21.07.2013 Views

Low Frequency Noise in Advanced MOS ... - Berkeley Microlab

Low Frequency Noise in Advanced MOS ... - Berkeley Microlab

Low Frequency Noise in Advanced MOS ... - Berkeley Microlab

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Low</strong> <strong>Frequency</strong> <strong>Noise</strong> <strong>in</strong><br />

<strong>Advanced</strong> <strong>MOS</strong> Transistors<br />

Chia‐Yu Chen<br />

Department of Electrical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Stanford University<br />

UC <strong>Berkeley</strong> EE298‐12 Solid State Technology and Device Sem<strong>in</strong>ar 2010‐11‐19


• C<strong>MOS</strong> scal<strong>in</strong>g<br />

It’s ok.<br />

It<br />

IEDM 2008 short course<br />

Motivation<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

<strong>Low</strong> <strong>Frequency</strong> <strong>Noise</strong> becomes important!<br />

It’s noisy.<br />

2


Motivation<br />

• <strong>Low</strong> <strong>Frequency</strong> (LF) noise<br />

IC designer<br />

Fabrication<br />

Device Material<br />

s<br />

LF noise<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Physicist<br />

Mathematician<br />

3


• Introduction<br />

• Methodology<br />

• SiGe<br />

channel<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

4


• Introduction<br />

<br />

<br />

<br />

Why LF noise is important?<br />

The orig<strong>in</strong> of LF noise<br />

C<strong>MOS</strong> scal<strong>in</strong>g<br />

• Methodology<br />

• SiGe channel<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

5


S id (A 2 /Hz)<br />

Why LF noise is important?<br />

• <strong>Noise</strong> <strong>in</strong> a <strong>MOS</strong>FET<br />

10 2<br />

10 3<br />

10 4<br />

10 5<br />

<strong>Frequency</strong> (Hz)<br />

10 6<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

– White noise: thermal<br />

and shot noise.<br />

– 1/f noise:<br />

distribution<br />

<strong>in</strong> mobility.<br />

– G‐R noise:<br />

mechanism;<br />

case is RTN.<br />

noise<br />

certa<strong>in</strong> trap<br />

or fluctuation<br />

trap/de‐trap<br />

one special<br />

<strong>Low</strong> frequency (LF) noise<br />

6


• Analog doma<strong>in</strong><br />

Sid (uA 2 Sid (uA /Hz)<br />

2 /Hz)<br />

1E-3<br />

1E-4<br />

1E-5<br />

1E-6<br />

1E-7<br />

1E-8<br />

1E-9<br />

Worse oxide<br />

Why LF noise is important?<br />

1/f<br />

1E-10<br />

1 10 100<br />

<strong>Frequency</strong> (Hz)<br />

VCO: phase noise<br />

Good oxide<br />

Up‐convert<br />

– LF noise is up‐converted and causes phase noise.<br />

– Phase noise limits channel capacity.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Adjacent channel<br />

f0<br />

7


• Digital doma<strong>in</strong><br />

Why LF noise is important?<br />

N. Tega, VLSI symp. 2009, p. 50‐51.<br />

SRAM: noise<br />

marg<strong>in</strong><br />

– LF noise <strong>in</strong>creases with scal<strong>in</strong>g.<br />

– <strong>Noise</strong> marg<strong>in</strong> becomes small.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

8


• Introduction<br />

<br />

<br />

<br />

Why LF noise is important?<br />

The orig<strong>in</strong> of LF noise<br />

C<strong>MOS</strong> scal<strong>in</strong>g<br />

• Methodology<br />

• SiGe channel<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

9


• Two schools<br />

The orig<strong>in</strong> of LF noise<br />

– Conductivity fluctuation.<br />

– Two schools: number<br />

fluctuations (Δμ).<br />

fluctuations<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

σ=μ N eff<br />

(ΔN)<br />

and<br />

mobility<br />

10


• ΔN model: one trap<br />

one trap/de‐trap<br />

G<br />

s D<br />

N+ N+<br />

A. McWhorter, Semi.<br />

Surf. Phys., 1957.<br />

The orig<strong>in</strong> of LF noise<br />

Surface effect<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Random telegraph noise<br />

Lorentzian<br />

11


The orig<strong>in</strong> of LF noise<br />

• ΔN model: a lot of traps<br />

s D<br />

N+ N+<br />

A. McWhorter, Semi.<br />

Surf. Phys., 1957.<br />

G<br />

Correlated Δμ<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

2.07E-006<br />

Id (A)<br />

2.06E-006<br />

is also <strong>in</strong>duced.<br />

0 5 10 15<br />

Time (s)<br />

12


The orig<strong>in</strong> of LF noise<br />

• ΔN model: a lot of traps<br />

Gate (um)<br />

Gate (um)<br />

SISPAD 2006, Y. Liu<br />

F=1Hz<br />

Channel<br />

1e‐3<br />

Depth <strong>in</strong> oxide (um)<br />

F=1e4Hz<br />

Channel<br />

Depth <strong>in</strong> oxide (um)<br />

1e‐3<br />

Sid(A 2 /Hz)<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

1/f<br />

<strong>Frequency</strong> (Hz)<br />

– Sum of Lorentzians: 1/f noise<br />

13


S nt<br />

( r)<br />

2(<br />

G R)<br />

• ΔN model: I d<br />

S id /I d 2 (1/Hz)<br />

1e‐8<br />

The orig<strong>in</strong> of LF noise<br />

and V g<br />

1e‐9<br />

(1/Hz)<br />

1e‐10<br />

1e‐11<br />

Fix Vd and <strong>in</strong>crease (gm/Id)2<br />

Vg<br />

Dra<strong>in</strong> current (A)<br />

– Id: Sid/I 2<br />

d<br />

dependence<br />

α<br />

S id /I d 2 (1/Hz)<br />

S id /I d 2 (1/Hz)<br />

1E-8<br />

1E-9<br />

1E-10<br />

1E-11<br />

(gm/Id) 2 .<br />

– Vg: flat <strong>in</strong> weak <strong>in</strong>version.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

0.0 0.5 1.0 1.5<br />

Gate Voltage (V)<br />

Gate voltage (V)<br />

14


• Δμ<br />

model<br />

– Bulk phonon scatter<strong>in</strong>g<br />

Source<br />

– Empirical equation<br />

T‐ED 1994, F. N. Hooge<br />

The orig<strong>in</strong> of LF noise<br />

Gate<br />

P+ P+<br />

N-type Si substrate<br />

S q<br />

<br />

I WLQ f<br />

Id H<br />

2<br />

d i<br />

Dra<strong>in</strong><br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

S id (uA 2 /Hz)<br />

1E-3<br />

1E-4<br />

1E-5<br />

Bulk effect<br />

1/f<br />

1 10<br />

Phonon Si bulk<br />

Hooge mobility fluc.<br />

<strong>Frequency</strong> (Hz)<br />

15<br />

100


S nt<br />

( r)<br />

2(<br />

G R)<br />

S id /I d 2 (1/Hz)<br />

• Δμ<br />

1e‐8<br />

1e‐9<br />

model: I d<br />

1e‐10<br />

1e‐11<br />

The orig<strong>in</strong> of LF noise<br />

and V g<br />

S q<br />

<br />

I WLQ f<br />

Id H<br />

2<br />

d i<br />

Dra<strong>in</strong> current (A)<br />

– Id: Sid /I d 2<br />

– Vg: Sid/I 2<br />

d<br />

α<br />

dependence<br />

1/Id. S Sid /I 2<br />

id /I 2<br />

dd(1/Hz) (1/Hz)<br />

1E-7<br />

1E-8<br />

1E-9<br />

1E-10<br />

1E-11<br />

<strong>in</strong>creases when V g<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

