

3<br />

Indirect probe of the Higgs/EWSB sector<br />

EW precision data<br />

top rare decays and anomalous couplings<br />

flavour physics, CP violation<br />

Behind the scene<br />

g<br />

g<br />

DRAFT<br />

tt+jets (large) background to many searches<br />

t<br />

t<br />

b<br />

b<br />

ttH NLO cross section @ LHC14TeV<br />

mH [GeV]<br />

σ [fb]<br />

120 150 180<br />

634-719 334-381 194-222<br />

Top @ LHC v<br />

[Moch et al., ’08+’09]<br />

[Dawson et al., ’03]<br />

Christophe Grojean Beyond the Standard Model 80<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


4<br />

Why should (P.) Higgs care about the top?<br />

It might help him getting a Nobel prize!<br />

Mass [GeV]<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

2 4 6 8 10 12 14 16 18<br />

Log (Q/1 GeV)<br />

10<br />

DRAFT<br />

Sharing the front stage with the Higgs boson<br />

[Martin hep-ph/9709356]<br />

sleptons<br />

squarks<br />

radiative EWSB triggered but top loop, e.g., susy, little Higgs, composite Higgs<br />

a reasonable approximation, the entire mass spectrum in minimal supergravity models is determined<br />

by only five unknown parameters: m<br />

Christophe Grojean Beyond the Standard Model <strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

2 0 , m1/2, A0, tan β, and Arg(µ), while in the simplest gaugemediated<br />

supersymmetry breaking models one can pick parameters Λ, Mmess, N5, 〈F 〉, tan β, and<br />

81<br />

H d<br />

H u<br />

M 2<br />

M 1<br />

M 3<br />

(µ 2 +m 0<br />

Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal<br />

supergravity-inspired boundary conditions imposed at Q0 =2.5 × 1016 GeV. The parameter µ 2 + m2 Hu<br />

runs negative, provoking electroweak symmetry breaking.<br />

m 1/2<br />

m 0<br />

2 ) 1/2


4<br />

Why should (P.) Higgs care about the top?<br />

It might help him getting a Nobel prize!<br />

mHiggs [GeV]<br />

<br />

<br />

<br />

<br />

<br />

DRAFT<br />

Sharing the front stage with the Higgs boson<br />

<br />

<br />

<br />

<br />

LEP<br />

stable<br />

[Espinosa, Giudice & Riotto ’07]<br />

metastable<br />

<br />

mtop [GeV]<br />

unstable<br />

Figure 2: Lower bounds on Mh from absolute stability (upper curves) and T = 0 metastability<br />

(lower curves). The width corresponds to αs(MZ) = 0.1176 ± 0.0020 (with the higher<br />

curve corresponding to lower αs) and we do not show the uncertainty from higher-order<br />

effects, which we estimate to be below 2–3 GeV. The horizontal line is the LEP mass bound.<br />

radiative EWSB triggered but top loop, e.g., susy, little Higgs, composite Higgs<br />

dictating the destiny of the Universe: (meta)stability of EW vaccum<br />

Christophe Grojean Beyond the Standard Model 82<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


(Composite) Top Sector<br />

could the right-handed top belong to the strong sector too?<br />

ctyt<br />

f 2 |H|2 ¯qL ¯ HtR + icR<br />

f 2 H† DµH¯tRγ µ tR + c4t<br />

(composite left-handed top/bottom gives rise to<br />

a too large mass difference of neutral B mesons)<br />

f 2 ( tRγ ¯ µ tR)(¯tRγµtR)<br />

Modified top-quark couplings to h and Z<br />

ght¯t = gmt<br />

<br />

1 −<br />

2mW<br />

v2<br />

f 2<br />

<br />

ct + cy + cH<br />

<br />

2<br />

<br />

gZtR¯tR = −2g sin2 <br />

θW<br />

1 −<br />

3 cos θW<br />

3 v<br />

cR<br />

2<br />

f 2<br />

<br />

8 sin 2 θW<br />

DRAFT<br />

gg → ¯tth h → ! !<br />

htt can be measured through and<br />

ILC accuracy with √s=800 GeV and L=1000fb -1 : 5%<br />

Christophe Grojean Beyond the Standard Model 88<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


ing to learn from<br />

Composite top: pair production<br />

ment at the LHC?<br />

he 12% gg channel uncertainty is only very roughly @ Tevatron constrained!!!<br />

e might have missed some big and important NP<br />

ffect connected with an gg initial state (such a scalar...).<br />

DRAFT<br />

ow can we study such effects in a model independent<br />

ay?<br />

[Degrande, Gerard, Grojean, Maltoni & Servant, to appear]<br />

Fabio Maltoni<br />

30 15 0<br />

4<br />

4 2 0 2 4<br />

Christophe Grojean Beyond the Standard Model 89<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

c V 1TeV 2<br />

4<br />

2<br />

0<br />

2<br />

0<br />

g h1TeV 2<br />

15<br />

30<br />

large deviations allowed @ LHC<br />

green: Tevatron constraints, blue: mtt distribution<br />

Tevatron is dominated (85%) by qq production<br />

LHC is dominated (90%) by gg production<br />

➾<br />

room for large departure from SM result<br />

➾<br />


Conclusions<br />

Why do we expect to find a Higgs?<br />

1. discovery already announced to journalists and politics<br />

2. simplest parametrization of EWSB<br />

3. unitarity of WW scattering amplitude<br />

4. EW precision tests<br />

Why do we expect more than the Higgs?<br />

1. dark matter and matter-antimatter asymmetry<br />

new physics not necessarily coupled to SM<br />

2. triviality<br />

3. stability<br />

4. naturality ➲<br />

}<br />

new physics might be heavy if the Higgs is light<br />

new physics has to be light if the Higgs is light<br />

DRAFT<br />

new particles/symmetries are expected to populate the TeV scale<br />

to trigger the breaking of the EW symmetry<br />

what is the organization principle that governs this new sector?<br />

Christophe Grojean Beyond the Standard Model 90<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

Supersymmet!c Higgs(es)<br />

Christophe Grojean Beyond the Standard Model 91<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


SUSY has good assets:<br />

gauge coupling unification,<br />

The Goodies of SUSY<br />

radiative EWSB,<br />

As Top and W Mass Measurements<br />

DM candidate(s),<br />

become more precise,<br />

no oblique corrections: R-parity the MSSM ➲ one-loop sector effects getting only...<br />

more and more favorable<br />

Within the SM<br />

- M H = 76+33-24<br />

- M H < 144 GeV @ 9<br />

• SM is “ruled out”<br />

standard deviation<br />

DRAFT<br />

Tension between indirect bounds on MH in the SM and direct search limit<br />

Christophe Grojean Beyond the Standard Model 92<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


The not so Goodies of SUSY<br />

SUSY need new (super)particles that haven’t been seen yet<br />

SUSY (at least MSSM) predicts a very light Higgs<br />

V =(|µ| 2 + m 2 Hu ) <br />

0<br />

H <br />

u<br />

2 +(|µ| 2 + m 2 Hd ) <br />

0<br />

Hd tree-level<br />

2 − B(H 0 uH 0 d + c.c.)+ g2 + g ′2<br />

m 2 h = m 2 Z cos 2 2β<br />

m 2 Z/2 =−µ 2 + m2Hd − m2Hu tan2 β<br />

tan2 β − 1<br />

excluded<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 94<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

8<br />

H <br />

0 u<br />

2 − <br />

0<br />

H <br />

d<br />

22


The not so Goodies of SUSY<br />

SUSY need new (super)particles that haven’t been seen yet<br />

SUSY (at least MSSM) predicts a very light Higgs<br />

V =(|µ| 2 + m 2 Hu ) <br />

0<br />

H <br />

u<br />

2 +(|µ| 2 + m 2 Hd ) <br />

0<br />

Hd one-loop level<br />

2 − B(H 0 uH 0 d + c.c.)+ g2 + g ′2<br />

m 2 h ≈ m 2 Z cos 2 2β + 3GF m4 t √<br />

2π2 log m2˜t m 2 Z/2 =−µ 2 + m2Hd − m2Hu tan2 β<br />

tan2 β − 1<br />

mH > 115 GeV mt > 1 TeV<br />

fine-tuned<br />

DRAFT<br />

δm 2 Hu = −3√ 2GF m 2 t m 2 ˜t<br />

4π 2<br />

requires some fine-tuning O(1%) in mZ<br />

Christophe Grojean Beyond the Standard Model 95<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

~<br />

log Λ<br />

m˜t<br />

m 2 t<br />

8<br />

H <br />

0 u<br />

2 − <br />

0<br />

H <br />

d<br />

22 susy<br />

little hierarchy<br />

problem


Solving the susy little hierarchy pb<br />

Various proposals on the market:<br />

singlet extensions of the Higgs sector: NMSSM and friends<br />

gauge extensions with new non-decoupled D-terms:<br />

low scale susy breaking mediation (Λ~100 TeV)<br />

double protection: (super-little) Higgs as a Goldstone boson<br />

add higher dimensional terms: BMSSM<br />

WBMSSM = λ1<br />

... your own model?<br />

Birkedal, Chacko, Gaillard ’04 + O(20) papers<br />

Dine, Seiberg, Thomas ’07<br />

M (HuHd) 2 + λ2<br />

M Zsoft(HuHd) 2 )<br />

Fayet ’76 + O(500) papers<br />

Batra, Delgado, Kaplan, Tait ’03 + O(10) papers<br />

DRAFT<br />

allow for much lighter susy particles<br />

window for MSSM baryogenesis extended and more natural<br />

LSP can account for DM relic density in larger region of parameter space<br />

Christophe Grojean Beyond the Standard Model 96<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

