25.07.2013 Views

O - Alive2green

O - Alive2green

O - Alive2green

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Removal of Cr(VI) from Aqueous Solution by Smart<br />

Polymers and their Nanocomposites<br />

Dr. Arjun Maity<br />

Smart Polymers Group<br />

Polymers and Composites<br />

Materials Science and Manufacturing<br />

Council for Scientific and Industrial Research<br />

www.csir.co.za<br />

© CSIR 2010 Slide 1


Introduction<br />

Health effects<br />

Outline<br />

Purification technology<br />

Nanotechnology<br />

Objectives<br />

Synthesized adsorbents<br />

Characterization<br />

Application for Cr(VI)<br />

Conclusion<br />

© CSIR 2010 Slide 2


Chrome industry<br />

Automobile<br />

Petroleum refining<br />

Pulp & Paper<br />

Textile<br />

Steel<br />

Organic & Inorganic Chemicals<br />

Metal plating<br />

Etc.<br />

Background<br />

Wastewater<br />

discharge<br />

Heavy metals<br />

© CSIR 2010 Slide 3<br />

Affected natural water resources


Chromium Chemistry<br />

Speciation diagram of Cr(VI)<br />

Surface water = 0.1 mg/L<br />

Potable water = 0.05mg /L<br />

© CSIR 2010 Slide 4<br />

US-EPA


- Upset stomachs and ulcers<br />

- Respiratory problems<br />

-Internal haemorrhage<br />

- Weakened immune systems<br />

- Kidney and liver damage<br />

- Alteration of genetic material<br />

- Lung cancer<br />

- Death<br />

Health effects of chromium<br />

© CSIR 2010 Slide 5<br />

Liver<br />

damage<br />

Lung<br />

cancer


Chemical precipitation<br />

Ion exchange<br />

Purification Technologies<br />

Membrane separation<br />

Electrocoagulation<br />

© CSIR 2010 Slide 6<br />

Solvent extraction<br />

Electrodialysis


Adsorption<br />

Adsorption and Adsorbents<br />

Activated carbon<br />

Chitosan based materials<br />

© CSIR 2010 Slide 7<br />

Ion – exchange resin<br />

starch based<br />

materials


Nanotechnology<br />

Nano-adsorbent<br />

Large surface area, accessible active sites, short diffusion length<br />

Magnetic Separation<br />

Simplicity, effective control, high speed, accuracy<br />

© CSIR 2010 Slide 8


Objectives<br />

To synthesis of the conducting polymer based low cost materials<br />

To characterize the adsorbents using various physico-chemical<br />

techniques<br />

To evaluate the performance of the adsorbents for Cr (VI)<br />

removal in batch sorption mode<br />

To study the effect of temperature, time, solution pH and<br />

adsorbent dose on the adsorption<br />

© CSIR 2010 Slide 9


PPy doped with Cl -<br />

High electrical conductivity<br />

Relatively good environmental stability<br />

Non-toxicity<br />

Relatively low cost<br />

Ease of preparation<br />

Ion-exchange properties<br />

Conducting Polymer<br />

© CSIR 2010 Slide 10


Aqueous medium<br />

PPy/Fe 3 O 4 Magnetic Adsorbent<br />

Py<br />

Fe 3O 4<br />

FeCl 3 oxidant<br />

Room temperature<br />

PPy/Fe 3 O 4 Nanocomposites<br />

Bhaumik et al Journal of Hazardous Materials, 186 (2011) 150-156.<br />

Bhaumik et al Journal of Hazardous Materials, 190 (2011) 381-390.<br />

© CSIR 2010 Slide 11<br />

PPy<br />

Fe 3O 4


SEM images of (a) Fe3O4 (b) PPy/Fe3O4 nanocomposites<br />

PPy<br />

FE-SEM and HR-TEM Images<br />

Iron Oxide<br />

(a) (b)<br />

PPY<br />

HR-TEM Image<br />

© CSIR 2010 Slide 12<br />

Iron Oxide


Intensity / a. u.<br />

XRD Studies<br />

< 220 ><br />

< 311 ><br />

< 400 ><br />

10 20 30 40<br />

2θ / degree<br />

50 60 70<br />

© CSIR 2010 Slide 13<br />

< 422 ><br />

< 511 ><br />

< 440 ><br />

XRD curves of (A) & (B) PPy/Fe 3 O 4 nanocomposites before and<br />

after adsorption with Cr(VI)<br />

(A)<br />

(B)


Intensity / a. u.<br />

15 00<br />

10 00<br />

5 00<br />

0<br />

-5 00<br />

-1 0 00<br />

-1 5 00<br />

ESR Studies and Photographs<br />

(a ) PP y/F e 3 O 4 na noc omposite<br />

b efore adsorption<br />

(b ) P Py/F e 3 O 4 nanocomposite<br />

a fter adsorption<br />

0 10 0 2 00 30 0 40 0 500 60 0 700<br />

M agnetic field / mT<br />

(b )<br />

(a)<br />

© CSIR 2010 Slide 14<br />

Nanocomposites<br />

before adsorption<br />

after adsorption


% of removal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Effect of pH<br />