-0.5 0.0 0.5 1.0 1.5 2.0<br />

Gate Voltage (V)<br />

Gate voltage (V)<br />

decreases.<br />

16


S id /I d 2 (A 2 /Hz)<br />

• ΔN or Δμ?<br />

G. Ghibaudo, <strong>Noise</strong> <strong>in</strong><br />

Devices and Circuits, 2003.<br />

The orig<strong>in</strong> of LF noise<br />

Dra<strong>in</strong> current (A)<br />

Sid /I 2<br />

S d (1/Hz)<br />

id /I 2<br />

d (A2 /Hz)<br />

– Different trend <strong>in</strong> I d<br />

1E-7<br />

1E-8<br />

1E-9<br />

1E-10<br />

1E-11<br />

and V g<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Δμ<br />

Fix Vd and <strong>in</strong>crease Vg<br />

ΔN<br />

0.0 0.5 1.0 1.5 2.0<br />

Gate Voltage voltage (V) (V)<br />

dependence.<br />

17


• Introduction<br />

<br />

<br />

<br />

Why LF noise is important?<br />

The orig<strong>in</strong> of LF noise<br />

C<strong>MOS</strong> Scal<strong>in</strong>g<br />

• Methodology<br />

• SiGe channel<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

18


C<strong>MOS</strong> scal<strong>in</strong>g<br />

Size:<br />

Larger variability<br />

– C<strong>MOS</strong> scal<strong>in</strong>g: provide new opportunity to optimize LF noise.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

19


• Introduction<br />

• Methodology<br />

<br />

<br />

<br />

Overview<br />

TCAD simulations<br />

<strong>Noise</strong> characterization<br />

• SiGe channel<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

20


Overview<br />

TCAD<br />

simulations<br />

<strong>Noise</strong><br />

characterization<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Expla<strong>in</strong> low<br />

frequency noise<br />

mechanism<br />

21


• Introduction<br />

• Methodology<br />

<br />

<br />

<br />

Overview<br />

TCAD simulation<br />

<strong>Noise</strong> characterization<br />

• SiGe channel<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

22


TCAD simulation<br />

S =S id_total id_ ΔN<br />

– Total noise is the sum of ΔN and Δμ.<br />

– No correlation.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

+S id_ Δμ<br />

23


TCAD simulation<br />

• Impedance field method (IMF)<br />

Vs<br />

W. Shockley, Quantum<br />

Theory of Atoms,<br />

Molecules and Solid State,<br />

1966, pp. 537–563.<br />

Vg<br />

Injection<br />

current<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Voltage<br />

fluct. at<br />

dra<strong>in</strong><br />

Vd<br />

24


TCAD simulation<br />

• Impedance field method (IFM)<br />

Source<br />

Gate<br />

oxide<br />

Tride Saturation<br />

P<strong>in</strong>ch‐off<br />

IFM: l<strong>in</strong>ear No effect<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Dra<strong>in</strong><br />

25


• ΔN model<br />

TCAD simulation<br />

oxide<br />

channel<br />

G‐R<br />

– <strong>Noise</strong> source is <strong>in</strong>side oxide.<br />

– A rate equation to correlate oxide traps and channel<br />

carriers and then apply IMF to calculate Sid. 11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

dra<strong>in</strong><br />

26


2<br />

( 1 <br />

n 2 D / <br />

c 0 )<br />

• Δμ<br />

model<br />

TCAD simulation<br />

S q<br />

Id<br />

2 H<br />

d i<br />

~1e-5 for Si material<br />

<br />

I WLQ f<br />

Extract from TCAD<br />

– Extract parameters from TCAD simulations such as Qi.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

IEEE T‐ED 2008, C.‐Y. Chen<br />

27


• Introduction<br />

• The orig<strong>in</strong> of LF noise<br />

• Methodology<br />

<br />

<br />

<br />

Overview<br />

TCAD simulations<br />

<strong>Noise</strong> characterization<br />

• SiGe channel<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

28


• Basic schematic<br />

HP 4156<br />

<strong>Noise</strong> characterization<br />

Offset<br />

current<br />

DUT<br />

SR 570<br />

Signal<br />

analyzer<br />

A. Blaum, Agilent document, 2000.<br />

– Offset current removes the DC component at the <strong>in</strong>put.<br />

– SR570 is used to drive high impedance loads and <strong>in</strong>put impedance<br />

of signal analyzer should be high.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

29


<strong>Noise</strong> characterization<br />

• Measurement bench<br />

Wafer (DUT)<br />

SR 570<br />

Dra<strong>in</strong><br />

Gate<br />

Source<br />

Bulk<br />

Cascade probe station HP4156<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

SR760 FFT spectrum analyzer<br />

30


• Introduction<br />

• Methodology<br />

• SiGe channel<br />

<br />

<br />

<br />

Device schematic<br />

Gate bias<br />

Body bias<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

31


• Si/SiGe/Si p‐HFET<br />

Si<br />

SiGe<br />

Si<br />

– Two channels:<br />

channel.<br />

Device schematic<br />

Parasitic surface channel<br />

SiGe<br />

Gate<br />

SiO 2<br />

SiGe buried channel<br />

Source Lg=1um Dra<strong>in</strong><br />

Bulk<br />

buried<br />

Body<br />

Si/SiGe/Si p-<strong>MOS</strong>FET<br />

channel<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

and<br />

L/W=1um/10um<br />

oxide thickness=6nm<br />

Devices from Panasonic<br />

parasitic<br />

surface<br />

32


• Advantage<br />

Device schematic<br />

1E-22<br />

1 10 100 1000 10000<br />

– Improve LF noise: (1) longer tunnel<strong>in</strong>g distance and (2) smaller<br />

Coulomb <strong>in</strong>teraction.<br />

S id (A 2 /Hz)<br />

1E-18<br />

1E-19<br />

1E-20<br />

1E-21<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

W/L=10um/1um<br />

Vd=-0.5V<br />

|Vg|-|Vth|=0.3V<br />

<strong>Frequency</strong> (Hz)<br />

Si: TCAD<br />

Si: meas.<br />

Si/SiGe/Si: TCAD<br />

Si/SiGe/Si: meas.<br />

33


• Introduction<br />

• Methodology<br />

• SiGe channel<br />

<br />

<br />

<br />

Device schematic<br />

Gate bias<br />

Body bias<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

34


• Dual‐channel behavior<br />

1E-17<br />

1E-18<br />

1E-19<br />

Sid (A 2 /Hz)<br />

W/L=10um/1um<br />

Vd=-0.5V<br />

Vov=2V<br />

Si: TCAD<br />

Si: meas.<br />

Si/SiGe/Si: TCAD<br />

Si/SiGe/Si: meas.<br />

1E-20<br />

1 10 100 1000<br />

<strong>Frequency</strong> (Hz)<br />

Charge Density (C/m 2 )<br />

0.006<br />

0.004<br />

0.002<br />

Gate bias<br />

Si/SiGe/Si p-H<strong>MOS</strong><br />

Surf. charge<br />

Buried charge<br />

Vd=-0.1V<br />

0.000<br />

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5<br />

Gate voltage (V)<br />

1E-22<br />

1 10 100 1000 10000<br />

– When buried channel dom<strong>in</strong>ant LF noise is reduced.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