Li)le Higgs<br />

Christophe Grojean Beyond the Standard Model 97<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


Little Higgs Models<br />

Higgs as a pseudo-Nambu-Goldstone boson<br />

QCD: π + , π 0 are Goldstone associated to<br />

αem → 0,mq → 0<br />

LxR exact<br />

EW pions<br />

mπ =0<br />

αtop → 0, g, g ′ → 0<br />

exact global sym.<br />

mH =0<br />

αem = 0<br />

m 2 π ± ≈ αem<br />

αtop = 0<br />

m 2 H ≈ αtop<br />

...too low !<br />

DRAFT<br />

Little Higgs = PNGB + Collective Breaking<br />

m 2 H ≈ αiαj<br />

4π Λ2 QCD<br />

4π Λ2 strong<br />

(4π) 2 Λ2 strong<br />

[Arkani-Hamed et al. ‘02]<br />

SU(2)L × SU(2)R<br />

SU(2)isospin<br />

would require<br />

Λstrong ∼ 1 TeV<br />

Christophe Grojean Beyond the Standard Model 99<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


2x2 symmetric<br />

Littlest Higgs: SU(5)/SO(5)<br />

Σ → UΣU t 〈Σ〉 =<br />

Goldstone parameterization:<br />

〈Σ〉 =<br />

⎛<br />

⎝<br />

gauge symm.<br />

SU(2)L<br />

SU(2)R<br />

12<br />

1<br />

⎛<br />

⎝<br />

12<br />

⎞<br />

⎠<br />

⎛<br />

⎝<br />

12<br />

SO(5) unbroken symmetry<br />

SU(3) unbroken global sym.<br />

DRAFT<br />

⎛<br />

⎝<br />

2 × 2<br />

2 × 2<br />

1 × 1<br />

1 × 1<br />

2 × 2<br />

2 × 2<br />

⎞<br />

⎠<br />

⎞<br />

⎠<br />

SU(3) unbroken global sym.<br />

Christophe Grojean Beyond the Standard Model 101<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

1<br />

12<br />

⎞<br />

⎠ UU t =1<br />

Σ = e<br />

⎛<br />

⎜<br />

i⎜<br />

⎝<br />

H → H + ɛ<br />

H → H − ɛ<br />

H φ<br />

−H † Ht −φ ⋆ −H ⋆<br />

⎞<br />

⎟<br />

⎠ /f<br />

〈Σ〉<br />

φ → φ − (Hɛ t + ɛH t )/f<br />

φ → φ +(Hɛ t + ɛH t )/f


LH = Λ 2 cancelled by same spin partner<br />

W ± Z<br />

h h<br />

g 2<br />

W ± Z<br />

H H<br />

h h<br />

gauge boson loops cancelled by heavy gauge boson loops<br />

t, T<br />

y y<br />

h h<br />

t<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 104<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

-g 2<br />

T x T<br />

h h<br />

top loop cancelled by heavy toop loop<br />

Relation among different couplings follows from global sym.<br />

cancellation of div. occurs only at one-loop<br />

yf<br />

− y<br />

2f


v ∼ f/4π<br />

Anatomy of Little Higgs models<br />

f<br />

4πf<br />

10 TeV<br />

1 TeV<br />

100 GeV<br />

UV completion<br />

New particles (W’, Z’,top’...)<br />

SM particles (Higgs,W,Z...)<br />

cancellation of Higgs mass Λ 2 divergences<br />

W,Z loop cancelled by heavy W’, Z’ loops<br />

DRAFT<br />

top loop cancelled by heavy top' loop<br />

Higgs loop cancelled by heavy scalar loops<br />

Christophe Grojean Beyond the Standard Model 105<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

Gau*-Higgs Unification<br />

Christophe Grojean Beyond the Standard Model 107<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


How to Get a Doublet from an Adjoint<br />

Consider a 5D<br />

gauge symmetry G<br />

1<br />

2<br />

will belong tho the adjoint rep. of G<br />

The SM Higgs is not an adjoint of SU(2)xU(1), it is a doublet !<br />

⎛<br />

⎜<br />

⎝<br />

SU(3)<br />

H ∼ A a 5<br />

Consider a bigger gauge group<br />

G → SU(2)L × U(1)Y<br />

Adj doublet + other rep.<br />

SU(2)xU(1)<br />

DRAFT<br />

W3 + W8/ √ 3 W1 − iW2 W4 − iW5<br />

W1 + iW2 −W3 + W8/ √ 3 W6 − iW7<br />

W4 + iW5 W6 + iW7 −2W8/ √ 3<br />

Adj<br />

2 √ 3/2<br />

Christophe Grojean Beyond the Standard Model 108<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

⎞<br />

⎟<br />


πR<br />

πR<br />

y<br />

Towards a Complete Construction<br />

so far we haven’t broken any symmetry... we even enlarged the gauge group<br />

We need to break G down to SU(2)xU(1)<br />

we can achieve this breaking while compactifying the extra-dimension<br />

0<br />

Compactification on a Circle<br />

φ(x, y) = <br />

y ∼ y +2πR<br />

circle:<br />

φ(y +2πR) =φ(y)<br />

DRAFT<br />

5D<br />

field<br />

n<br />

1<br />

<br />

ny<br />

<br />

√ cos<br />

2δn0πR R<br />

wavefunction =<br />

localization of KK mode<br />

along the xdim<br />

φ + n (x) + sin<br />

<br />

ny<br />

<br />

R<br />

4D<br />

Kaluza-Klein modes<br />

mn = p n y = n<br />

R<br />

φ − <br />

n (x)<br />

Christophe Grojean Beyond the Standard Model 109<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


πR<br />

πR<br />

y<br />

−y<br />

Towards a Complete Construction<br />

so far we haven’t broken any symmetry... we even enlarged the gauge group<br />

We need to break G down to SU(2)xU(1)<br />

we can achieve this breaking while compactifying the extra-dimension<br />

0<br />

Compactification on an Orbifold<br />

Z2<br />

⤶<br />

y ∼ y +2πR<br />

circle:<br />

φ(y +2πR) =φ(y)<br />

orbifold:<br />

DRAFT<br />

<br />

ny<br />

<br />

cos<br />

R<br />

ny<br />

<br />

sin<br />

R<br />

y ∼−y<br />

U=+1: wavefunctions<br />

U=-1: wavefunctions<br />

φ(−y) =Uφ(y) U 2 =1<br />

Christophe Grojean Beyond the Standard Model 110<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

E<br />

E<br />

massless mode<br />

massless mode


R<br />

πR<br />

y<br />

−y<br />

0<br />

⤶<br />

Orbifold breaking<br />

orbifold<br />

Breaking of gauge group at the end-points of the orbifold<br />

KK effective theory<br />

Z2<br />

U 2 =1<br />

y ∼−y<br />

Aµ(−y) =UAµ(y)U †<br />

A5(−y) =−UA5(y)U †<br />

at the end-points, the surviving gauge group commute<br />

with the orbifold projection matrix U<br />

zero mode: is independent of<br />

0 π R<br />

DRAFT<br />

Aµ = UAµU †<br />

Aµ<br />

gauge symmetry breaking<br />

(+ chiral fermions)<br />

Christophe Grojean Beyond the Standard Model 111<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

G<br />

H0 H0<br />

Aµ(0) = UAµ(0)U †<br />

y<br />

A5 = −UA5U †


SU(3) → SU(2)xU(1) 5D Orbifold Breaking<br />

massless vectors Aµ Aµ<br />

[Aµ,U]=0 Aµ = SU(2) × U(1)<br />

1<br />

⎛<br />

A<br />

⎜<br />

2 ⎜<br />

⎝<br />

3 µ + A8 / √ 3 A1 µ − iA2 µ<br />

A1 µ + iA2 µ −A3 µ + A8 µ/ √ ⎞<br />

⎟<br />

[Aµ,U]=0<br />

3<br />

⎟<br />

⎠<br />

massless scalars A5 A5<br />

{A5,U} =0<br />

U =<br />

⎛<br />

⎝<br />

−1<br />

−2A 8 µ/ √ 3<br />

DRAFT<br />

A5 = 1<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

−1<br />

1<br />

A 4 5 + iA 5 5<br />

A 6 5 + iA 7 5<br />

A 4 5 − iA 5 5<br />

A 6 5 − iA 7 5<br />

Christophe Grojean Beyond the Standard Model 112<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

⎞<br />

⎠ U ∈ SU(3) U 2 =1<br />

⎞<br />

⎟<br />

⎠<br />

SU(2) × U(1)<br />

SU(3)<br />

SU(2) ! × U(1)


