25.07.2013 Views

O - Alive2green

O - Alive2green

O - Alive2green

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Removal of Cr(VI) from Aqueous Solution by Smart<br />

Polymers and their Nanocomposites<br />

Dr. Arjun Maity<br />

Smart Polymers Group<br />

Polymers and Composites<br />

Materials Science and Manufacturing<br />

Council for Scientific and Industrial Research<br />

www.csir.co.za<br />

© CSIR 2010 Slide 1


Introduction<br />

Health effects<br />

Outline<br />

Purification technology<br />

Nanotechnology<br />

Objectives<br />

Synthesized adsorbents<br />

Characterization<br />

Application for Cr(VI)<br />

Conclusion<br />

© CSIR 2010 Slide 2


Chrome industry<br />

Automobile<br />

Petroleum refining<br />

Pulp & Paper<br />

Textile<br />

Steel<br />

Organic & Inorganic Chemicals<br />

Metal plating<br />

Etc.<br />

Background<br />

Wastewater<br />

discharge<br />

Heavy metals<br />

© CSIR 2010 Slide 3<br />

Affected natural water resources


Chromium Chemistry<br />

Speciation diagram of Cr(VI)<br />

Surface water = 0.1 mg/L<br />

Potable water = 0.05mg /L<br />

© CSIR 2010 Slide 4<br />

US-EPA


- Upset stomachs and ulcers<br />

- Respiratory problems<br />

-Internal haemorrhage<br />

- Weakened immune systems<br />

- Kidney and liver damage<br />

- Alteration of genetic material<br />

- Lung cancer<br />

- Death<br />

Health effects of chromium<br />

© CSIR 2010 Slide 5<br />

Liver<br />

damage<br />

Lung<br />

cancer


Chemical precipitation<br />

Ion exchange<br />

Purification Technologies<br />

Membrane separation<br />

Electrocoagulation<br />

© CSIR 2010 Slide 6<br />

Solvent extraction<br />

Electrodialysis


Adsorption<br />

Adsorption and Adsorbents<br />

Activated carbon<br />

Chitosan based materials<br />

© CSIR 2010 Slide 7<br />

Ion – exchange resin<br />

starch based<br />

materials


Nanotechnology<br />

Nano-adsorbent<br />

Large surface area, accessible active sites, short diffusion length<br />

Magnetic Separation<br />

Simplicity, effective control, high speed, accuracy<br />

© CSIR 2010 Slide 8


Objectives<br />

To synthesis of the conducting polymer based low cost materials<br />

To characterize the adsorbents using various physico-chemical<br />

techniques<br />

To evaluate the performance of the adsorbents for Cr (VI)<br />

removal in batch sorption mode<br />

To study the effect of temperature, time, solution pH and<br />

adsorbent dose on the adsorption<br />

© CSIR 2010 Slide 9


PPy doped with Cl -<br />

High electrical conductivity<br />

Relatively good environmental stability<br />

Non-toxicity<br />

Relatively low cost<br />

Ease of preparation<br />

Ion-exchange properties<br />

Conducting Polymer<br />

© CSIR 2010 Slide 10


Aqueous medium<br />

PPy/Fe 3 O 4 Magnetic Adsorbent<br />

Py<br />

Fe 3O 4<br />

FeCl 3 oxidant<br />

Room temperature<br />

PPy/Fe 3 O 4 Nanocomposites<br />

Bhaumik et al Journal of Hazardous Materials, 186 (2011) 150-156.<br />

Bhaumik et al Journal of Hazardous Materials, 190 (2011) 381-390.<br />

© CSIR 2010 Slide 11<br />

PPy<br />

Fe 3O 4


SEM images of (a) Fe3O4 (b) PPy/Fe3O4 nanocomposites<br />

PPy<br />

FE-SEM and HR-TEM Images<br />

Iron Oxide<br />

(a) (b)<br />

PPY<br />

HR-TEM Image<br />

© CSIR 2010 Slide 12<br />

Iron Oxide


Intensity / a. u.<br />

XRD Studies<br />

< 220 ><br />

< 311 ><br />

< 400 ><br />

10 20 30 40<br />

2θ / degree<br />

50 60 70<br />

© CSIR 2010 Slide 13<br />

< 422 ><br />

< 511 ><br />

< 440 ><br />

XRD curves of (A) & (B) PPy/Fe 3 O 4 nanocomposites before and<br />

after adsorption with Cr(VI)<br />

(A)<br />

(B)


Intensity / a. u.<br />

15 00<br />

10 00<br />

5 00<br />

0<br />

-5 00<br />

-1 0 00<br />

-1 5 00<br />

ESR Studies and Photographs<br />

(a ) PP y/F e 3 O 4 na noc omposite<br />

b efore adsorption<br />

(b ) P Py/F e 3 O 4 nanocomposite<br />

a fter adsorption<br />

0 10 0 2 00 30 0 40 0 500 60 0 700<br />

M agnetic field / mT<br />

(b )<br />

(a)<br />

© CSIR 2010 Slide 14<br />

Nanocomposites<br />

before adsorption<br />

after adsorption


% of removal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Effect of pH<br />