1E-18<br />

1E-19<br />

1E-20<br />

1E-21<br />

Sid (A 2 /Hz)<br />

W/L=10um/1um<br />

Vd=-0.5V<br />

|Vg|-|Vth|=0.3V<br />

<strong>Frequency</strong> (Hz)<br />

Si: TCAD<br />

Si: meas.<br />

Si/SiGe/Si: TCAD<br />

Si/SiGe/Si: meas.<br />

35


• Vg dependence<br />

ΔN<br />

S id /I d 2 (1/Hz)<br />

1E-7<br />

1E-8<br />

1E-9<br />

1E-10<br />

1E-11<br />

Gate bias<br />

SiGe p-H<strong>MOS</strong><br />

Number fluc.<br />

Mobility fluc.<br />

Total noise<br />

Measurements<br />

Vd=-0.1V<br />

1E-12<br />

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5<br />

Gate Voltage (V)<br />

– Weak <strong>in</strong>version: Δμ<br />

– Medium/strong <strong>in</strong>version: ΔN<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Δμ<br />

ΔN<br />

36


• I d<br />

dependence<br />

S id /I d 2 (1/Hz)<br />

10 -7<br />

10 -8<br />

10 -9<br />

10 -10<br />

10 -11<br />

10 -12<br />

10 -13<br />

10 -14<br />

10 -15<br />

10 -16<br />

Δμ<br />

Gate bias<br />

1E-9 1E-8 1E-7 1E-6 1E-5 1E-4<br />

Dra<strong>in</strong> Currrent (A)<br />

– Weak <strong>in</strong>version: Δμ<br />

SiGe p-H<strong>MOS</strong><br />

V d =-0.1V<br />

ΔN<br />

– Medium/strong <strong>in</strong>version: ΔN<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

(g m /Id) 2 (V -2 )<br />

37


• Introduction<br />

• Methodology<br />

• SiGe channel<br />

<br />

<br />

<br />

Device schematic<br />

Gate bias<br />

Body bias<br />

• Size effect<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

38


• SiGe p‐HFET<br />

S id (A 2 /Hz)<br />

1E-20<br />

1E-21<br />

1E-22<br />

1E-23<br />

TCAD<br />

Vb =-0.4V<br />

V b =-0.2V<br />

V b =0V<br />

V b =0.2V<br />

Mea.<br />

Body bias<br />

V b =-0.4V<br />

V b =-0.2V<br />

V b =0V<br />

V b =0.2V<br />

SiGe p-H<strong>MOS</strong><br />

Vov=-0.3V<br />

Vd=-0.5V<br />

10 100 1000<br />

<strong>Frequency</strong> (Hz)<br />

reverse<br />

forward<br />

SISPAD 2007, C.‐Y. Chen<br />

– LF noise <strong>in</strong> SiGe p‐HFET has strong body bias dependence.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

39


• SiGe p‐HFET<br />

Surf. Buried<br />

Hole density (cm -2 )<br />

1E15<br />

1E14<br />

forward<br />

Body bias<br />

Vov=-0.3V<br />

Vd=-0.5V<br />

Si cap layer<br />

SiGe channel<br />

1E13<br />

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2<br />

Body bias (V)<br />

Si/SiGe/Si p-H<strong>MOS</strong><br />

TCAD simulation<br />

reverse<br />

Surf. Buried<br />

– Body bias changes carrier distribution <strong>in</strong> dual channels<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

T‐ED 2008, C.‐Y. Chen<br />

40


• SiGe p‐HFET<br />

less noisy<br />

S id (A 2 /Hz)<br />

1E-20<br />

1E-21<br />

Si/SiGe/Si p-H<strong>MOS</strong><br />

Vov=-0.3V<br />

Vd=-0.5V<br />

Body bias<br />

Si cap layer hole density<br />

Simulated Sid<br />

Measured Sid<br />

1E-22<br />

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2<br />

forward<br />

Body bias (V)<br />

1E16<br />

1E15<br />

1E14<br />

reverse<br />

Surface carrier density (cm -2 )<br />

– FL noise is ma<strong>in</strong>ly from surface channel.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

more noisy<br />

T‐ED 2008, C.‐Y. Chen<br />

41


• Si p‐FET<br />

S id (A 2 /Hz)<br />

1E-19<br />

1E-20<br />

1E-21<br />

Si p<strong>MOS</strong><br />

Vov=-0.3V<br />

Vd=-0.5V<br />

Body bias<br />

Mea.<br />

Vb =-0.4V<br />

V b =-0.2V<br />

V b =0V<br />

V b =0.2V<br />

TCAD<br />

Vb =-0.4V<br />

V b =-0.2V<br />

V b =0V<br />

V b =0.2V<br />

10 100 1000<br />

<strong>Frequency</strong> (Hz)<br />

– Si p‐<strong>MOS</strong> does not show body bias dependence.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

SISPAD 2007, C.‐Y. Chen<br />

reverse<br />

forward<br />

42


• Introduction<br />

• Methodology<br />

• SiGe channel<br />

• Size effect<br />

<br />

<br />

<br />

Device schematic<br />

Mechanism<br />

Gate bias<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

43


Device schematic<br />

• Scaled <strong>MOS</strong>FETs (small gate area)<br />

Cross view Top view<br />

α<br />

L/W=40nm/70nm<br />

oxide thickness~2.5nm<br />

Devices from G‐foundries<br />

– Only a few traps are <strong>in</strong>volved.<br />

– ΔN predicts RTN; Δμ<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

shows 1/f noise.<br />

44


• Introduction<br />

• Methodology<br />

• SiGe channel<br />

• Size effect<br />

<br />

<br />

<br />

Device schematic<br />

Mechanism<br />

Gate bias<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

45


• Ig‐<br />

/ Id‐RTN<br />

A few trap/de‐trap<br />

G<br />

s D<br />

N+ N+<br />

– Two types: Ig‐RTN<br />

Mechanism<br />

Ig<br />

and Id‐RTN.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Time<br />

Id<br />

Time<br />

46


Electron mobility (cm 2 /Vs)<br />

• Where are traps?<br />

320<br />

280<br />

240<br />

200<br />

160<br />

120<br />

Mechanism<br />

High-k metal gate n<strong>MOS</strong>FET<br />

(HfO 2 /TiN)<br />

0.4 0.8 1.2 1.6 2.0 2.4<br />

Interfacial layer thickness (nm)<br />

– Traps should be <strong>in</strong>side high‐κ<br />

gate<br />

oxide.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

x x<br />

x<br />

HfO 2<br />

SiON<br />

channel<br />

47


• Trap/de‐trap<br />

Et<br />

– Capture: V th<br />

– Emission:<br />

V th<br />

Mechanism<br />

Ef<br />

I g (A)<br />

I d (A)<br />

7.40E-012<br />

7.20E-012<br />

7.00E-012<br />

1.60E-006<br />

1.58E-006<br />

1.56E-006<br />

and TAT <strong>in</strong>crease I d<br />

and TAT decrease I d<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

charge trap<br />

(capture)<br />

Track each other<br />

charge de-trap<br />

(emission)<br />

de-trapped<br />

state<br />

trapped<br />

state<br />

0 10 20 30<br />

and I g<br />

Time (s)<br />

and I g<br />

48


• PBTI and RTN<br />

I d (A) or I g (A)<br />

1E-5<br />

1E-7<br />

1E-9<br />

1E-11<br />

1E-13<br />

Mechanism<br />

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0<br />

V g (V)<br />

I g<br />

– Consistent with RTN results.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