Orbifold Projection as Boundary Conditions<br />

H subgroup<br />

AH µ (−y) =AH A µ (y)<br />

H µ (−y) =AH µ (y)<br />

AH 5 (−y) =−AH A 5 (y)<br />

H 5 (−y) =−AH 5 (y)<br />

G/H coset<br />

A G/H<br />

(−y) =−A G/H<br />

A (y)<br />

G/H<br />

(−y) =−A G/H<br />

(y)<br />

µ µ<br />

y<br />

µ<br />

A G/H<br />

(−y) =A G/H<br />

A (y)<br />

G/H<br />

(−y) =A G/H<br />

(y)<br />

5 5<br />

πR<br />

−πR<br />

y<br />

5<br />

by orbifold projection<br />

DRAFT<br />

⤶Z2<br />

which is equivalent to the BCs<br />

at the fixed points<br />

which is equivalent to the BCs<br />

at the fixed points<br />

∂5A H µ =0<br />

A H 5 =0<br />

A G/H<br />

A G/H<br />

πR 0<br />

−y U 2 0 ≈<br />

U =1 BC BC<br />

2 =1<br />

−y<br />

G → H<br />

Z2<br />

∂5A H µ =0<br />

A H 5 =0<br />

Christophe Grojean Beyond the Standard Model 113<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

µ<br />

∂5A G/H<br />

∂5A5 G/H<br />

5<br />

πR 0<br />

=0<br />

=0


Two examples<br />

SU(3)<br />

SU(2)xU(1) SU(2)xU(1)<br />

0 π R<br />

(+,+) µ<br />

(-,-) µ<br />

: SU(2)xU(1) : SU(3)/SU(2)xU(1)<br />

(-,-)5<br />

(+,+)5<br />

S0(5)xU(1)X<br />

SU(2)LxU(1)Y SO(4)xU(1)X<br />

0 π R<br />

massless Higgs doublet<br />

DRAFT<br />

(+,+) µ (-,-)<br />

: µ<br />

(-,+) SO(4)xU(1)X<br />

SU(2)LxU(1)Y : SO(5)/SO(4) µ<br />

:<br />

(-,-)5<br />

(+,+)5<br />

(+,-)5 SU(2)LxU(1)Y<br />

massless Higgs doublet<br />

Christophe Grojean Beyond the Standard Model 114<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Susy, Little Higgs, gauge-Higgs unification:<br />

three concrete classes of models with<br />

new particles/symmetries that populate the TeV scale<br />

to stabilize the EW scale and suppress dangerous Λ2 quantum corrections<br />

to the Higgs mass<br />

Models designed to address the question:<br />

what is canceling the infamous divergent diagrams?<br />

h<br />

h h<br />

W ± Z<br />

DRAFT<br />

h h<br />

Christophe Grojean Beyond the Standard Model 115<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

top<br />

h h


But this is assuming that we already know the answer to the central<br />

question of EW symmetry breaking<br />

what is unitarizing the WW scattering amplitude?<br />

A = g 2<br />

WL<br />

WL<br />

E<br />

finite<br />

DRAFT<br />

MW<br />

2<br />

other way to unitarize the WW amplitude:<br />

Higgsless models & composite Higgs<br />

Christophe Grojean Beyond the Standard Model 116<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

WL<br />

WL<br />

!A


What is the mechanism of EWSB?<br />

what is unitarizing the WW scattering amplitude?<br />

Weakly coupled models Strongly coupled models<br />

W + W +<br />

W -<br />

h 0<br />

W -<br />

prototype: Susy<br />

prototype: Technicolor<br />

DRAFT<br />

susy partners ~ 100 GeV<br />

other ways?<br />

W + W +<br />

TeV<br />

QCD<br />

rho meson ~ 1 TeV<br />

Christophe Grojean Beyond the Standard Model 117<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

W -<br />

W -


Strongly coupled models<br />

a phenomenological challenge: how to evade EW precision data<br />

The resonance that unitarizes the WW scattering amplitudes<br />

W + W +<br />

W -<br />

TC<br />

W -<br />

=<br />

generates a tree-level effect on the SM gauge bosons self-energy<br />

DRAFT<br />

W3 B<br />

ρ<br />

W + W +<br />

W -<br />

Christophe Grojean Beyond the Standard Model 118<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

+ ...<br />

parameter of order<br />

In conflict with EW precision data from LEP<br />

( exp: | @ 95% CL)<br />

ˆ S| < 10 −3<br />

a theoretical challenge: need to develop tools to do computation<br />

ˆS<br />

ρ<br />

W -<br />

m 2 W /m 2 ρ


DRAFT<br />

Higgsless Models<br />

Christophe Grojean Beyond the Standard Model 120<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


πR<br />

−πR<br />

y<br />

−y<br />

Higgsless Approach<br />

0<br />

Z2<br />

⤶<br />

U 2 =1<br />

Csaki, Grojean, Murayama, Pilo, Terning ‘03<br />

Csaki, Grojean, Pilo, Terning ‘03<br />

Gauge symmetry breaking<br />

In the gauge-Higgs unification models, we have been breaking<br />

bigger gauge groups down to SU(2)xU(1) by orbifold.<br />

Why can’t we break directly SU(2)xU(1) to U(1)em by orbifold?<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 121<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Higgsless Models<br />

mass without a Higgs<br />

m 2 = E 2 − p3 2 − p⊥ 2<br />

momentum along extra dimensions ~ 4D mass<br />

quantum mechanics in a box<br />

boundary conditions generate a transverse momentum<br />

Is it better to generate a transverse momentum than introducing<br />

by hand a symmetry breaking mass for the gauge fields?<br />

DRAFT<br />

ie how is unitarity restored without a Higgs field?<br />

Christophe Grojean Beyond the Standard Model 122<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