Temperature = 25<br />

PPy<br />

Fe O<br />

3 4<br />

PPy/Fe O<br />

3 4<br />

O C<br />

Dose = 2 g/L<br />

0 2 4 6<br />

pH<br />

8 10 12<br />

© CSIR 2010 Slide 15<br />

Initial concentration = 200 mg/L


% of Cr (VI) removal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Effect of Dose<br />

0 50 100 150 200 250 300<br />

dose (mg)<br />

© CSIR 2010 Slide 16<br />

Initial Conc = 200 mg/L<br />

pH = 2


Adsorption capacity / (mg/g)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Kinetic Studies<br />

0 50 100 150 200 250 300 350 400<br />

Time / minute<br />

© CSIR 2010 Slide 17<br />

Dose = 1 g / L<br />

pH = 2<br />

50 mg/L<br />

100 mg/L<br />

150 mg/L


q e / (mg/g)<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

Effect of Temperature<br />

0 50 100 150 200 250 300<br />

C e / (mg/L)<br />

© CSIR 2010 Slide 18<br />

25 O C<br />

35 O C<br />

45 O C<br />

pH = 2.0, Dose = 2 g / L


Intensity / a. u.<br />

774 901<br />

826<br />

ATR-FTIR Analyses<br />

958<br />

1080<br />

1423<br />

Nanocomposites after adsorption<br />

Nanocomposites before adsorption<br />

1513<br />

800 1200 1600 2000 2400<br />

Wavenumber / cm -1<br />

© CSIR 2010 Slide 19<br />

O<br />

O<br />

Cr<br />

O-<br />

OH<br />

774 cm -1 ------Cr - O<br />

901 cm -1 -------Cr = O


Intensity / a. u.<br />

C O<br />

Fe<br />

N<br />

Al<br />

(a) PPy/Fe 3 O 4 nanocomposites before adsorption<br />

(b) PPy/Fe 3 O 4 nanocomposites after adsorption<br />

Cl<br />

Cl<br />

(a) (b)<br />

0 1 2 3 4 5 6 7<br />

Energy / KeV<br />

EDX and XPS studies<br />

Cr<br />

Cr<br />

Fe<br />

Fe<br />

C / S<br />

1.2 10 4<br />

1 10 4<br />

8000<br />

6000<br />

4000<br />

2000<br />

© CSIR 2010 Slide 20<br />

Cr2p 3/2<br />

Cr(III)<br />

Cr2p 1/2<br />

Cr(VI)<br />

0<br />

550 560 570 580 590 600 610 620<br />

Binding energy / eV


HCrO 4 -<br />

Mechanistic Aspect<br />

HCrO 4 -<br />

© CSIR 2010 Slide 21<br />

HCrO 4 -


Adsorption and Separation of Adsorbent<br />

© CSIR 2010 Slide 22


Comparison of Adsorption Capacity<br />

Adsorbents qm (mg/g) Equilibrium<br />

time(h)<br />

Activated carbon<br />

Activated carbon coated with quarternized poly(4vinylpyridine)<br />

Amorphous aluminium Oxide 78<br />

15.47 3 4.0<br />

53.7 24 2.25<br />

Diatomite-supported magnetite nanoparticles 69.16 1 2.0<br />

Hydrous zirconium oxide 61 1 2.0<br />

Surface modified jacobsite 31.55 0.08 2.0<br />

Oxidised multiwalled carbon nanotubes 2.60 280 2.88<br />

Bio-funtional magnetic beads 5.79 12 1.0<br />

Nanocrystalline akaganeite 79.66 1.0 5.5<br />

Polyaniline-polyethylene glycol composite 68.97 0.50 5.0<br />

Polypyrrole/ wood sawdust 3.4 0.16 5.0<br />

Polypyrrole/F 3 O 4 magnetic nanocomposite 169.4 0.50-3 2.0<br />

© CSIR 2010 Slide 23<br />

Optimum<br />

pH


Adsorption capacity/ (mg/g)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Regeneration Study<br />

1 2 3<br />

Adsorption cycle<br />

© CSIR 2010 Slide 24


n<br />

n<br />

H N<br />

Pyrrole<br />

H<br />

N<br />

Pyrrole<br />

+ FeCl 3<br />

+<br />

APS<br />

Cl -<br />

Glycine doped PPy - Adsorbent<br />

- OOC-CH2-NH 3 +<br />

Zwitter ion<br />

pH = 5.03<br />

Ballav et al Journal of Hazardous Materials, Submitted, 2011<br />

H<br />

Polypyrrole-Cl<br />

H<br />

N*<br />

+ Cl -<br />

N*<br />

+<br />

*<br />

n<br />

- OOC-CH2-NH 3 +<br />

*<br />

n<br />

Polypyrrole-glyicne<br />

© CSIR 2010 Slide 25


% of Cr (VI) removal<br />

q t / (mg/g)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Initial conc = 200 mg/L<br />