I d<br />

Before stress<br />

Positive stress<br />

Negative stress<br />

49


• Introduction<br />

• Methodology<br />

• SiGe channel<br />

• Size effect<br />

<br />

<br />

<br />

Device schematic<br />

Mechanism<br />

Gate bias<br />

• Conclusions<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

50


Ig (A)<br />

• Ig‐RTN 6.4x10 -11<br />

6.0x10 -11<br />

5.6x10 -11<br />

5.2x10 -11<br />

3.6x10 -11<br />

3.2x10 -11<br />

2.0x10 -11<br />

1.8x10 -11<br />

1.6x10 -11<br />

– V g<br />

0 5 10 15 20 25<br />

Time (s)<br />

Gate bias<br />

Vg=1V<br />

Vg=0.9V<br />

Vg=0.8V<br />

<strong>in</strong>creases: Time <strong>in</strong> high‐I g<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Et<br />

state <strong>in</strong>creases.<br />

Ef<br />

51


Id (A)<br />

• Id‐RTN: <strong>Low</strong> Vg<br />

2.30E-009<br />

2.25E-009<br />

2.20E-009<br />

2.15E-009<br />

2.10E-009<br />

2.05E-009<br />

Vd=10mV Vg=0.2V<br />

150 155 160 165 170<br />

Time (s)<br />

Gate bias<br />

Sid (A 2 /Hz)<br />

1E-19<br />

1E-20<br />

1E-21<br />

1E-22<br />

1E-23<br />

– Measurement still shows 1/f noise; Δμ<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Vg=0.2V<br />

Vd=20mV<br />

Scaled n<strong>MOS</strong>FET<br />

L=50nm<br />

W=70nm<br />

1E-24<br />

0.01 0.1 1 10<br />

<strong>Frequency</strong> (Hz)<br />

1/f<br />

model is dom<strong>in</strong>ant.<br />

52


Id (A)<br />

Gate bias<br />

• Id‐RTN: High gm bias condition<br />

4.80E-007<br />

4.75E-007<br />

4.70E-007<br />

4.65E-007<br />

Vd=10mV Vg=570mV<br />

4.60E-007<br />

20 25 30 35<br />

Time (s)<br />

Sid (A 2 /Hz)<br />

1E-15<br />

1E-16<br />

1E-17<br />

1E-18<br />

1E-19<br />

1E-20<br />

– RTN and Lorentzian shape are observed<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Vd=10mV<br />

Vg=570mV<br />

Scaled n<strong>MOS</strong>FET<br />

L=50nm<br />

W=70nm<br />

0.1 1 10<br />

<strong>Frequency</strong> (Hz)<br />

1/f 2<br />

<strong>in</strong> high gm region.<br />

53


Id(A)<br />

• Id‐RTN: High Vg<br />

8.42E-007<br />

8.40E-007<br />

8.38E-007<br />

8.36E-007<br />

8.34E-007<br />

8.32E-007<br />

8.30E-007<br />

8.28E-007<br />

8.26E-007<br />

Vd=10mV Vg=750mV<br />

0 10 20 30 40<br />

Time (s)<br />

Gate bias<br />

Sid (A 2 /Hz)<br />

1E-16<br />

1E-17<br />

1E-18<br />

1E-19<br />

1E-20<br />

Vd=10mV<br />

Vg=750mV<br />

Scaled n<strong>MOS</strong>FET<br />

L=50nm<br />

W=70nm<br />

0.1 1 10<br />

– 1/f noise is shown <strong>in</strong> a very scaled <strong>MOS</strong>FET: Δμ<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

<strong>Frequency</strong> (Hz)<br />

1/f<br />

is dom<strong>in</strong>ant.<br />

54


• Id‐RTN: summary<br />

1/f<br />

gm (1/ohm)<br />

2.0x10 -6<br />

1.6x10 -6<br />

1.2x10 -6<br />

8.0x10 -7<br />

4.0x10 -7<br />

0.0<br />

Δμ<br />

Gate bias<br />

Vd=10mV<br />

Scaled n<strong>MOS</strong><br />

L/W=50nm/70nm<br />

-0.4 0.0 0.4 0.8 1.2<br />

Vg (V)<br />

ΔN<br />

Δμ<br />

RTN<br />

1/f<br />

– RTN should be considered especially <strong>in</strong> high gm region.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

55


• Id‐RTN: summary<br />

Sid/Id 2<br />

1/f<br />

gm (1/ohm)<br />

2.0x10 -6<br />

1.6x10 -6<br />

1.2x10 -6<br />

8.0x10 -7<br />

4.0x10 -7<br />

Freq<br />

0.0<br />

Δμ<br />

Gate bias<br />

Vd=10mV<br />

Scaled n<strong>MOS</strong><br />

L/W=50nm/70nm<br />

-0.4 0.0 0.4 0.8 1.2<br />

Vg (V)<br />

ΔN<br />

Δμ<br />

– RTN should be considered especially <strong>in</strong> high gm region.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Sid/Id 2<br />

1/f<br />

Lorentzian<br />

Sid/Id 2<br />

1/f<br />

Freq<br />

56<br />

Freq


• Introduction<br />

• The orig<strong>in</strong> of LF noise<br />

• Methodology<br />

• SiGe channel<br />

• Size effect<br />

• Conclusions<br />

<br />

<br />

<br />

Summary<br />

Contributions<br />

Future work<br />

Outl<strong>in</strong>e<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

57


Summary<br />

Bias SiGe H‐<strong>MOS</strong> (Lg~1um) Scaled <strong>MOS</strong> (Lg~40nm)<br />

Weak <strong>in</strong>version Δμ model is dom<strong>in</strong>ant. Δμ model is dom<strong>in</strong>ant.<br />

High gm region (~ Vdd/2) ΔN model is important;<br />

LF noise is mostly surface<br />

effect.<br />

High Vg condition<br />

ΔN is dom<strong>in</strong>ant <strong>in</strong> our<br />

device, but <strong>in</strong> general it<br />

can be technology<br />

dependence.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

ΔN model becomes<br />

important; RTN should be<br />

considered.<br />

Δμ model is dom<strong>in</strong>ant<br />

58


The orig<strong>in</strong> of LF noise: (1)<br />

Methodology:<br />

Summary<br />

ΔN model and (2)<br />

Δμ<br />

model.<br />

TCAD simulations and noise measurements<br />

SiGe channel: Dual‐channel is<br />

frequency noise performance.<br />

important<br />

to<br />

expla<strong>in</strong><br />

the<br />

low<br />

Size effect: Ig‐RTN is directly related to physical trapp<strong>in</strong>g or de‐<br />

trapp<strong>in</strong>g and the Id‐RTN reflects sensitivity to charge trapp<strong>in</strong>g<br />

as determ<strong>in</strong>ed by gm. C<strong>MOS</strong> scal<strong>in</strong>g: provides a new opportunity for LF noise study.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

59


Contributions<br />

Detailed LF noise mechanisms <strong>in</strong> SiGe p‐HFET are proposed.<br />

LF noise mechanisms <strong>in</strong> scaled <strong>MOS</strong>FETs are<br />

analyzed.<br />

measured<br />

and<br />

Other parts: (1) LF noise mechanisms <strong>in</strong> high‐κ <strong>MOS</strong>FET, (2)<br />

A LF noise compact model <strong>in</strong> SiGe p‐HFET, (3) l<strong>in</strong>earity of<br />

asymmetric channel dop<strong>in</strong>g for LD<strong>MOS</strong>, (4) l<strong>in</strong>earity <strong>in</strong> GaN<br />

HEMTs, and (5) asymmetric FET scal<strong>in</strong>g.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

60


Future work<br />

Reth<strong>in</strong>k “device noise”<br />

“distortion” and<br />

“reliability”<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

61


Publications<br />

[1] C.‐Y. Chen, Q. Ran, H.‐J. Cho, A. Kerber, Y. Liu, M.‐R. L<strong>in</strong>, and R. W. Dutton, IRPS, 2011.<br />