(4) 2<br />

∝ gnnnn − <br />

g 2 nnk<br />

A (4) ∝ g 2 nnnn − <br />

g 2 mnpq = g2 A 5D dyfm(y)fn(y)fp(y)fq(y)<br />

0<br />

(2) ∝ 4g 2 <br />

nnnn − 3 g 2 Mk nnk<br />

Unitarization M of (Elastic) Scattering Amplitude<br />

k<br />

k<br />

2 n k<br />

k<br />

Same KK mode<br />

4g<br />

‘in’ and ‘out’<br />

2 <br />

nnnn − 3 g 2 M<br />

nnk<br />

2 k<br />

M 2 g<br />

k<br />

n<br />

2 nnk<br />

M 2 A<br />

k<br />

(4) ∝ g 2 nnnn − <br />

g<br />

k<br />

2 nn g p <br />

nnk |p| E<br />

k ɛ = ,<br />

M M<br />

2 M<br />

nnk<br />

2 k<br />

M 2 n p<br />

A k<br />

(2) ∝ 4g 2 nnnn<br />

k <br />

− 3 θ<br />

p<br />

q<br />

<br />

f abe cde<br />

f (3 + 6cθ − c 2 θ ) + 2(3 − c2θ )f ace f bde<br />

M 2 <br />

f k ace bde 2<br />

f − sθ/2f abe f cde<br />

p<br />

q<br />

g<br />

k<br />

2 <br />

f abe cde<br />

nnk f (3 + 6cθ − c 2 θ ) + 2(3 − c2θ )f ace f bde<br />

A (2) ∝ 4g 2 nnnn g<br />

k<br />

2 nnk<br />

M 2 n<br />

p<br />

q<br />

<br />

nn − g 2 <br />

f abe cde<br />

nnk f (3 + 6cθ − c 2 θ ) + 2(3 − c2θ )f ace f bde<br />

g 2 <br />

f abe cde<br />

nnk f (3 + 6cθ − c 2 θ ) + 2(3 − c2θ )f ace f bde<br />

<br />

nn − 3 g<br />

k<br />

2 M<br />

nnk<br />

2 k<br />

M 2 <br />

f<br />

ace bde 2<br />

f − sθ/2f n<br />

abe f cde<br />

q<br />

g 2 q<br />

g<br />

nnnn<br />

2 q<br />

nnnn g<br />

gnnk<br />

2 nnnn<br />

n n n n<br />

k<br />

gnnk<br />

g 2 nnk<br />

M<br />

k<br />

= 0 KK sum rules (enforced by 5D Ward identities)<br />

2 n<br />

gnnk<br />

g 2 nnnn<br />

4 E<br />

+ A (2)<br />

<br />

nnn − 3 g<br />

k<br />

2 E<br />

+ . . .<br />

2 M<br />

nnk<br />

2 k<br />

M 2 <br />

f<br />

ace bde 2<br />

f − sθ/2f n<br />

abe f cde<br />

gnnk<br />

g 2 k<br />

<br />

i 4g<br />

nnnn<br />

2 <br />

nnnn − 3 g<br />

k<br />

2 M<br />

nnk<br />

2 k<br />

M 2 <br />

f<br />

ace bde 2<br />

f − sθ/2f n<br />

abe f cde<br />

gnnk<br />

g 2 gnnk<br />

g<br />

nnnn<br />

2 nnnn<br />

A (4)<br />

4 E<br />

+ A<br />

M<br />

(2)<br />

A 2 E<br />

+ . . .<br />

M<br />

(4) <br />

= i g 2 nnnn − <br />

g<br />

k<br />

2 <br />

f abe cde<br />

nnk f (3 + 6cθ − c 2 θ) + 2(3 − c 2 θ)f ace f bde<br />

gnnk<br />

be cde<br />

f (3 + 6cθ − c<br />

<br />

<br />

<br />

2 θ ) + 2(3 − c2θ )f ace f bde<br />

<br />

nn − g<br />

k<br />

2 <br />

f<br />

abe cde<br />

nnk f (3 + 6cθ − c 2 θ ) + 2(3 − c2θ )f ace f bde<br />

<br />

4g 2 nnnn − 3 <br />

g 2 M<br />

nnk<br />

2 <br />

f k ace bde 2<br />

f − sθ/2f abe f cde<br />

<br />

(4)<br />

= i g 2 <br />

nnnn − g<br />

k<br />

2 <br />

f<br />

abe cde<br />

nnk f (3 + 6cθ − c 2 θ ) + 2(3 − c2θ )f ace f bde<br />

A (2) <br />

= i 4g 2 nnnn − 3 <br />

g 2 M<br />

nnk<br />

2 <br />

f k ace bde 2<br />

f − sθ/2f abe f cde<br />

A (4) <br />

= i g 2 <br />

nnnn − g<br />

k<br />

2 <br />

f<br />

abe cde<br />

nnk f (3 + 6cθ − c 2 θ ) + 2(3 − c2 θ )<br />

A (2) <br />

= i 4g 2 nnnn − 3 <br />

g 2 M<br />

nnk<br />

2 k<br />

M 2 <br />

f<br />

ace bde 2<br />

f − sθ/2f n<br />

abe f c<br />

A (4) <br />

= i g 2 <br />

nnnn − g<br />

k<br />

2 <br />

f<br />

abe cde<br />

nnk f (3 + 6cθ − c 2 θ ) + 2(3 − c2θ )<br />

<br />

<br />

f<br />

ace bde 2<br />

f − sθ/2f abe f c<br />

A (4) <br />

= i g 2 <br />

nnnn − g<br />

k<br />

2 <br />

f<br />

abe cde<br />

nnk f (3 + 6cθ − c 2 A<br />

θ ) + 2<br />

<br />

<br />

f<br />

ace bde<br />

f − s<br />

(4) <br />

= i g 2 <br />

nnnn − g<br />

k<br />

2 <br />

f<br />

abe cde<br />

nnk f (3 + 6cθ − c 2 θ ) +<br />

A (2) <br />

= i 4g 2 nnnn − 3 <br />

g 2 M<br />

nnk<br />

2 k<br />

M 2 n n n<br />

n<br />

n n n n<br />

<br />

f<br />

ace bde<br />

f − s<br />

n<br />

DRAFT<br />

}<br />

}<br />

gnnk M 2 k<br />

n<br />

n−<br />

3 g<br />

Csaki, Grojean, p k<br />

Murayama, Pilo, Terning ’03<br />

2 M<br />

nnk<br />

2 k<br />

M 2 A<br />

n<br />

(2) ∝ 4g 2 <br />

nnnn − 3 g<br />

k<br />

2 M<br />

nnk<br />

2 k<br />

M 2 k<br />

n<br />

p<br />

n<br />

M<br />

M<br />

Christophe ⊥ Grojean Beyond the Standard Model 123<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

=<br />

<br />

|p|, E p <br />

4 E<br />

+ A<br />

M<br />

(2)<br />

2 E<br />

A = A + . . .<br />

M<br />

(4)<br />

4 E<br />

+ A<br />

M<br />

(2)<br />

ɛ 2 E<br />

+ . . .<br />

M<br />

µ<br />

⊥ =<br />

<br />

|p| E p<br />

<br />

, A<br />

M M |p|<br />

(2) = i 4g 2 nnnn − 3 <br />

g<br />

k<br />

2 M<br />

nnk<br />

2 k<br />

M 2 f<br />

n<br />

ace f bde − s 2<br />

! /2f abe f cde<br />

M<br />

k<br />

<br />

2 n M<br />

k<br />

2 k<br />

A n<br />

(2) = i 4g 2 nnnn − 3 <br />

g<br />

k<br />

2 M<br />

nnk<br />

2 k<br />

M 2 A<br />

n<br />

(2) = i 4g 2 nnnn − 3 <br />

g<br />

k<br />

2 M<br />

nnk<br />

2 k<br />

M 2 k<br />

n<br />

= A (4)<br />

ɛ µ<br />

− 3 <br />

p<br />

A ∝ 4gnnnnA− 3 ∝ 4gg nnnn nnk − 3<br />

M 2<br />

A n (2) ∝ 4g 2 nnnn<br />

<br />

−q 3<br />

g 2 nnk<br />

M 2 n<br />

M 2 k<br />

<br />

p<br />

|p|<br />

p<br />

A = A (4)<br />

E<br />

M<br />

4<br />

p<br />

q<br />

+ A (2)<br />

q<br />

g 2 nnnn<br />

n n<br />

g<br />

gnnk<br />

2 nnnn<br />

k<br />

gnnk<br />

p<br />

<br />

q E<br />

q<br />

M<br />

g 2 nnnn<br />

g 2 nnnn<br />

gnnk<br />

gnnk<br />

2<br />

n n<br />

k<br />

+ . . .


exercise<br />

A (4) ∝ g 2 nnnn − <br />

E 4 Sum Rule<br />

k<br />

KK Sum Rules<br />

Csaki, Grojean, Murayama, Pilo, Terning ’03<br />

g<br />

k<br />

2 M<br />

nnk<br />

2 k<br />

M 2 n<br />

g 2 nnk A (2) ∝ 4g 2 nnnn − 3 <br />

In a KK theory, the effective couplings are given by overlap integrals of the wavefunctions<br />

g 2 mnpq = g 2 5D<br />

k<br />

πR<br />

dyfm(y)fn(y)fp(y)fq(y)<br />

0<br />

g 2 nnnn − <br />

g 2 nnk = g 2 πR<br />

5D dyf 4 n(y) − g 2 πR πR<br />

5D dy dzf 2 n(y)f 2 n(z) <br />

fk(y)fk(z) =0<br />

DRAFT<br />

0<br />

A (4) =0<br />

Completness of KK modes<br />

Christophe Grojean Beyond the Standard Model 124<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

0<br />

gmnp = g5D<br />

0<br />

<br />

k<br />

πR<br />

0<br />

dyfm(y)fn(y)fp(y)<br />

k<br />

fk(y)fk(z) =δ(y − z)


exercise<br />

A (4) ∝ g 2 nnnn − <br />

E 2 Sum Rule<br />

4g 2 nnnnM 2 n − 3 <br />

<br />

fk(y)fk(z) =δ(y − z)<br />

k<br />

k<br />

k<br />

g 2 nnkM 2 k =4g 2 5DM 2 n<br />

KK Sum Rules<br />

g 2 nnk A (2) ∝ 4g 2 nnnn − 3 <br />

<br />

=4g 2 5DM 2 n<br />

πR<br />

0<br />

dyf 4 n(y) − 3g 2 5D<br />

DRAFT<br />

A (2) =0<br />

up to boundary terms...<br />

Christophe Grojean Beyond the Standard Model 125<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

πR<br />

0<br />

k<br />

dy dz f 2 n(y)f 2 n(z) <br />

int. by part<br />

dz f<br />

int. by part<br />

2 n(z)f ′′<br />

<br />

k (z) = −2 dz fn(z)f ′ n(z)f ′ k(z)<br />

<br />

= 2 dz fn(z)f ′′<br />

<br />

n(z)fk(z)+2<br />

= −2M 2 <br />

n dz f 2 <br />

n(z)fk(z)+2<br />

<br />

0<br />

0<br />

g 2 nnk<br />

k<br />

dz f ′2<br />

dz f ′2<br />

M 2 k<br />

M 2 n<br />

fk(y) fk(z)M 2 k<br />

n (z)fk(z)<br />

n (z)fk(z)<br />

<br />

πR<br />

dy f 4 n(y) − 6g 2 5DM 2 πR<br />

n dy f 4 n(y)+6g 2 πR<br />

5D dy f 2 n(y)f ′2<br />

n (y)<br />

int. by part<br />

dy f 2 n(y)f ′2<br />

<br />

n (y) = −2<br />

= 1<br />

3M 2 n<br />

dy f 2 n(y)f ′2<br />

<br />

n (y) −<br />

<br />

dy f 4 n(y)<br />

0<br />

dy f 3 n(y)f ′′<br />

n(y)<br />

−f ′′<br />

k (z)