Temperature = 25<br />

PPy<br />

Fe O<br />

3 4<br />

PPy/Fe O<br />

3 4<br />

O C<br />

Dose = 2 g/L<br />

0 2 4 6<br />

pH<br />

8 10 12<br />

© CSIR 2010 Slide 15<br />

Initial concentration = 200 mg/L


% of Cr (VI) removal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Effect of Dose<br />

0 50 100 150 200 250 300<br />

dose (mg)<br />

© CSIR 2010 Slide 16<br />

Initial Conc = 200 mg/L<br />

pH = 2


Adsorption capacity / (mg/g)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Kinetic Studies<br />

0 50 100 150 200 250 300 350 400<br />

Time / minute<br />

© CSIR 2010 Slide 17<br />

Dose = 1 g / L<br />

pH = 2<br />

50 mg/L<br />

100 mg/L<br />

150 mg/L


q e / (mg/g)<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

Effect of Temperature<br />

0 50 100 150 200 250 300<br />

C e / (mg/L)<br />

© CSIR 2010 Slide 18<br />

25 O C<br />

35 O C<br />

45 O C<br />

pH = 2.0, Dose = 2 g / L


Intensity / a. u.<br />

774 901<br />

826<br />

ATR-FTIR Analyses<br />

958<br />

1080<br />

1423<br />

Nanocomposites after adsorption<br />

Nanocomposites before adsorption<br />

1513<br />

800 1200 1600 2000 2400<br />

Wavenumber / cm -1<br />

© CSIR 2010 Slide 19<br />

O<br />

O<br />

Cr<br />

O-<br />

OH<br />

774 cm -1 ------Cr - O<br />

901 cm -1 -------Cr = O


Intensity / a. u.<br />

C O<br />

Fe<br />

N<br />

Al<br />

(a) PPy/Fe 3 O 4 nanocomposites before adsorption<br />

(b) PPy/Fe 3 O 4 nanocomposites after adsorption<br />

Cl<br />

Cl<br />

(a) (b)<br />

0 1 2 3 4 5 6 7<br />

Energy / KeV<br />

EDX and XPS studies<br />

Cr<br />

Cr<br />

Fe<br />

Fe<br />

C / S<br />

1.2 10 4<br />

1 10 4<br />

8000<br />

6000<br />

4000<br />

2000<br />

© CSIR 2010 Slide 20<br />

Cr2p 3/2<br />

Cr(III)<br />

Cr2p 1/2<br />

Cr(VI)<br />

0<br />

550 560 570 580 590 600 610 620<br />

Binding energy / eV


HCrO 4 -<br />

Mechanistic Aspect<br />

HCrO 4 -<br />

© CSIR 2010 Slide 21<br />

HCrO 4 -


Adsorption and Separation of Adsorbent<br />

© CSIR 2010 Slide 22


Comparison of Adsorption Capacity<br />

Adsorbents qm (mg/g) Equilibrium<br />

time(h)<br />

Activated carbon<br />

Activated carbon coated with quarternized poly(4vinylpyridine)<br />

Amorphous aluminium Oxide 78<br />

15.47 3 4.0<br />

53.7 24 2.25<br />

Diatomite-supported magnetite nanoparticles 69.16 1 2.0<br />

Hydrous zirconium oxide 61 1 2.0<br />

Surface modified jacobsite 31.55 0.08 2.0<br />

Oxidised multiwalled carbon nanotubes 2.60 280 2.88<br />

Bio-funtional magnetic beads 5.79 12 1.0<br />

Nanocrystalline akaganeite 79.66 1.0 5.5<br />

Polyaniline-polyethylene glycol composite 68.97 0.50 5.0<br />

Polypyrrole/ wood sawdust 3.4 0.16 5.0<br />

Polypyrrole/F 3 O 4 magnetic nanocomposite 169.4 0.50-3 2.0<br />

© CSIR 2010 Slide 23<br />

Optimum<br />

pH


Adsorption capacity/ (mg/g)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Regeneration Study<br />

1 2 3<br />

Adsorption cycle<br />

© CSIR 2010 Slide 24


n<br />

n<br />

H N<br />

Pyrrole<br />

H<br />

N<br />

Pyrrole<br />

+ FeCl 3<br />

+<br />

APS<br />

Cl -<br />

Glycine doped PPy - Adsorbent<br />

- OOC-CH2-NH 3 +<br />

Zwitter ion<br />

pH = 5.03<br />

Ballav et al Journal of Hazardous Materials, Submitted, 2011<br />

H<br />

Polypyrrole-Cl<br />

H<br />

N*<br />

+ Cl -<br />

N*<br />

+<br />

*<br />

n<br />

- OOC-CH2-NH 3 +<br />

*<br />

n<br />

Polypyrrole-glyicne<br />

© CSIR 2010 Slide 25


% of Cr (VI) removal<br />

q t / (mg/g)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Initial conc = 200 mg/L<br />