[2] C.‐Y. Chen, C.‐C. Wang, Y. Ye, Y. Liu, Y. Cao, and R. W. Dutton, SASIMI, 2010.<br />

[3] C.‐Y. Chen, O. Tornblad, R. W. Dutton, IEEE Trans. on Microwave Theory and Techniques,<br />

Dec. 2009.<br />

[4] C.‐Y. Chen and R. W. Dutton, IEEE Design & Test of Computers, 2009.<br />

[5] C.‐Y. Chen, Y. Liu, J. Kim, R. W. Dutton, SISPAD 2009, Sept. 2009.<br />

[6] C.‐Y. Chen, O. Tornblad, R. W. Dutton, IEEE MTT‐S International Microwave Symposium<br />

Dig. (IMS), pp. 601‐604, 2009.<br />

[7] C.‐Y. Chen, Y. Liu, R. W. Dutton, J. Sato‐Iwanaga, A. Inoue, H. Sorada, SASIMI 2009,<br />

Sapporo, Japan, pp. 405‐409, March 2009.<br />

[8] C.‐Y. Chen, Y. Liu, R. W. Dutton, J. Sato‐Iwanaga, A. Inoue, H. Sorada, IEEE Trans.<br />

Electron Devices, July, 2008.<br />

[9] J. Kim, C.‐Y. Chen and R. W. Dutton, Journal of Computational Electronics, Jan. 2008.<br />

[10] C.‐Y. Chen, Y. Liu, R. W. Dutton, J. Sato‐Iwanaga, A. Inoue, H. Sorada, SASIMI, Sapporo,<br />

Japan, pp. 238‐241, Oct. 2007.<br />

[11] C.‐Y. Chen, Y. Liu, R. W. Dutton, J. Sato‐Iwanaga, A. Inoue, H. Sorada, Workshop on<br />

Compact Model<strong>in</strong>g (WCM) 2007, San Jose, USA, March 2007.<br />

[12] J. Kim, C.‐Y. Chen, R. W. Dutton, SISPAD, Nov. 2007.<br />

[13] J. Kim, C.‐Y. Chen, R. W. Dutton, Proc. of 12th International Workshop on<br />

Computational Electronics (IWCE), Oct. 2007.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

62


Backup: L<strong>in</strong>earity analysis of lateral channel<br />

dop<strong>in</strong>g <strong>in</strong> RF power <strong>MOS</strong>FETs<br />

Chia‐Yu Chen<br />

Department of Electrical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Stanford University<br />

UC <strong>Berkeley</strong> EE298‐12 Solid State Technology and Device Sem<strong>in</strong>ar 2010‐11‐19


• Introduction<br />

• Quasi‐1D structure<br />

• Realistic LD<strong>MOS</strong> structure<br />

• Conclusions<br />

Slide 64<br />

Backup: Outl<strong>in</strong>e


L<strong>in</strong>earity:<br />

Slide 65<br />

Backup: Introduction (1 of 2)<br />

ω ω<br />

<strong>Low</strong> distortion is one of the most important concerns for wireless<br />

communication systems.<br />

Analysis of the distortion generated by the device itself has been fairly limited.


Harmonic balance device simulations:<br />

A unique harmonic balance (HB) device simulator with the capability of<br />

<strong>in</strong>clud<strong>in</strong>g external circuitry is used.<br />

In the HB simulations, variations <strong>in</strong> device parameters are directly reflected<br />

<strong>in</strong> the f<strong>in</strong>al large signal RF performance.<br />

Slide 66<br />

Backup: Introduction (2 of 2)


Channel dop<strong>in</strong>g (cm -3 )<br />

1E18<br />

1E17<br />

1E16<br />

Slide 67<br />

Backup: Quasi‐1D structure (1 of 3)<br />

Device schematic:<br />

uniform 8e16 cm -3<br />

uniform 2e17 cm -3<br />

char. length 0.2um<br />

char. length 0.3um<br />

Gate<br />

Source Graded<br />

channel<br />

dop<strong>in</strong>g<br />

Dra<strong>in</strong><br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

Lateral location (um)<br />

0.5um gate length, 30nm oxide<br />

thickness.<br />

Avoid 2D-effects.<br />

Very high source and dra<strong>in</strong><br />

dop<strong>in</strong>gs to avoid compensation<br />

effects at source and dra<strong>in</strong><br />

junctions.<br />

4 cases: 2 uniform dop<strong>in</strong>g and 2<br />

laterally graded.<br />

Test circuit consist<strong>in</strong>g of bias<br />

feeds and block<strong>in</strong>g capacitors on<br />

<strong>in</strong>put and output.


Gm 3 /Gm<br />

0<br />

Slide 68<br />

Backup: Quasi‐1D structure (2 of 3)<br />

gm3/gm:<br />

1.5 2.0 2.5 3.0 3.5<br />

Gate voltage (V)<br />

uniform 8e16cm -3<br />

uniform 2e17cm -3<br />

char. length 0.3um<br />

char. length 0.2um<br />

Different gm3/gm magnitudes for<br />

different cases.<br />

Devices were biased at gm3/gm<br />

m<strong>in</strong>ima, close to overall best<br />

l<strong>in</strong>earity.<br />

IM3dBc<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

-50<br />

-55<br />

-60<br />

-65<br />

IM3:<br />

uniform 8e16cm -3<br />

uniform 2e17cm -3<br />

char. length 0.3um<br />

char. length 0.2um<br />

Freq.=10MHz<br />

-1.5 -1.0 -0.5 0.0<br />

Log 10 (V <strong>in</strong> )<br />

First data po<strong>in</strong>t correlates to<br />

magnitude of gm3/gm m<strong>in</strong>ima.<br />

Shorter char. length / lower<br />

uniform dop<strong>in</strong>g: higher IM3 at<br />

low <strong>in</strong>put power lower IM3 at<br />

high <strong>in</strong>put power.


Lateral electrical field (V/cm)<br />

4x10 5<br />

3x10 5<br />

2x10 5<br />

1x10 5<br />

0<br />

Slide 69<br />

Backup: Quasi‐1D structure (3 of 3)<br />

Field distribution:<br />

unifrom 8e16cm -3<br />

uniform 2e17cm -3<br />

char. length 0.3um<br />

char. length 0.2um<br />

Vg at gm3/gm m<strong>in</strong>.<br />

Vd: 2.0V<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

Lateral channel position (um)<br />

Graded cases more uniform<br />

field.<br />

Smaller uniform dop<strong>in</strong>g more<br />

uniform field.<br />

Uniform lateral field better<br />

l<strong>in</strong>earity at higher power.


Lateral channel dop<strong>in</strong>g (cm -3 )<br />

1E20<br />

1E19<br />

1E18<br />

1E17<br />

1E16<br />

1E15<br />

1E14<br />

Slide 70<br />

Backup: Realistic LD<strong>MOS</strong> (1 of 4)<br />

Device schematic (based on Inf<strong>in</strong>eon 7 th generation<br />

design):<br />

char. length 0.0525um<br />

char. length 0.0625um<br />

char. length 0.0725um<br />

char. length 0.0925um<br />

0.4 0.6 0.8<br />

Lateral channel location (um)<br />

Two different lightly doped dra<strong>in</strong><br />

regions: optimize on-resistance and<br />

breakdown voltage.<br />

Source dop<strong>in</strong>g and lightly doped<br />

dra<strong>in</strong> kept the same for all cases.<br />

Four different lateral grad<strong>in</strong>g cases <strong>in</strong><br />

channel, def<strong>in</strong>ed through analytical<br />

expressions.


