26.07.2013 Views

The Active Control of Wall Impedance - Centre Acoustique

The Active Control of Wall Impedance - Centre Acoustique

The Active Control of Wall Impedance - Centre Acoustique

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1040 <strong>The</strong>nail et al.: <strong>Active</strong> control <strong>of</strong> wall impedance<br />

1.6<br />

1.2<br />

0.4<br />

a a 100 200 JOO<br />

Frequency (Hz)<br />

Figure 2. Variation <strong>of</strong> the time-averaged kinetic energy with the<br />

frequency.<br />

........,~O - - .'~O.S- ,~1 - - -,-2 - "Ofty ------- 'm'"<br />

16<br />

1.2<br />

0.4<br />

a - .:.::f.··--o<br />

100<br />

200 300<br />

Frequency (Hz)<br />

Figure 3. Variation <strong>of</strong> the time-averaged potential energy with the<br />

frequency.<br />

<strong>The</strong> reduced impedance being defined by ((X) = Z (x )/ Zo ,<br />

the acoustic pressure and velocity are:<br />

p(x) = ZOVO [(1 + ((L)) ejk(L-x)<br />

- (1- ((L)) e-jk(L-X)]<br />

x [(1 + ((L))e jkL<br />

v(x) = vo[(1 +((L)) ejk(L-x)<br />

+ (1-((L))e- jkLr1<br />

, (2)<br />

+ (1 - ((L)) e-jk(L-X)]<br />

x [(1+ ((L)) e jkL<br />

+ (1-((L))e- jkLr1<br />

. (3)<br />

<strong>The</strong>n, it is straightforward to derive the time-averaged kinetic,<br />

potential and total energies in the wave guide:<br />

poV6 [(1 + 1((L)1 2 )L + (1-1((L)12) sin2kL<br />

4 2k<br />

+ j(((L) _ (*(L)) 1- C;;2kL]<br />

400<br />

400<br />

ACUSTICA . acta acustica<br />

Vol. 83 (1997)<br />

Figure 4. Variation <strong>of</strong> the time-averaged total energy with the frequency.<br />

x [1 + 1((L)1 2 + (1-1((L)1 2 ) cos2kL<br />

+ j (((L) - (*(L)) sin2kLr1,<br />

2<br />

Ep = po;o [(1 + 1((L)1 2 )L<br />

_ (1-1((L)12) sin2kL<br />

2k<br />

_ j(((L) _ (*(L)) 1- COS2kL]<br />

2k<br />

x [1 + 1((L)1 2 + (1-1((L)12) cos2kL<br />

+ j(((L) - (*(L)) sin2kLrl,<br />

Etot = pO~6L [(1 + 1((L)1 2 )]<br />

X [1 + 1((L)1 2 + (1 - 1((L)1 2 ) cos 2kL<br />

+ j(((L) - (*(L)) sin2kLrl.<br />

Both time-averaged kinetic and potential energies tend to be<br />

equal to one half <strong>of</strong> the total energy as frequency increases.<br />

Figures 2, 3 and 4 give their respective evolutions with the<br />

frequency, for different terminal impedances. It comes out<br />

that as soon as frequency exceeds the first anti-resonance, the<br />

kinetic, potential and total energies have the same shape, for<br />

any terminal impedance value. <strong>The</strong> potential energy provides<br />

a suitable information about the evolution <strong>of</strong> the total energy<br />

we will exploit in {lur experiments, like in the referenced<br />

prior works.<br />

2.2. <strong>The</strong> optimal impedance<br />

<strong>The</strong> determination <strong>of</strong> the extrema <strong>of</strong> the time averaged total<br />

energy (expression 6) as a function <strong>of</strong> the terminal impedance<br />

is straightforward. <strong>The</strong> maxima are given by:<br />

(LMax = j cotan kL,<br />

while the minima are:<br />

(Lmin = -j tan kL.<br />

(4)<br />

(5)<br />

(6)<br />

(7)<br />

(8)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!