04.08.2013 Views

Pulsed-field gradient nuclear magnetic resonance as a tool for ...

Pulsed-field gradient nuclear magnetic resonance as a tool for ...

Pulsed-field gradient nuclear magnetic resonance as a tool for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

212<br />

PRICE<br />

( ) [ ( )]<br />

Table 4 g t <strong>for</strong> the Stejskal and Tanner Sequence <strong>for</strong> Sinusoidally Shaped Gradient Pulses see Fig. 10 B<br />

Ž. 2<br />

Subinterval of Pulse Sequence Sine-shaped g t Sine -shaped gŽ. t<br />

0 t t1 0 0<br />

Ž Ž . . Ž Ž . . 2<br />

t1tt1 g sin Ntt1 gsin Ntt1 <br />

t1tt1 0 0<br />

t tt g sinŽNtt Ž . . gsinŽNtt Ž . .<br />

1 1 1 1<br />

t1t2 0 0<br />

2N Ž N is an integer. denotes the period of the <strong>gradient</strong> pulse. The corresponding echo attenuation equations are given by Eqs.<br />

13 and 14 .<br />

reference ph<strong>as</strong>e-angle evolution can then be subtracted<br />

from all subsequent spectra obtained under<br />

the same conditions to remove the effect of<br />

B variation Ž 52 .<br />

0<br />

. Other variations b<strong>as</strong>ed on deconvolution<br />

using an experimental reference exist<br />

Ž 53 . .<br />

In work related to the helix picture of magnetization<br />

subjected to a constant <strong>gradient</strong> Ž 29 . ,<br />

Callaghan developed the MASSEY sequence<br />

Ž 21. <strong>for</strong> minimizing ph<strong>as</strong>e instability in very-high<strong>gradient</strong><br />

NMR spectroscopy Ž Fig. 11 . . The method<br />

also corrects <strong>for</strong> sample movement Žsee<br />

Sample<br />

Movement with Respect to the Gradient . . This<br />

method incorporates a read <strong>gradient</strong> Ži.e.,<br />

k space;<br />

this usage of k is not to be confused with the<br />

exponential rate constant used above . , G, into the<br />

standard Stejskal and Tanner sequence; thus, in a<br />

sense, it is also a pulse sequence solution and not<br />

only a postprocessing solution. It is important to<br />

realize that in this method the same <strong>gradient</strong> coil<br />

is used <strong>for</strong> generating the <strong>gradient</strong> pulses and<br />

also the read <strong>gradient</strong>. The addition of G allows<br />

<strong>for</strong> the restoration of spatially dependent ph<strong>as</strong>e<br />

shifts such <strong>as</strong> those caused by a mismatch in the<br />

Ž .<br />

q-space <strong>gradient</strong> pulses. To understand how this<br />

method works, we need to consider the mathematics<br />

behind the ph<strong>as</strong>e-twist problem. We start<br />

from the average propagator representation of<br />

the short <strong>gradient</strong> pulse approximation Žsee<br />

Eq.<br />

87 , Part 1 . , except we now include the effects of<br />

a ph<strong>as</strong>e shift, , due to the effects of a <strong>gradient</strong><br />

mismatch see<br />

Amplifier Noise, Earth Loops, and<br />

Nonreproducible Ž Mismatched. Gradient Pulses ,<br />

q, and of movement r of the entire Ž<br />

o<br />

i.e.,<br />

rigid. sample Žsee<br />

Sample Movement with Respect<br />

to the Gradient. between the first and second<br />

<strong>gradient</strong> pulses in the Stejskal and Tanner<br />

sequence. Thus, we have<br />

H<br />

Ž . Ž . i2 qR <br />

E q, P R, e dR 15<br />

where PŽ R, . is the average propagator and R is<br />

the dynamic displacement defined by r r Ž<br />

1 0 the<br />

starting and finishing positions of a spin with<br />

respect to the first and second <strong>gradient</strong> pulses.<br />

and<br />

Ž . Ž .<br />

2qR2 qq r Rr<br />

0 o<br />

<br />

qr . 16<br />

o<br />

Table 5 The ft ( ) Term in Eq. [ 12] <strong>for</strong> the various B0 <strong>gradient</strong> pulse shapes in the Stejskal and Tanner<br />

Sequence ( see Fig. 10) given in Table 3<br />

Ž.<br />

Gradient Pulse Shape f t<br />

Ramped rise and fall 3 2<br />

30 6<br />

2 k 2 2<br />

Exponential rise and fall 2k Ž 1k . 4Ž ke .Ž 1k 2.<br />

Ž 2 2k<br />

2 k e . Ž 1k.<br />

Exponential rise and fall with<br />

overshoot and undershoot Ž 2 3 kŽ 2 2 2<br />

8k 12k e 2 4 6 k<br />

2 2 3 8k 12k 8k 12k .. g<br />

kŽ 2 . Ž 2 . 2kŽ 2 2<br />

4e k g k e 2 6 k<br />

2 2 3. 2<br />

4k 6k 2k 3k g<br />

Ž . Ž 2 2<br />

23k g k .<br />

Sine rise and fall 2Ž . 2Ž . 2 3 3<br />

4 2 8 3 64 <br />

Ž .<br />

From Price and Kuchel 30 .<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!