UV brane IR brane<br />

z = RUV ~ 1/MPl z = RIR ~ 1/TeV<br />

SU(2)LxSU(2)R<br />

x<br />

U(1)B-L<br />

SU(2)LxU(1)y U(1)B-LxSU(2)D<br />

∂5A La<br />

A<br />

log suppression<br />

⤶ “lig<br />

µ =0<br />

R ±<br />

µ<br />

=0<br />

g ′ R 3<br />

5Bµ − g5Aµ =0<br />

∂5(g5Bµ + g ′ R 3<br />

5Aµ ) = 0<br />

ht” mode:<br />

KK tower:<br />

U(1)em<br />

{ Warped Higgsless Model<br />

Csaki, Grojean, Pilo, Terning ‘03<br />

ds 2 =<br />

2 R ηµνdx µ dx ν − dz 2<br />

BCs kill all A5 massless modes: no 4D scalar mode in the spectrum<br />

DRAFT<br />

M 2 W =<br />

1<br />

R2 IR log(RIR/RUV )<br />

M 2 KK !<br />

ALa µ − ARa µ =0<br />

! 5(ALa µ + ARa ! 5Bµ =0<br />

µ )=0<br />

M 2 Z ∼ g2 5 +2g ′2<br />

5<br />

g2 5 + g′2<br />

"ſɏ&ÿ (ÿʯ*+ɏ˿<br />

Christophe Grojean Beyond the Standard Model 126<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

R 2 IR<br />

z<br />

Ω = RIR<br />

RUV<br />

≈ 10 16 GeV<br />

1<br />

R2 IR log(RIR/RUV )


SM Fermions in Higgsless Models<br />

SU(2)Lx U(1)y<br />

Chiral brane<br />

no possible mass term<br />

SU(2)LxSU(2)R<br />

x<br />

U(1)B-L<br />

SU(2)DxU(1)B-L<br />

vector-like brane<br />

isospin invariant mass only<br />

DRAFT<br />

(same mass for the top and bottom or electron and neutrino)<br />

The fermions have to live in the bulk<br />

Christophe Grojean Beyond the Standard Model 127<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Collider Signatures<br />

unitarity restored by vector resonances whose masses and<br />

couplings are constrained by the unitarity sum rules<br />

σ (W + Z → W + Z) (pb)<br />

q<br />

q<br />

WZ elastic cross section<br />

10 4<br />

10 3<br />

Higgsle<br />

Pade<br />

VBF (LO) dominates over DY since<br />

couplings of q to W’ are reduced<br />

K-matrix<br />

10 2<br />

200 300 500 700 1000 2000 3000 5000<br />

Z 0<br />

W ±<br />

W’<br />

SM<br />

s1/2 (GeV)<br />

Z 0<br />

W ±<br />

q<br />

Birkedal, Matchev, Perelstein ’05<br />

He et al. ‘07<br />

√<br />

3MW<br />

a narrow and light resonance<br />

no resonance in WZ for SM/MSSM<br />

′MW<br />

Γ(W ′ → WZ) ∼ αM 3 W !<br />

144s2 wM 2 W<br />

W’ production<br />

DRAFT<br />

2j+3l+ET<br />

q<br />

gWW ′ Z ≤ gWWZM 2 Z<br />

Number of events at the LHC, 300 fb -1<br />

discovery reach<br />

@ LHC<br />

(10 events)<br />

550 GeV → 10 fb −1<br />

1 TeV → 60 fb −1<br />

should be seen<br />

within one/two year<br />

Christophe Grojean Beyond the Standard Model 128<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

New physics & flav&r<br />

Christophe Grojean Beyond the Standard Model 129<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


1<br />

2<br />

Partial compositeness: fermion masses<br />

amount of<br />

compositeness<br />

fqL,R<br />

partial compositeness<br />

mixing elem. and composite fermions<br />

dim qR,L=3/2, dim =dR,L<br />

qLOR<br />

Λ dR−5/2<br />

R<br />

+ qROL<br />

Λ dL−5/2<br />

L<br />

}<br />

OR,L<br />

+ OLOR<br />

Λ dL+dR−4<br />

R<br />

integrating out heavy fields<br />

ΛRΛL<br />

fermion mass hierarchy easily generated by small diff. in anomalous dims<br />

DRAFT<br />

alignment mixing angles/masses is also explained<br />

⎛<br />

1 λ λ<br />

⎝<br />

3<br />

λ 1 λ2 ⎞<br />

⎠<br />

VCKM ∼<br />

λ 3 λ 2 1<br />

Λ<br />

Λ<br />

ΛR<br />

dR Λ<br />

Christophe Grojean Beyond the Standard Model 133<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

ΛL<br />

dL<br />

qLqR<br />

mui ∝ fqi fui mdi<br />

V ij<br />

CKM<br />

∝ fqi /fqj<br />

∝ fqi fdi


Partial Compositeness: fermion masses<br />

Higgs part of the strong sector: it couples only to composite fermions<br />

f<br />

cL<br />

|light〉L<br />

Y*<br />

H Yukawa coupling<br />

in the strong sector<br />

when the Higgs gets a vev, the light dof will acquire a mass prop. to<br />

DRAFT<br />

Y eff = Y⋆ fcL fcR<br />

Yukawa hierarchy comes from the hierarchy of compositeness<br />

the lighter the fermion, the less coupled to the strong sector<br />

Christophe Grojean Beyond the Standard Model 134<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

f<br />

|light〉R<br />

cR


UV<br />

u,d,s<br />

c,bR<br />

Partial compositeness: xdim realization<br />

t,bL<br />

IR<br />

Higgs<br />

vev<br />

fermion zero-mode has<br />

an exponential profile<br />

in the bulk<br />

fc =<br />

<br />

fc is the "value" of wavefct. on the IR:<br />

1 − 2c<br />

1 − (R/R ′ ) 1−2c<br />

light fermion exponentially localized on the UV brane<br />

➲ overlap with Higgs vev on the IR tiny<br />

➲ exponentially small 4D mass<br />

c < 1/2: heavy fermion<br />

c > 1/2: light fermion<br />

DRAFT<br />

UV localized fermion=elementary<br />

IR localized fermion=composite<br />

5D models=weakly coupled dual of 4D strongly models<br />

[Grossman and Neubert, ’00]<br />

[Gherghetta and Pomarol, ‘00]<br />

[Huber, ‘03]<br />

−c χ(z) = fc<br />

√R<br />

′<br />

<br />

z<br />

2 <br />

z<br />

R R ′<br />

fc ∼ O(1)<br />

fc ∼ (R/R ′ ) c−1/2 ≪ 1<br />

Christophe Grojean Beyond the Standard Model 135<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


SU(2)LxU(1)Y<br />

UV<br />

Holographic Models of EWSB<br />

Gauge fields + fermions<br />

in the bulk<br />

G<br />

IR<br />

G=SU(2)LxSU(2)RxU(1)B-L<br />

G=SO(5)xU(1)X<br />

G=SO(6)xU(1)X<br />

Bulk gauge fields: [Pomarol, ’00]<br />

Holographic technicolor=Higgsless: [Csaki et al., ‘03<br />

Holographic composite Higgs: [Agashe et al., ’04]<br />

Higgs on the IR brane<br />

or<br />

Gauge breaking by<br />

boundary conditions<br />

DRAFT<br />

UV completion: log running of gauge couplings<br />

Custodial symmetry from bulk SU(2)R<br />

Christophe Grojean Beyond the Standard Model 136<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


DRAFT<br />

Composite Higgs Models<br />

Christophe Grojean Beyond the Standard Model 137<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />


What is the SM Higgs?<br />

A single scalar degree of freedom neutral under SU(2)LxSU(2)R/SU(2)L<br />

LEWSB = v2<br />

4 Tr DµΣ † <br />

<br />

DµΣ 1 + 2a h<br />

+ bh2<br />

v v2 <br />

− λ ¯ <br />

ψLΣψR 1+c h<br />

<br />

v<br />

W -<br />

W +<br />

h<br />

W -<br />

W +<br />

‘a’, ‘b’ and ‘c’ are arbitrary free couplings<br />

A = 1<br />

v2 <br />

s − a2 s 2<br />

s − m 2 h<br />

growth cancelled for<br />

a = 1<br />

restoration of<br />

perturbative unitarity<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 138<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


What is the SM Higgs?<br />

A single scalar degree of freedom with no charge under SU(2)LxU(1)Y<br />

LEWSB = v2<br />

4 Tr DµΣ † <br />

<br />

DµΣ 1 + 2a h<br />

+ bh2<br />

v v2 <br />

− λ ¯ <br />

ψLΣψR 1+c h<br />

<br />

v<br />

1<br />

10 -1<br />

10 -2<br />

10 -3<br />

‘a=1’, ‘b=1’ & ‘c=1’ define the SM Higgs<br />

Higgs properties depend on a single unknown parameter (mH)<br />

bb -<br />

BR(H)<br />

SM<br />

! + ! -<br />

gg<br />

cc -<br />

WW<br />

DRAFT<br />

Z"<br />

""<br />

80 100 150 200<br />

Mh !GeV"<br />

ZZ<br />

qqH, H!WW!l"jj H!ZZ!4l<br />

H!WW!2l2"<br />

qqH, H!$$!l+j<br />

H!## total significance<br />

Christophe Grojean Beyond the Standard Model 140<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

S<br />

50<br />

10<br />

5<br />

1<br />

SM<br />

CMS<br />

30fb -1<br />

120 140 160 180 200<br />

MH [GeV]


1-a 2<br />

Deformation of the SM Higgs<br />

LEWSB = v2<br />

4 Tr DµΣ † <br />

<br />

DµΣ 1 + 2a h<br />

v<br />

+ bh2<br />

v2 generic ‘a’, ‘b’ & ‘c’<br />

Examples of constraints on the “Higgs” couplings<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 141<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

