21.07.2013 Views

LMI Approach to Iterative Learning Control Design - ResearchGate

LMI Approach to Iterative Learning Control Design - ResearchGate

LMI Approach to Iterative Learning Control Design - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

H 1 ⎡<br />

0 h1 0 · · ·<br />

⎤<br />

0<br />

⎢ 0<br />

⎢<br />

N = ⎢ 0<br />

⎢<br />

⎣<br />

.<br />

h2<br />

h3<br />

.<br />

h1<br />

h2<br />

.<br />

· · ·<br />

· · ·<br />

. ..<br />

0 ⎥<br />

0 ⎥<br />

.<br />

⎦<br />

0 hn hn−1 · · · h2<br />

Then, (7) is linear with respect <strong>to</strong> the learning gains. So the<br />

<strong>LMI</strong> method can be applied <strong>to</strong> the above expression, which<br />

gives a way for <strong>LMI</strong>-based LTI ILC. Finally, we change (7)<br />

in<strong>to</strong> an <strong>LMI</strong> form given by<br />

−x 2 <br />

1I2n×2n −<br />

0 In×n<br />

0<br />

with<br />

In×n<br />

<br />

0n×n Hp<br />

M1 =<br />

0n×n 0n×n<br />

M2 =<br />

+<br />

0n×n H 1 C<br />

0n×n 0n×n<br />

0n×n H n−1<br />

C<br />

0n×n 0n×n<br />

M3 =<br />

+<br />

0n×n H 1 N<br />

0n×n 0n×n<br />

0n×n H n−1<br />

N<br />

0n×n 0n×n<br />

<br />

<br />

+ M1 + M2 + M3 < 0, (8)<br />

γp + γp<br />

<br />

γ 1 C + γ1 C<br />

<br />

γ n−1<br />

C<br />

+ γn−1<br />

C<br />

<br />

γ 1 N + γ1 N<br />

<br />

γ n−1<br />

N<br />

+ γn−1<br />

N<br />

0n×n 0n×n<br />

H T p<br />

0n×n<br />

0n×n 0n×n<br />

<br />

,<br />

<br />

+ · · ·<br />

<br />

,<br />

(H1 C )T 0n×n<br />

<br />

0n×n 0n×n<br />

(H n−1<br />

C )T 0n×n<br />

0n×n 0n×n<br />

<br />

+ · · ·<br />

<br />

,<br />

(H1 N )T 0n×n<br />

<br />

0n×n 0n×n<br />

(H n−1<br />

N )T 0n×n<br />

where M1 denotes Ariomo<strong>to</strong> gain components, M2 the causal<br />

gain components, and M3 the non-causal gain components.<br />

Markov matrices are calculated from the algorithms in Table<br />

I, with the proportional term Markov matrix Hp = H.<br />

Note the MATLAB substitution notation is used in algorithms<br />

of Table I <strong>to</strong> Table III.<br />

TABLE I<br />

ALGORITHMS FOR MARKOV MATRICES OF LTI ILC<br />

LTI ILC algorithm<br />

for j = 1 : 1 : n − 1<br />

H j<br />

C (:, 1 : n − j) = H(:, j + 1 : n)<br />

H j<br />

C (:, n − j + 1 : n) = 0<br />

H j<br />

N (:, j + 1 : n) = H(j, 1 : n − j)<br />

H j<br />

N (:, 1 : j) = 0<br />

end<br />

Note that the LTI ILC algorithm includes causal gains,<br />

non-causal gains, and Arimo<strong>to</strong> gains. Thus, we have more<br />

flexibility <strong>to</strong> find the better learning gain matrix (Theorem<br />

2.1).<br />

3. <strong>LMI</strong> − 3: LTV ILC with fixed band size<br />

In LTV ILC, we use following learning gain matrix<br />

notation: ⎡<br />

γ11 γ12 · · ·<br />

⎤<br />

γ1n<br />

⎢ γ21<br />

Γ = ⎢<br />

⎣<br />

.<br />

γ22<br />

.<br />

· · ·<br />

. ..<br />

γ2n ⎥<br />

.<br />

⎦ .<br />

γn1 γn2 · · · γnn<br />

Like LTI ILC case, the band size is a design parameter. With<br />

the expanded I − HΓ in Lemma 2.2, and using the same<br />

procedure as LTI ILC, an <strong>LMI</strong> is designed as<br />

−x 2 n n<br />

0 In×n<br />

1I2n×2n−<br />

+ [Huγij +γijHl] < 0,<br />

0<br />

where<br />

In×n<br />

<br />

0n×n Hij<br />

Hu =<br />

0n×n 0n×n<br />

j=1 i=1<br />

<br />

0n×n<br />

; Hl =<br />

H T ij<br />

0<br />

0n×n<br />

Note that Hij are Markov matrices corresponding <strong>to</strong> the gains<br />

γij. If the band size is fixed as m, the algorithms of Table II<br />

and Table III are used <strong>to</strong> make <strong>LMI</strong> constraints. Then, the<br />

final Σ1 in Table II and the final Σ2 in Table III are summed<br />

<strong>to</strong> make linear matrix inequality constraints according <strong>to</strong><br />

(note that initially Σ1 and Σ2 are zero):<br />

−x 2 <br />

0 In×n<br />

1I2n×2n −<br />

0<br />

In×n<br />

TABLE II<br />

<br />

+ <br />

1<br />

+ <br />

2<br />

<br />

.<br />

(9)<br />

< 0. (10)<br />

ALGORITHMS FOR <strong>LMI</strong> CONSTRAINTS OF LTV CAUSAL AND ARIMOTO<br />

LTV Causal and Arimo<strong>to</strong><br />

GAINS<br />

for i = 1 : 1 : m<br />

for j = 1 : 1 : i<br />

for k = 1 : 1 : n − j + 1<br />

l = k + j − 1<br />

γ ′ = γkl<br />

R(1 : n, 1 : n) = 0<br />

R(1 : n, l) = H(1 : n, k)<br />

0n×0 R<br />

Σ1 = Σ1 +<br />

end<br />

end<br />

end<br />

0n×n 0n×n<br />

<br />

γ ′ + γ ′<br />

<br />

0n×n 0n×n<br />

RT <br />

0n×n<br />

IV. SIMULATION ILLUSTRATION<br />

In this section, the optimal learning gain matrices for four<br />

different cases are designed based on Section III algorithms.<br />

We use the following unstable system:<br />

⎡<br />

−0.50<br />

xk+1 = ⎣ 1.00<br />

0.00<br />

2.04<br />

⎤ ⎡<br />

0.00<br />

−1.20 ⎦ xk + ⎣<br />

0.00 1.20 0.00<br />

1.0<br />

⎤<br />

0.0 ⎦ (11)<br />

0.0<br />

yk = [ 1.0 2.5 −1.5 ] xk, (12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!