Gm3/Gm1<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

Slide 71<br />

Backup: Realistic LD<strong>MOS</strong> (2 of 4)<br />

gm3/gm:<br />

char. length 0.0525um<br />

char. length 0.0625um<br />

char. length 0.0725um<br />

char. length 0.0925um<br />

6.0 6.3 6.6 6.9 7.2 7.5<br />

Gate voltage (V)<br />

Bias-po<strong>in</strong>t at gm3/gm m<strong>in</strong>ima.<br />

Test circuitry:<br />

Circuitry with <strong>in</strong>ternal and external<br />

match<strong>in</strong>g and bias.<br />

Inf<strong>in</strong>eon product PTF210451.


IM3dBc<br />

Slide 72<br />

-30<br />

-40<br />

-50<br />

-60<br />

Backup: Realistic LD<strong>MOS</strong> (3 of 4)<br />

IM3 at 2.14GHz:<br />

char. length 0.0525um<br />

char. length 0.0625um<br />

char. length 0.0725um<br />

char. length 0.0925um<br />

Freq. = 2.14GHz<br />

0.0 0.5<br />

Log10(V<strong>in</strong>)<br />

IM3dBc<br />

-30<br />

-40<br />

-50<br />

char. length 0.0525um<br />

char. length 0.0625um<br />

char. length 0.0725um<br />

char. length 0.0925um<br />

Freq. = 2.14GHz<br />

-60<br />

20 25 30 35 40<br />

Effect of graded dop<strong>in</strong>g is significant the nonl<strong>in</strong>earities <strong>in</strong> capacitances will<br />

not swamp the studied effects at high frequency.<br />

More graded channel profile shows better l<strong>in</strong>earity <strong>in</strong> the <strong>in</strong>termediate power<br />

regime.<br />

IM1


IM3dBc<br />

-30<br />

-40<br />

-50<br />

-60<br />

20 25 30 35<br />

Slide 73<br />

Backup: Realistic LD<strong>MOS</strong> (4 of 4)<br />

Vgs shifts from gm3/gm:<br />

char. 0.0525um; shift 50mv<br />

char. 0.0925um; shift -30mv<br />

char. 0.0525um; shift 0mv<br />

char. 0.0925um; shift -100mv<br />

Freq. = 2.14GHz<br />

IM1<br />

Vgs shifts from gm3/gm<br />

m<strong>in</strong>ima IM3 change is<br />

quite sensitive.<br />

Different device designs<br />

give different IM3 that<br />

cannot be compensated for<br />

by simply chang<strong>in</strong>g Vgs bias<br />

(Idq sett<strong>in</strong>g).


• A graded channel has better l<strong>in</strong>earity for <strong>in</strong>termediate to<br />

high powers. By contrast, for <strong>in</strong>creased back‐off, the<br />

situation is reversed.<br />

• Nonl<strong>in</strong>earities <strong>in</strong> <strong>in</strong>tr<strong>in</strong>sic capacitances will not swamp the<br />

effect of graded channel dop<strong>in</strong>g at high frequency.<br />

• The effect of graded channel dop<strong>in</strong>g cannot be fully<br />

compensated for by adjust<strong>in</strong>g the Idq bias po<strong>in</strong>t.<br />

• The analysis lays ground‐work for RF device optimization for<br />

improved l<strong>in</strong>earity.<br />

Slide 74<br />

Backup: Conclusions


Dra<strong>in</strong> current, log scale (A/um)<br />

1E-4<br />

1E-5<br />

1E-6<br />

1E-7<br />

1E-8<br />

1E-9<br />

1E-10<br />

1E-11<br />

1E-12<br />

0.0<br />

0 1 2 3 4<br />

Slide 75<br />

Backup: Additional <strong>in</strong>formation (1 of 4)<br />

Quasi-1D structure: IdVgs<br />

unifrom 8e16cm -3<br />

unifrom 2e17cm -3<br />

char. length 0.3um<br />

char. length 0.2um<br />

Vd=2.0V<br />

Gate voltage (V)<br />

2.0x10 -4<br />

1.8x10 -4<br />

1.6x10 -4<br />

1.4x10 -4<br />

1.2x10 -4<br />

1.0x10 -4<br />

8.0x10 -5<br />

6.0x10 -5<br />

4.0x10 -5<br />

2.0x10 -5<br />

Dra<strong>in</strong> current, l<strong>in</strong>ear scale (A/um)<br />

Gm 3 /Gm<br />

0<br />

1.5 2.0 2.5 3.0 3.5<br />

Gate voltage (V)<br />

uniform 8e16cm -3<br />

uniform 2e17cm -3<br />

char. length 0.3um<br />

char. length 0.2um<br />

Clearly different gm3/gm magnitudes for different cases.<br />

Shorter characteristic length and lower dop<strong>in</strong>g give larger gm3/gm<br />

magnitudes.<br />

Devices were biased at gm3/gm m<strong>in</strong>ima, close to overall best<br />

l<strong>in</strong>earity for many applications.


Gm3/Gm<br />

Quasi-1D structure: velocity saturation:<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

Slide 76<br />

Backup: Additional <strong>in</strong>formation (2 of 4)<br />

Uniform dop<strong>in</strong>g 2e17cm -3<br />

2.6 2.8 3.0 3.2 3.4 3.6<br />

Gate voltage (V)<br />

w/ Vsat model<br />

w/o Vsat model<br />

IM3dBc<br />

When Vsat model is not <strong>in</strong>cluded:<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

Uniform dop<strong>in</strong>g 2e17cm -3<br />

-80<br />

-25 -20 -15 -10 -5 0 5 10<br />

IM1<br />

w/ Vsat model<br />

w/o Vsat model<br />

1. gm3/gm shifts to a smaller magnitude.<br />

2. IM3 is much lower, both <strong>in</strong>itially and for high powers.


IM3dBc<br />

-30<br />

-35<br />

-40<br />

-45<br />

-50<br />

-55<br />

-60<br />

-65<br />

Slide 77<br />

Backup: Additional <strong>in</strong>formation (3 of 4)<br />

Realistic LD<strong>MOS</strong>: IM3 at 10MHz<br />

Freq.=10MHz<br />

char. length 0.0525um<br />

char. length 0.0625um<br />

char. length 0.0725um<br />

char. length 0.0925um<br />

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0<br />

Log10(V<strong>in</strong>)<br />

IM3dBc<br />

-30<br />

-35<br />

-40<br />

-45<br />

-50<br />

-55<br />

-60<br />

-65<br />

Freq.=10MHz<br />

char. length 0.0525um<br />

char. length 0.0625um<br />

char. length 0.0725um<br />

char. length 0.0925um<br />

-10 -5 0 5 10 15 20<br />

First, separate nonl<strong>in</strong>earities <strong>in</strong> static IV from capacitive effects <br />

low freq. 10MHz.<br />

More graded channel profile shows better l<strong>in</strong>earity <strong>in</strong> <strong>in</strong>termediate<br />

power regime.<br />

IM1


IM3dBc<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

Slide 78<br />

Backup: Additional <strong>in</strong>formation (4 of 4)<br />

Realistic LD<strong>MOS</strong>: two sweet spots<br />

Shift -50mV from gm3/gm m<strong>in</strong>.<br />

gm3/gm m<strong>in</strong>.<br />

-10 -5 0 5 10 15 20<br />

IM1<br />

At high power, the compress<strong>in</strong>g<br />

non-l<strong>in</strong>earity along the load-l<strong>in</strong>e<br />

will dom<strong>in</strong>ate; the curves merge.<br />

<strong>Low</strong>er Vgs two sweet-spots<br />

appear.<br />

Ids (A)<br />

Vds (V)