Dose = 2 g/L<br />

PPy/Gly<br />

PPy<br />

0<br />

0 2 4 6 8 10 12<br />

60<br />

pH<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Dose = 2 g/L, pH = 2<br />

0<br />

0 50 100 150<br />

t / minute<br />

200 250 300<br />

Adsorption and Mechanism<br />

50 ppm<br />

75 ppm<br />

100 ppm<br />

+<br />

H3N -<br />

HCrO 4 H3 N<br />

© CSIR 2010 Slide 26<br />

+<br />

N +<br />

O -<br />

H<br />

N<br />

N<br />

H H<br />

H<br />

+<br />

H3N O<br />

N +<br />

O -<br />

H<br />

N<br />

-<br />

HCrO 4<br />

H<br />

N<br />

N +<br />

-<br />

O<br />

N<br />

H H<br />

H<br />

- +<br />

HCrO 4 H3N O<br />

H<br />

N<br />

N +<br />

-<br />

O<br />

O<br />

O


% of Cr(VI) removal<br />

Glycine doped PPy/ Fe 3 O 4 magnetic nanocomposite<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Initial concentration = 200 mg / L<br />

pH = 2.0<br />

0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375<br />

Dose / g<br />

Ballav et al under communication<br />

Uptake / (mg / g)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

© CSIR 2010 Slide 27<br />

100 mg / L<br />

50 mg / L<br />

Dose = 2 g / L<br />

pH = 2<br />

10<br />

0 50 100 150 200 250 300 350<br />

Time / min


NH<br />

H<br />

N<br />

+<br />

Cl<br />

PPy-PANI Nanotubes Adsorbent<br />

H<br />

N NH<br />

+<br />

Cl<br />

Polyaniline sequence<br />

NH N<br />

HCrO 4 -<br />

+ +<br />

HCrO 4 -<br />

H<br />

N NH<br />

HCrO 4 -<br />

H<br />

N<br />

H<br />

N<br />

Bhaumik et al Journal of Colloid and Interface Science, Submitted, 2011<br />

Cl<br />

+<br />

N<br />

H 2<br />

N<br />

H2 - HCrO 4<br />

H<br />

N<br />

Polypyrrole sequence<br />

+<br />

H<br />

N<br />

© CSIR 2010 Slide 28<br />

PPy/Cl<br />

BET Surface area 2 m 2 /gm<br />

PPy-PANI Nanotubes<br />

BET Surface area 59.71 m 2 /gm


% of removal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Copolymer<br />

PPY<br />

Initial concentration=100 mg/L<br />

Temperature=25 O C<br />

Adsorption<br />

0<br />

2 4 6 8 10 12 14<br />

pH<br />

q t / (mg/g)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

© CSIR 2010 Slide 29<br />

0<br />

Dose= 1g/L<br />

pH=3.0<br />

50mg/L<br />

75mg/L<br />

100mg/L<br />

0 100 200 300 400<br />

t / min


% of Cr(VI) removal<br />

100<br />

80<br />

60<br />

40<br />

Initial conc = 200 mg/L<br />

Dose = 2 g/L<br />

Composite<br />

PPy/Cl<br />

20<br />

0 2 4 6<br />

pH<br />

8 10 12<br />

Maity et al<br />

Other Adsorbent<br />

Uptake<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

© CSIR 2010 Slide 30<br />

Dose = 2 g/L<br />

pH = 2<br />

100 ppm<br />

50 ppm<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time / min


SEM<br />

POM<br />

Maity et al<br />

α-Cellulose<br />

Fabrics of Sterculia urens-Adsorbent<br />

% of Cr(VI) removal<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4<br />

Effect of dose / g<br />

© CSIR 2010 Slide 31<br />

Initial concentration = 100 mg/L<br />

pH= 2.0, 25 mL solution


Conclusions<br />

The adsorbents were highly efficient for the removal of Cr (VI)<br />

from water<br />

The Cr (VI) uptake was depended on the initial concentration,<br />

temperature, adsorbent dose and pH<br />

The adsorption process was endothermic in nature<br />

Adsorption proceeded by ion exchange mechanism<br />

Further experiments are still required to apply the materials<br />

for industrial wastewater treatment and to possibly upgrade to<br />

magnetic adsorption process<br />

© CSIR 2010 Slide 32


Acknowledgement<br />

Dr. Sean Moolman<br />

Mrs Avashnee Chetty<br />

Prof. Maurice S Onyango, TUT, SA<br />

Prof. VV Srinivasu, UNISA, SA<br />

Prof. Rotimi Sadiku, TUT, SA<br />

Mr Pramod Sinha, UNISA, SA<br />

Dr. UC Ghosh, CU, India<br />

Dr. S. B. Mishra, UJ, SA<br />

Post docs<br />

Students<br />

© CSIR 2010 Slide 33


Thank You<br />

© CSIR 2010 Slide 34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!