1-a 2<br />

<br />

− λ ¯ ψLΣψR<br />

<br />

1+c h<br />

<br />

v


How many parameters for the Higgs?<br />

LEWSB = v2<br />

4 Tr DµΣ † <br />

<br />

DµΣ 1 + 2a h<br />

v<br />

h<br />

+cg<br />

v GµνG µν h<br />

+ cγ<br />

v<br />

γµνγ µν<br />

+ bh2<br />

v2 Minimal Flavour Violation setup? cij=c<br />

DRAFT<br />

Loop suppressed decays to massless spin-1?<br />

Christophe Grojean Beyond the Standard Model 142<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

<br />

− λij ¯ ψLi ΣψRj<br />

<br />

1+cij<br />

cg ∼ cγ ∼ O<br />

<br />

h<br />

v<br />

<br />

α<br />

<br />


How to obtain a light composite Higgs?<br />

Higgs=Pseudo-Goldstone boson of the strong sector<br />

gSM<br />

proto-Yukawa<br />

gauge gρ<br />

SM<br />

3 scales:<br />

gρ<br />

2<br />

mρ =gρ f<br />

gSM/gρ<br />

4π f<br />

v 246 GeV<br />

Strong<br />

BSM<br />

global<br />

symmetry<br />

UV completion<br />

10 TeV<br />

mHiggs=0 when gSM=0<br />

G /H<br />

usual resonances of the strong sector<br />

Higgs = light resonance of the strong sector<br />

residual<br />

global symmetry<br />

DRAFT<br />

strong sector broadly characterized by 2 parameters<br />

mρ<br />

= mass of the resonances<br />

= coupling of the strong sector or decay cst of strong sector<br />

Giudice, Grojean, Pomarol, Rattazzi ‘07<br />

not directly<br />

accessible to LC<br />

Christophe Grojean Beyond the Standard Model 143<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

}<br />

indirect<br />

probes<br />

f =mρ /gρ


Continuous interpolation between SM and TC<br />

SM limit Technicolor limit<br />

all resonances of strong sector,<br />

except the Higgs, decouple<br />

Composite Higgs<br />

vs.<br />

SM Higgs<br />

ξ = v2<br />

=<br />

f 2<br />

b<br />

Higgs decouple from SM;<br />

vector resonances like in TC<br />

DRAFT<br />

1<br />

Dilaton<br />

b=a 2<br />

(weak scale) 2<br />

(strong coupling scale) 2<br />

ξ =0 ξ =1<br />

SM<br />

a<br />

L EWSB =<br />

Composite Higgs<br />

universal behavior for large f<br />

a=1-v/2f b=1-2v/f<br />

1<br />

Christophe Grojean Beyond the Standard Model 144<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

<br />

a v<br />

2<br />

1<br />

h + b<br />

4 h2<br />

<br />

Tr DµΣ † DµΣ


What distinguishes a composite Higgs?<br />

L ⊃ cH<br />

2f 2 ∂µ |H| 2 ∂µ<br />

U = e<br />

f 2 tr ∂µU † ∂ µ U = |∂µH| 2 + ♯<br />

f 2<br />

⎛<br />

i⎝<br />

H † /f<br />

|H| 2 <br />

Giudice, Grojean, Pomarol, Rattazzi ‘07<br />

2<br />

∂|H| 2 ♯<br />

+<br />

f 2 |H|2 |∂H| 2 + ♯<br />

f 2<br />

<br />

† 2<br />

H ∂H DRAFT<br />

Christophe Grojean Beyond the Standard Model 145<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

H/f<br />

⎞<br />

⎠<br />

U0<br />

cH ∼ O(1)


Modified<br />

Higgs propagator<br />

Anomalous Higgs Couplings<br />

L ⊃ cH<br />

2f 2 ∂µ |H| 2 ∂µ<br />

H =<br />

0<br />

v+h √2<br />

<br />

~<br />

L = 1<br />

Higgs couplings<br />

rescaled by<br />

|H| 2 <br />

Giudice, Grojean, Pomarol, Rattazzi ‘07<br />

cH ∼ O(1)<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 146<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

2<br />

<br />

1+cH<br />

<br />

1<br />

1+cH v2<br />

f 2<br />

v 2<br />

f 2<br />

<br />

∼ 1 − cH<br />

(∂ µ h) 2 + . . .<br />

v2 ≡ 1 − ξ/2<br />

2f 2


SILH Effective Lagrangian<br />

(strongly-interacting light Higgs)<br />

extra Higgs leg:<br />

Giudice, Grojean, Pomarol, Rattazzi ‘07<br />

extra derivative:<br />

Genuine strong operators (sensitive to the scale f)<br />

cH<br />

2f 2<br />

<br />

∂ µ |H| 2 2 cT<br />

2f 2<br />

Form factor operators (sensitive to the scale mρ)<br />

icHW<br />

m 2 ρ<br />

g 2 ρ<br />

icW<br />

2m 2 ρ<br />

<br />

H † σ i←→ D µ <br />

H<br />

DRAFT<br />

minimal coupling:<br />

H/f ∂/mρ<br />

<br />

H<br />

custodial breaking<br />

†←→ D µ 2 cyyf<br />

c6λ<br />

H<br />

|H|6<br />

f 2 f 2 |H|2fLHfR ¯ +h.c.<br />

(D ν Wµν) i<br />

16π 2 (Dµ H) † σ i (D ν H)W i µν<br />

cγ<br />

m 2 ρ<br />

g2 ρ<br />

16π2 g 2<br />

g 2 ρ<br />

h → γZ<br />

H † HBµνB µν<br />

Goldstone sym.<br />

loop-suppressed strong dynamics<br />

Christophe Grojean Beyond the Standard Model 147<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

icB<br />

2m 2 ρ<br />

icHB<br />

m2 ρ<br />

cg<br />

m 2 ρ<br />

g2 ρ<br />

16π2 <br />

H †←→ D µ <br />

H<br />

g 2 ρ<br />

(∂ ν Bµν)<br />

16π 2 (Dµ H) † (D ν H)Bµν<br />

y2 t<br />

g2 H<br />

ρ<br />

† HG a µνG aµν


ˆT = cT<br />

v 2<br />

f 2<br />

ˆS =(cW + cB) m2 W<br />

effective<br />

Higgs mass<br />

EWPT constraints<br />

m 2 ρ<br />

|cT<br />

There are also some 1-loop IR effects<br />

removed<br />

by custodial symmetry<br />

DRAFT<br />

LEPII, for mh~115 GeV:<br />

v2 | < 2 × 10−3<br />

f 2<br />

ˆS, ˆ T = a log mh + b<br />

ˆS, ˆ T = a ((1 − cHξ) log mh + cHξ log Λ)+b<br />

m eff<br />

h<br />

= mh<br />

Λ<br />

mh<br />

mρ ≥ (cW + cB) 1/2 2.5 TeV<br />

Barbieri, Bellazzini, Rychkov, Varagnolo ‘07<br />

modified Higgs couplings to matter<br />

cHv 2 /f 2<br />

>mh<br />

cHv 2 /f 2 < 1/3 ÷ 1/2<br />

IR effects can be cancelled by heavy fermions (model dependent)<br />

Christophe Grojean Beyond the Standard Model 148<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


1+<br />

cij|H| 2<br />

f 2<br />

<br />

mass terms<br />

Flavor Constraints<br />

Higgs fermion interactions<br />

mass and interaction matrices are not diagonalizable simultaneously<br />

if cij are arbitrary<br />

➾ FCNC<br />

DRAFT<br />

➾<br />

yij ¯ fLiHfRj =<br />

<br />

1+<br />

cijv 2<br />

SILH: cy is flavor universal<br />

Minimal flavor violation built in<br />

Christophe Grojean Beyond the Standard Model 149<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

2f 2<br />

<br />

yijv<br />

√2<br />

<br />

1+<br />

¯fLifRj<br />

3cijv 2<br />

2f 2<br />

<br />

yijv<br />

√2 h ¯ fLifRj


Higgs anomalous couplings for large v/f<br />

The SILH Lagrangian is an expansion for small v/f<br />

The 5D MCHM gives a completion for large v/f<br />

➾<br />

4 g2f 2 sin 2 v/f ghW W = 1 − ξ g SM<br />

Fermions embedded in spinorial of SO(5) Fermions embedded in 5+10 of SO(5)<br />

MCHM4<br />

m 2 W = 1<br />

➾<br />

➾<br />

DRAFT<br />

universal shift of the couplings<br />

no modifications of BRs<br />

hW W<br />

mf = M sin v/f mf = M sin 2v/f<br />

ghff = 1 − ξ g SM<br />

hff<br />

ξ = v 2 /f 2 <br />

ghff =<br />

1 − 2ξ<br />

√ g<br />

1 − ξ SM<br />

BRs now depends on v/f<br />

MCHM5<br />

Christophe Grojean Beyond the Standard Model 150<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