Backup: GaN GaN HEMT HEMT structure structure<br />

Lg=0.5um<br />

11/23/2010 GaN HEMT project 79


Id (A/um)<br />

0.0012<br />

0.0010<br />

0.0008<br />

0.0006<br />

0.0004<br />

0.0002<br />

Backup: Id‐Vgs, GaN HEMT<br />

TCAD simulation results<br />

w/o Hydrodynamics<br />

w/ Hydrodynamics<br />

0.0000<br />

-7 -6 -5 -4 -3 -2 -1 0 1<br />

Vg (V)<br />

Id (A/um)<br />

1E-3<br />

1E-4<br />

1E-5<br />

1E-6<br />

1E-7<br />

w/o Hydrodynamics<br />

w/ Hydrodynamics<br />

-5 -4 -3 -2 -1 0 1<br />

Vg (V)<br />

11/23/2010 GaN HEMT project<br />

80


Gm3/Gm1<br />

Backup: Gm3/Gm1, GaN HEMT<br />

40<br />

20<br />

0<br />

-20<br />

w/o Hydrodynamics<br />

w/ Hydrodynamics<br />

Gm3/Gm1 m<strong>in</strong>.:Vg=-4.9047V<br />

-5 -4 -3 -2<br />

Vg (V)<br />

11/23/2010 GaN HEMT project<br />

81


Id(A)<br />

Backup: L<strong>in</strong>earity, GaN HEMT<br />

1E-8<br />

1E-10<br />

1E-12<br />

1E-14<br />

1E-16<br />

Id1 at f1<br />

Id3 at 2f1-f2<br />

GaN HEMT<br />

Vd=28V<br />

Vg=-4.91V (Gm3/Gm1 m<strong>in</strong>.)<br />

0.01 0.1<br />

Vg(V)<br />

11/23/2010 GaN HEMT project 82


• ΔN model<br />

ΔN<br />

Backup: The orig<strong>in</strong> of LF noise<br />

one trap RTN<br />

time:<br />

freq.:<br />

a lot of traps 1/f noise<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Id<br />

Sid/Id 2<br />

Time<br />

Freq<br />

time:<br />

freq.:<br />

Id<br />

Sid/Id 2<br />

83<br />

Time<br />

Freq


• Statistical results<br />

Backup: Statistics<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

About 12% <strong>MOS</strong>FETs<br />

RTN: 9% Ig‐RTN, 2%<br />

and 1% ‐RTN.<br />

Ig‐/Id I d<br />

show<br />

‐RTN,<br />

The statistical results are from<br />

1000 devices with the same<br />

technology and structures.<br />

84


Ig (A)<br />

• Ig‐RTN 6.4x10 -11<br />

6.0x10 -11<br />

5.6x10 -11<br />

5.2x10 -11<br />

3.6x10 -11<br />

3.2x10 -11<br />

2.0x10 -11<br />

1.8x10 -11<br />

1.6x10 -11<br />

– V g<br />

Backup: Gate bias<br />

0 5 10 15 20 25<br />

Time (s)<br />

Vg=1V<br />

Vg=0.9V<br />

Vg=0.8V<br />

<strong>in</strong>creases: Time <strong>in</strong> high‐I g<br />

<br />

10<br />

1<br />

0.1<br />

0.01<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

0.6 0.7 0.8 0.9 1.0 1.1 1.2<br />

state <strong>in</strong>creases.<br />

Vg (V)<br />

Device 1<br />

Device 2<br />

Device 3<br />

Device 4<br />

85


Backup: TCAD<br />

• Id‐RTN: High gm bias condition<br />

Trap/de-trap<br />

– TCAD simulations confirm the orig<strong>in</strong> of RTN can be from one‐<br />

trap/de‐trap.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

86


Portable electronics<br />

Ultra‐low power circuits<br />

<br />

Backup: Motivation<br />

Transistor reliability<br />

<strong>Noise</strong>: key issue<br />

development.<br />

Integrated sensors<br />

Device <strong>Noise</strong><br />

for<br />

the<br />

future<br />

SRAM yield<br />

Bio‐implant system<br />

Bio/silicon <strong>in</strong>terfaces<br />

electronic<br />

system<br />

11/09/2010 C.‐Y. Chen UCB sem<strong>in</strong>ar<br />

87


U-shape<br />

Energy (eV)<br />

Backup: Trap distribution (1 of 2)<br />

L/H H/L<br />

Space (um)<br />

– Space: from gate to Si can be low-high or high-low.<br />

– Energy: distribution is a U-shape <strong>in</strong> log-scale.<br />

R. Jayaraman et al. IEEE T-ED, vol.36, no. 9, pp. 1773-1782, Sept., 1989.<br />

H. Wong et al. IEEE T-ED, vol.37 no. 7, pp. 1743-1749, July, 1990.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

88


• V g<br />

flat<br />

Backup: Trap distribution (2 of 2)<br />

dependence<br />

– V g dependence shows flat region <strong>in</strong> weak <strong>in</strong>version regime.<br />

– In the U-shape distribution Vg dependence is less sensitive<br />

compared with uniform distribution.<br />

K. K. Hung et al. IEEE T-ED, vol.37, no. 5, pp. 1323-1333, May, 1990.<br />

Y. Liu et al. SISPAD 2006, pp. 99-102, 2006.<br />

∝<br />

1/V ov 2<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

89


Backup: Numerical method (1 of 2)<br />

– Physical model<br />

– Impedance field method (IMF)<br />

A k<br />

<br />

r Current fluctuatio n at kth electrode<br />

<br />

Injected current at r <strong>in</strong> the device<br />

2 ) <br />

S A dv<br />

<br />

( s<br />

r S r [5] A. McWhorter, Semiconductor Surface Physics, PA, Univ. Pennsylvania Press,1957, pp. 207-208.<br />

[6] W. Shockley et al., Quantum Theory of Atoms, Molecules and Solid State, NY: Academic, 1966, pp. 537-563.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

<strong>in</strong><br />

90


Backup: Numerical method (2 of 2)<br />

• Hooge mobility fluctuation (Δμ<br />

– Bulk phonon scatter<strong>in</strong>g<br />

– Empirical equation<br />

– Numerical approach: Post process<br />

model)<br />

Hooge model is empirical the post process with simulated<br />

parameters/reasonable α H is used.<br />

[7] F. N. Hooge, IEEE T-ED, vol.41, no. 11, pp. 1926-1935, Nov., 1994.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

91


Backup: Unified model (1 of 4)<br />

The fluctuat<strong>in</strong>g oxide charge density △Q ox is equivalent to a<br />

variation <strong>in</strong> the flat-band voltage<br />

The fluctuation <strong>in</strong> the dra<strong>in</strong> current yields<br />

Fluctuation of Num. Fluctuation of correlated mobility<br />

The first term <strong>in</strong> the parentheses is due to fluctuat<strong>in</strong>g number of<br />