Dose = 2 g/L<br />

PPy/Gly<br />

PPy<br />

0<br />

0 2 4 6 8 10 12<br />

60<br />

pH<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Dose = 2 g/L, pH = 2<br />

0<br />

0 50 100 150<br />

t / minute<br />

200 250 300<br />

Adsorption and Mechanism<br />

50 ppm<br />

75 ppm<br />

100 ppm<br />

+<br />

H3N -<br />

HCrO 4 H3 N<br />

© CSIR 2010 Slide 26<br />

+<br />

N +<br />

O -<br />

H<br />

N<br />

N<br />

H H<br />

H<br />

+<br />

H3N O<br />

N +<br />

O -<br />

H<br />

N<br />

-<br />

HCrO 4<br />

H<br />

N<br />

N +<br />

-<br />

O<br />

N<br />

H H<br />

H<br />

- +<br />

HCrO 4 H3N O<br />

H<br />

N<br />

N +<br />

-<br />

O<br />

O<br />

O


% of Cr(VI) removal<br />

Glycine doped PPy/ Fe 3 O 4 magnetic nanocomposite<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Initial concentration = 200 mg / L<br />

pH = 2.0<br />

0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375<br />

Dose / g<br />

Ballav et al under communication<br />

Uptake / (mg / g)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

© CSIR 2010 Slide 27<br />

100 mg / L<br />

50 mg / L<br />

Dose = 2 g / L<br />

pH = 2<br />

10<br />

0 50 100 150 200 250 300 350<br />

Time / min


NH<br />

H<br />

N<br />

+<br />

Cl<br />

PPy-PANI Nanotubes Adsorbent<br />

H<br />

N NH<br />

+<br />

Cl<br />

Polyaniline sequence<br />

NH N<br />

HCrO 4 -<br />

+ +<br />

HCrO 4 -<br />

H<br />

N NH<br />

HCrO 4 -<br />

H<br />

N<br />

H<br />

N<br />

Bhaumik et al Journal of Colloid and Interface Science, Submitted, 2011<br />

Cl<br />

+<br />

N<br />

H 2<br />

N<br />

H2 - HCrO 4<br />

H<br />

N<br />

Polypyrrole sequence<br />

+<br />

H<br />

N<br />

© CSIR 2010 Slide 28<br />

PPy/Cl<br />

BET Surface area 2 m 2 /gm<br />

PPy-PANI Nanotubes<br />

BET Surface area 59.71 m 2 /gm


% of removal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Copolymer<br />

PPY<br />

Initial concentration=100 mg/L<br />

Temperature=25 O C<br />

Adsorption<br />

0<br />

2 4 6 8 10 12 14<br />

pH<br />

q t / (mg/g)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

© CSIR 2010 Slide 29<br />

0<br />

Dose= 1g/L<br />

pH=3.0<br />

50mg/L<br />

75mg/L<br />

100mg/L<br />

0 100 200 300 400<br />

t / min


% of Cr(VI) removal<br />

100<br />

80<br />

60<br />

40<br />

Initial conc = 200 mg/L<br />

Dose = 2 g/L<br />

Composite<br />

PPy/Cl<br />

20<br />

0 2 4 6<br />

pH<br />

8 10 12<br />

Maity et al<br />

Other Adsorbent<br />

Uptake<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

© CSIR 2010 Slide 30<br />

Dose = 2 g/L<br />

pH = 2<br />

100 ppm<br />

50 ppm<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time / min


SEM<br />

POM<br />

Maity et al<br />

α-Cellulose<br />

Fabrics of Sterculia urens-Adsorbent<br />

% of Cr(VI) removal<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4<br />

Effect of dose / g<br />

© CSIR 2010 Slide 31<br />

Initial concentration = 100 mg/L<br />

pH= 2.0, 25 mL solution


Conclusions<br />

The adsorbents were highly efficient for the removal of Cr (VI)<br />

from water<br />

The Cr (VI) uptake was depended on the initial concentration,<br />

temperature, adsorbent dose and pH<br />

The adsorption process was endothermic in nature<br />

Adsorption proceeded by ion exchange mechanism<br />

Further experiments are still required to apply the materials<br />

for industrial wastewater treatment and to possibly upgrade to<br />

magnetic adsorption process<br />

© CSIR 2010 Slide 32


Acknowledgement<br />

Dr. Sean Moolman<br />

Mrs Avashnee Chetty<br />

Prof. Maurice S Onyango, TUT, SA<br />

Prof. VV Srinivasu, UNISA, SA<br />

Prof. Rotimi Sadiku, TUT, SA<br />

Mr Pramod Sinha, UNISA, SA<br />

Dr. UC Ghosh, CU, India<br />

Dr. S. B. Mishra, UJ, SA<br />

Post docs<br />

Students<br />

© CSIR 2010 Slide 33


Thank You<br />

© CSIR 2010 Slide 34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!