hff


" ( ! * BR<br />

! * BR<br />

2<br />

1.8<br />

1.6<br />

&<br />

1.4<br />

1.2<br />

Γ 1<br />

h → f ¯ f <br />

0.8<br />

0.4<br />

0.2<br />

)<br />

Higgs anomalous couplings @ LHC<br />

Γ (h 0.6 → gg) SILH = Γ (h → gg) SM<br />

observable 0 @ LHC?<br />

" ( ! * BR)<br />

! * BR<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

110 115 120 125 130 135 140 145 150<br />

m [GeV]<br />

<br />

ATLAS<br />

L dt=30 fb<br />

ATLAS<br />

Ldt = 300 fb −1<br />

&<br />

-1<br />

SILH = Γ h → f ¯ f <br />

ATLAS<br />

L dt=300 fb<br />

-1<br />

SM<br />

! (VBF) * BR(H $ # #<br />

! (ttH) * BR(H $ b b)<br />

! (H) * BR(H $ % % )<br />

! (VBF) * BR(H $ % % )<br />

! (ttH) * BR(H $ % % )<br />

! (WH) * BR(H $ % % )<br />

! (ZH) * BR(H $ % % )<br />

<br />

1 − v2<br />

f 2 (2cy<br />

<br />

+ cH)<br />

<br />

1 − v2<br />

f 2 (2cy<br />

<br />

+ cH)<br />

H<br />

! (VBF) * BR(H $ # # )<br />

! (ttH) * BR(H $ b b)<br />

! (H) * BR(H $ % % )<br />

! (VBF) * BR(H $ % % )<br />

! (ttH) * BR(H $ % % )<br />

! (WH) * BR(H $ % % )<br />

! (ZH) * BR(H $ % % )<br />

cHv 2 /f 2 =1/4<br />

cyv 2 /f 2 =1/4<br />

LHC can measure<br />

v<br />

cH<br />

up to 0.2-0.4<br />

2 v<br />

,cy<br />

f 2 2<br />

f 2<br />

Figure 1: The deviations from the SM predictions of Higgs production cross sect<br />

decay branching ratios (BR) defined as ∆(σ BR)/(σ BR) = (σ BR)SILH/(σ<br />

The predictions are shown for some of the main Higgs discovery channels at th<br />

production via vector-boson fusion (VBF), gluon fusion (h), and topstrahlung<br />

SILH Lagrangian parameters are set by cHξ =1/4, cy/cH = 1 and we have inclu<br />

terms quadratic in ξ, not explicitly shown in eqs. (78)–(83).<br />

DRAFT<br />

110 115 120 125 130 135 140 145 150<br />

(ILC could go to few % ie<br />

test composite Higgs up to 4πf ∼ 30 TeV)<br />

Duhrssen rate ‘03 times branching ratio in the various channels with 20–40 % precision [27<br />

Figure 1: Relative error for the measurement of rates σ · BR for those channels<br />

Christophe Grojean Beyond the Standard determination Model of the 152b<br />

coupling is quite challenging [28]. This <strong>Maria</strong> will<strong>Laach</strong>, translate Sept. into '10<br />

i.e.<br />

a pseudo-Goldstone boson, and therefore relatively light. However, for a light<br />

experiments can measure the product σh × BRh in many different channels:<br />

through gluon, gauge-boson fusion, and top-strahlung; decay into b, τ, γ and (v<br />

gauge bosons. At the LHC with about 300 fb−1 m [GeV]<br />

, it is possible to measure Higg<br />

H<br />

4πf ∼ 5 – 7 TeV


Δa 1<br />

∆aH<br />

e +<br />

e -<br />

Higgs anomalous couplings @ LC<br />

Z<br />

h<br />

Z<br />

single Higgs production<br />

e +<br />

e -<br />

W +<br />

W -<br />

Barger et al. hep-ph/0301097<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 153<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

ν<br />

ν<br />

e +<br />

h h<br />

higgs-strahlung WW-fusion<br />

ZZ-fusion<br />

mH=120 GeV<br />

L = 1 ab −1<br />

a 1 Error<br />

-0.4 -0.2 0 0.2 0.4<br />

aH = cHv 2 /f 2<br />

a =f v<br />

1 1 2 /Λ 2<br />

500 GeV<br />

800 GeV<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

e -<br />

∆aH ∼ 0.005<br />

∆aH ∼ 0.02<br />

e +<br />

e -<br />

mH=120 GeV<br />

➾<br />

mH=240 GeV<br />

➾<br />

4πf ! 44 TeV<br />

4πf ∼ 22 TeV


∆a6<br />

Δa 2<br />

Higgs anomalous (self-)couplings @ LC<br />

double Higgs production<br />

Barger et al. hep-ph/0301097<br />

W<br />

the accuracy on aH is not competitive compared to single Higgs production<br />

a Error<br />

2 +<br />

W -<br />

e ν<br />

ν<br />

+<br />

e- h h<br />

h<br />

e +<br />

e- W<br />

ν<br />

h<br />

h<br />

ν<br />

+<br />

W -<br />

e +<br />

e- Z h<br />

h<br />

h<br />

Z<br />

L = 1 ab −1<br />

mH=120 GeV<br />

it allows to constrain a6<br />

DRAFT<br />

-0.4 -0.2 0 0.2 0.4<br />

a =f v<br />

2 2 2 /Λ 2<br />

a6 = c6v 2 /f 2<br />

500 GeV<br />

800 GeV<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

mH=120 GeV<br />

Christophe Grojean Beyond the Standard Model 154<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

➾<br />

∆a6 ∼ 0.1 4πf ∼ 10 TeV


Δa 1<br />

∆aH<br />

Higgs anomalous couplings @ CLIC<br />

mH=120 GeV<br />

L = 1 ab −1<br />

a 1 Error<br />

0.0012<br />

-0.1 -0.05 0 0.05 0.1<br />

a =f v<br />

1 1 2 /Λ 2<br />

aH = cHv 2 /f 2<br />

3 TeV<br />

5 TeV<br />

0.0026<br />

0.0024<br />

0.0022<br />

0.002<br />

0.0018<br />

0.0016<br />

0.0014<br />

L = 1 ab −1<br />

mH=120 GeV<br />

0.02<br />

-0.1 -0.05 0 0.05 0.1<br />

a6 = c6v 2 /f 2<br />

a =f v<br />

2 2 2 /Λ 2<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 155<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

∆a6<br />

Δa 2<br />

a 2 Error<br />

➾ 4πf ∼ 70 TeV<br />

➾<br />

Barger et al. hep-ph/0301097<br />

∆aH ∼ 0.002 ∆a6 ∼ 0.04 4πf ∼ 15 TeV<br />

a factor 2 better than ILC<br />

3 TeV<br />

5 TeV<br />

0.06<br />

0.05<br />

0.04<br />

0.03


Composite Higgs search @ LHC<br />

Espinosa, Grojean, Muehlleitner ’10<br />

the modification of Higgs couplings and BRs affects the Higgs search<br />

S<br />

50<br />

10<br />

5<br />

1<br />

SM<br />

qqH, H!WW!l"jj H!ZZ!4l<br />

H!WW!2l2"<br />

qqH, H!$$!l+j<br />

H!## total significance<br />

SM<br />

CMS<br />

30fb -1<br />

120 140 160 180 200<br />

MH !GeV"<br />

large<br />

compositeness scale<br />

signal significance<br />

for L=30/fb<br />

DRAFT<br />

small<br />

compositeness scale<br />

qqH, H!WW!l"jj<br />

H!WW!2l2"<br />

H!##<br />

H!ZZ!4l<br />

total significance<br />

Christophe Grojean Beyond the Standard Model 156<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

S<br />

50<br />

10<br />

5<br />

1<br />

S<br />

50<br />

10<br />

5<br />

1<br />

qqH, H!WW!l"jj H!ZZ!4l<br />

H!WW!2l2"<br />

qqH, H!$$!l+j<br />

H!## total significance<br />

MCHM4<br />

CMS<br />

30fb -1<br />

%=0.2<br />

120 140 160 180 200<br />

MH !GeV"<br />

MCHM4<br />

MCHM4<br />

CMS<br />

30fb -1<br />

$=0.8<br />

120 140 160 180 200<br />

MH !GeV"


Composite Higgs search @ LHC<br />

the modification of Higgs couplings and BRs affects the Higgs search<br />

ξ<br />

MH<br />

MCHM5<br />

contour lines of<br />

signal significance<br />

for L=30/fb<br />

in the (ξ,MH) plane<br />

DRAFT<br />

(neglect effects from heavy resonances)<br />

Espinosa, Grojean, Muehlleitner ’10<br />

Christophe Grojean Beyond the Standard Model 157<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Composite Higgs search @ LHC<br />

the modification of Higgs couplings and BRs affects the Higgs search<br />

ξ<br />

MH<br />

contour lines of<br />

signal significance for<br />

for L=30/fb<br />

in the (ξ,MH) plane<br />

DRAFT<br />

L=30/fb<br />

MCHM5<br />

(neglect effects from heavy resonances)<br />

Espinosa, Grojean, Muehlleitner ’10<br />

Christophe Grojean Beyond the Standard Model 158<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