<strong>in</strong>version carriers and the second term to correlated mobility<br />

fluctuations.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

92


Backup: Unified model (2 of 4)<br />

The power spectral density of the flat-band voltage fluctuations<br />

is calculated by summ<strong>in</strong>g the contributions from all traps <strong>in</strong> the<br />

gate oxide.<br />

Fermi‐Dirac distribution<br />

z<br />

y<br />

Semiconductor<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

x<br />

93


Backup: Unified model (3 of 4)<br />

The product f(E)(1-f(E)) is sharply peaked around the quasi-<br />

Fermi level<br />

If the Fermi-level is far above or below the trap level, the trap<br />

will be filled or empty.<br />

f(E) 1-f(E)<br />

Fluctuations<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

All empty<br />

All filled<br />

94


Backup: Unified model (4 of 4)<br />

The trapp<strong>in</strong>g time constant<br />

(quantum tunnel<strong>in</strong>g)<br />

Tunnel<strong>in</strong>g attenuation length<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Lorentzian spectrum<br />

95


• Numerical approach<br />

High-κ<br />

SiON<br />

j<br />

Different aff<strong>in</strong>ities and tunnel<strong>in</strong>g are<br />

considered<br />

Si<br />

Backup: High‐κ<br />

[9] Y. Liu et al. SISPAD 2006, pp. 99-102, 2006.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

1/γ<br />

f=1Hz<br />

f=1e4Hz<br />

SiO 2 : 1×10 -8 cm<br />

HfO 2 : 2.1×10 -8 cm


Backup: <strong>Noise</strong> scal<strong>in</strong>g (1 of 2)<br />

• Scal<strong>in</strong>g trend: general trend<br />

– SiO 2 trap density is much smaller than that of HfO 2 .<br />

– 1/f noise <strong>in</strong>creases much faster than the thermal noise<br />

when size scales down.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

97


Backup: <strong>Noise</strong> scal<strong>in</strong>g (2 of 2)<br />

• Scal<strong>in</strong>g trend: traps at gate edge<br />

– High trap density <strong>in</strong> the gate edge region.<br />

– In the scaled devices traps <strong>in</strong> the gate edge becomes<br />

important so S id /I d 2 <strong>in</strong>creases significantly.<br />

[14] Y. Yasuda et al., IEEE T-ED, vol.55, no. 1, pp. 417-422, Jan., 2008.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

98


Backup: Halo dop<strong>in</strong>g<br />

– Halo dop<strong>in</strong>g profiles suppress the short channel effect.<br />

– The same amount of electrons greater Δ<br />

I d <strong>in</strong> halo.<br />

– Reduced <strong>in</strong>version carrier density <strong>in</strong> the halo regions.<br />

[8] Y. Liu et al. SISPAD 2006, pp. 99-102, 2006.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

99


Backup: Metal gate<br />

Poly SiGe<br />

High-κ (TiN)<br />

– The lower<strong>in</strong>g of the 1/f noise: observed <strong>in</strong> the strong <strong>in</strong>version<br />

regime.<br />

– Traps and charges at the gate dielectric <strong>in</strong>terface: better<br />

screened by a metal gatealleviate remote phonon scatter<strong>in</strong>g.<br />

[15] E. Simoen et al., IEEE T-ED, vol.40, pp. 2054-2059, 1993.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

+<br />

-<br />

-<br />

+<br />

100


Backup: SiGe FET (1 of 2)<br />

• Dual channel behavior<br />

– Surface and buried channels have<br />

different Coulomb <strong>in</strong>teractions.<br />

– Both channels also have different<br />

material quality.<br />

1E-20<br />

1E-21<br />

1E-22<br />

1E-23<br />

[16] C.-Y. Chen et al., IEEE T-ED, vol.55, no.7, pp. 1741-1748, 2008.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

S id (A 2 /Hz)<br />

SiGe p-H<strong>MOS</strong><br />

Vd= -0.1V<br />

n 3-D<br />

w/o layer dependence<br />

This work<br />

Measurements<br />

-2.0 -1.5 -1.0 -0.5 0.0<br />

Gate Voltage (V)<br />

101


• Compact model<br />

Surface channel Buried channel<br />

Case 1: low Vg<br />

Vth_buried<br />

Vth_surf<br />

Case 3: High Vg<br />

Vg<br />

Si<br />

Case 2: Medium Vg<br />

Th<strong>in</strong> body <strong>MOS</strong><br />

SiGe<br />

Si<br />

Backup: SiGe FET (2 of 2)<br />

SiGe<br />

Si<br />

SiGe<br />

Si<br />

SiGe<br />

Si<br />

Vth_surf<br />

1E-10<br />

1E-11<br />

1E-12<br />

-2.0 -1.5 -1.0 -0.5 0.0 0.5<br />

– Physics based compact model can simulate dual-channel<br />

behavior for SiGe FETs.<br />

S id /I d 2 (1/Hz)<br />

1E-5<br />

1E-6<br />

1E-7<br />

1E-8<br />

1E-9<br />

1E-3<br />

1E-4<br />

1E-5<br />

1E-6<br />

1E-7<br />

1E-8<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Sid (A 2 /Hz)<br />

10 7<br />

SiGe p-H<strong>MOS</strong><br />

Vd=-0.1V<br />

TCAD<br />

Proposed model<br />

Measurements<br />

Vg(V)<br />

SiGe p-H<strong>MOS</strong><br />

Si p-<strong>MOS</strong><br />

10 8<br />

<strong>Frequency</strong> (Hz)<br />

10 9<br />

102


Backup: Random Telegraph <strong>Noise</strong> (1 of 2)<br />

• Exponential tail <strong>in</strong> RTN<br />

– The slope of Vth <strong>in</strong>stability shows an exponential tail.<br />

– The slope <strong>in</strong>creases with technology scal<strong>in</strong>g.<br />

[18] A. Ghetti et al., IEEE T-ED, vol.56, no.8, pp. 1746-1752, 2009.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

103


Backup: Random Telegraph <strong>Noise</strong> (2 of 2)<br />

• Body bias dependence: expla<strong>in</strong><br />

– RTN: channel/gate dielectrics system <strong>in</strong> dynamic equilibrium.<br />

– NBTI relaxation: perturbed system return<strong>in</strong>g to the equilibrium.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

104


• Switched <strong>MOS</strong><br />

Backup: Switched bias<br />

– Large switch <strong>in</strong> gate can reduce 1/f noise.<br />

[19] A. P. Wel et al., IEEE JSSC, vol.42, no.3, pp. 540-550, 2007.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

105


Backup: Temperature effect<br />

• RTN<br />

<br />

1/f noise<br />

[20] M. J. Deen et al. AIR conf. vol. 282, pp. 165-188, 1992.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

106


Backup: 1/f noise characterization (1 of 4)<br />

SR 570 sett<strong>in</strong>gs<br />

– The sensitivity is 2uA/V<br />

– High bandwidth mode is used.<br />

<strong>Noise</strong> floor ~ 10 -10 Amps/rootHz Bandwidth ~ 1MHz<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

107


Backup: 1/f noise characterization (2 of 4)<br />

SR 760 sett<strong>in</strong>gs<br />

– Impedance ~ 1MΩ, 15pF<br />

– Bandwidth: DC to 100kHz<br />

– The bandwidth of noise measurement is limited by<br />

SR760.<br />

– Good for very low frequency measurements.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

108


Backup: 1/f noise characterization (3 of 4)<br />

HP4396A <br />

– Impedance ~ 50Ω.<br />

– Bandwidth: 2Hz to 1.8GHz<br />

– Easy <strong>in</strong>terface and high<br />

resolution.<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

Active probe HP41800A<br />

– Impedance ~ 1MΩ.<br />

– Bandwidth: 5Hz to 500MHz<br />

– Convert high impedance to 50 Ω.<br />

109


Backup: 1/f noise characterization (4 of 4)<br />

On‐package measurements<br />

11/19/2010 C.‐Y. Chen UCB EE298‐12 Sem<strong>in</strong>ar<br />

110

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!