How to probe the composite nature of Higgs?<br />

Look at pair production of strong states<br />

strong WW scattering<br />

W W<br />

h<br />

W W<br />

= −(1 − ξ)g<br />

no exact cancellation<br />

of the growing amplitudes<br />

Even with a light Higgs, growing amplitudes (at least up to mρ)<br />

DRAFT<br />

LET=SM-Higgs<br />

strong double Higgs production<br />

Giudice, Grojean, Pomarol, Rattazzi ‘07<br />

2 E2<br />

M 2 W<br />

A W a LW b L → W c LW d ab cd ac bd ad bc<br />

L = A(s, t, u)δ δ + A(t, s, u)δ δ + A(u, t, s)δ δ<br />

ALET(s, t, u) = s<br />

v 2<br />

Aξ = ξ ALET<br />

Contino, Grojean, Moretti, Piccinini, Rattazzi ’10<br />

A Z 0 LZ 0 L → hh = A W + −<br />

L WL → hh = cHs<br />

f 2<br />

Christophe Grojean Beyond the Standard Model 159<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Scale of Strong WW scattering?<br />

ATT→TT ∼ g 2 f(t/s)<br />

f is a rational fct<br />

expected O(1) for t~-s/2<br />

onset of strong scattering at the weak scale<br />

hard cross-section ‘inclusive’ cross-section<br />

dσLL→LL/dt <br />

<br />

dσTT→TT/dt t∼−s/2<br />

<br />

= Nh<br />

s 2<br />

DRAFT<br />

M 4 W<br />

NDA estimates<br />

σLL→LL(Qmin)<br />

σTT→TT(Qmin)<br />

ALL→LL ∼ s<br />

v2 (−s + Q ! "#< t < −Q ! "#)<br />

Nh ∼ 1 Ns ∼ 1<br />

= Ns<br />

sQ2 min<br />

M 4 W<br />

Christophe Grojean Beyond the Standard Model 160<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10


Total cross sections<br />

disentangling L from T polarization is hard<br />

σtot (W + W + !W + W + + + + +<br />

W W → W W ) [fb]<br />

[fb]<br />

σtot<br />

1x10 7<br />

1x10 6<br />

1x10 5<br />

LL ! LL<br />

TT !TT<br />

LT ! LT<br />

500 1000 1500 2000 2500 3000<br />

DRAFT<br />

√s [GeV]<br />

The onset of strong scattering is delayed to larger energies due to<br />

the dominance of TT → TT background<br />

!=0.5<br />

The dominance of T background will be further enhanced by the pdfs<br />

since the luminosity of WT inside the proton is log(E/MW) enhanced<br />

Christophe Grojean Beyond the Standard Model 161<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

!=1<br />

!=0


A = at γ s<br />

t + at Z s<br />

t − M 2 Z<br />

W +<br />

W -<br />

Coulomb enhancement (SM)<br />

the total cross section is dominated by the poles<br />

in the exchange of γ and Z in the t- and u-channels<br />

= regulateur of Coulomb singularity=off-shellness of W ~<br />

universal for T and L<br />

SM<br />

γ<br />

+ auγ s<br />

u + auZ s<br />

u − M 2 Z<br />

π +<br />

π +<br />

+ . . . σ ∼ 1<br />

16π<br />

eïkonal limit<br />

γ<br />

different for T and L<br />

DRAFT<br />

Christophe Grojean Beyond the Standard Model 162<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

W +<br />

W -<br />

<br />

t 2 u2 aγ + aγ Mγ MW<br />

aγ =2· (electric charge of W + ) 2<br />

σTT→TT<br />

σLL→LL<br />

∼ 20<br />

(for Mγ ∼ MZ)<br />

➾➾<br />

Z<br />

π +<br />

π +<br />

T-dominance is the result of multiplicity and larger SU(2) charges<br />

M 2 γ<br />

+ at 2 u 2<br />

Z + aZ M 2 γ + M 2 Z<br />

aZ =2· (“SU(2) charge” of W + ) 2<br />

Ns ∼ 1/500<br />

W + W + ! W + W +<br />

e e gcW g c2 W − s2 W<br />

2cW<br />

Z


σhard σhard Hard scattering (central region)<br />

we need to look at the central region, i.e. large scattering angle,<br />

to be sensitive to strong EWSB<br />

LL→LL<br />

TT→TT<br />

<br />

σtot (W + W + !W + W + t-cut<br />

) [fb]<br />

√ s<br />

1x10 7<br />

1x10 6<br />

1x10 5<br />

1x10 4<br />

1x10 3<br />

-3/4 < t/s < -1/4<br />

LL ! LL<br />

TT !TT<br />

LT ! LT<br />

500 1000 1500 2000 2500 3000<br />

DRAFT<br />

7.4MW<br />

Nh =1/2304<br />

4<br />

ξ 2<br />

√s [GeV]<br />

Christophe Grojean Beyond the Standard Model 163<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

!=1<br />

!=0.5<br />

!=0<br />

hard cross-section = faster growth with energy<br />

onset of strong scattering still at high scale


10<br />

10<br />

10<br />

10<br />

10<br />

10<br />

3<br />

2<br />

1<br />

-1<br />

-2<br />

-3<br />

dσ<br />

dˆs<br />

-3<br />

10 10 10<br />

-4 -2<br />

Threshold production<br />

!<br />

1<br />

=<br />

ˆs ˆσ(qAqB → hh)ρAB(ˆs/s, Q 2 )<br />

Q = 80 GeV<br />

ud<br />

gg<br />

ug<br />

uu<br />

0.1 1<br />

σ =ˆσ(s0) ×<br />

integral is saturated at threshold<br />

inclusive cross-section is not<br />

probing the asymptotic regime of<br />

hard scattering<br />

DRAFT<br />

sensitivity on Higgs self-coupling and not only on strong scattering (b-a 2 )<br />

Christophe Grojean Beyond the Standard Model 167<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

➾<br />

<br />

s!<br />

dˆs<br />

ˆs<br />

➾<br />

ˆσ(ˆs)<br />

ˆσ(s0) ρ(ˆs/s)<br />


Isolating Hard Scattering<br />

isolate events with large mhh<br />

luminosity factor drops out in ratios: extract the growth with mhh<br />

200<br />

150<br />

100<br />

50<br />

0<br />

dσ/dmhh|MCHM4<br />

dσ/dmhh|SM<br />

DRAFT<br />

500 1000 1500 2000 2500<br />

m hh [GeV]<br />

ξ =1<br />

ξ =0!8<br />

ξ =0.5<br />

500 1000 1500 2000 2500<br />

Christophe Grojean Beyond the Standard Model 168<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

measure<br />

H 3<br />

threshold<br />

asymptotic regime<br />

m hh [GeV]<br />

measure<br />

b-a 2<br />

dσ/dmhh|MCHM4<br />

dσ/dmhh|MCHM5


increase in # signal events<br />

40<br />

30<br />

20<br />

10<br />

Dependence on Collider Energy<br />

ρ LL<br />

ρ LL<br />

W (m2 hh /s, Q2 )<br />

σ =ˆσ(s0) ×<br />

W ((mhh/14 TeV) 2 ,Q 2 )<br />

DRAFT<br />

0<br />

0 500 1000 1500 2000 2500<br />

m hh [GeV]<br />

<br />

s!<br />

40 TeV<br />

28 TeV<br />

sLHC vs. VLHC<br />

10 x lum ≈ 10 x events<br />

2 x √s = 10 x events<br />

iif mhh>1.6TeV<br />

Christophe Grojean Beyond the Standard Model 169<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

dˆs<br />

ˆs<br />

ˆσ(ˆs)<br />

ˆσ(s0) ρ(ˆs/s)<br />

increase collider energy √s = sensitive to PDFs at smaller x<br />

bigger cross-sections


Number of Events/40 GeV<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Dependence on Collider Energy<br />

ξ = 1<br />

L = 300 fb -1<br />

10 x lum ≈ 10 x events<br />

2 x √s = 10 x events<br />

iif mhh>1.6TeV<br />

DRAFT<br />

ξ = 0<br />

σ =ˆσ(s0) ×<br />

ξ = 0.5<br />

0<br />

0 200 400 600 800 1000<br />

vis<br />

mhh [GeV]<br />

<br />

s!<br />

sLHC vs. VLHC<br />

... very few events<br />

sLHC might be better<br />

Christophe Grojean Beyond the Standard Model 170<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

dˆs<br />

ˆs<br />

ˆσ(ˆs)<br />

ˆσ(s0) ρ(ˆs/s)<br />

increase collider energy √s = sensitive to PDFs at smaller x<br />

bigger cross-sections


scaling dimension<br />

of the Higgs<br />

Multi-fields<br />

2 HDMs<br />

∞<br />

2<br />

1<br />

RandallSundrum<br />

SM<br />

Conclusions<br />

5D<br />

Higgsless<br />

DRAFT<br />

0<br />

gaugephobic Higgs<br />

unHiggs<br />

Higgs-radion mixing<br />

pseudo-scalar mixing<br />

composite Higgs<br />

Christophe Grojean Beyond the Standard Model 172<br />

<strong>Maria</strong> <strong>Laach</strong>, Sept. '10<br />

T<br />

e<br />

c<br />

h<br />

n<br />

i<br />

c<br />

o<br />

l<br />

o<br />

r<br />

1<br />

(v/f) 2<br />

deviations of Higgs<br />

couplings from SM

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!