04.08.2013 Views

Pulsed-field gradient nuclear magnetic resonance as a tool for ...

Pulsed-field gradient nuclear magnetic resonance as a tool for ...

Pulsed-field gradient nuclear magnetic resonance as a tool for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

228<br />

PRICE<br />

<br />

We set k and consider the integral<br />

a<br />

J Ž x.<br />

1<br />

Ž . ikx<br />

F e dx 61 H x<br />

<br />

ikx Ž . Ž .<br />

which, by recalling that e cos kx i sin kx ,<br />

becomes<br />

J Ž x.<br />

1<br />

FŽ . cosŽ kx. dx<br />

H x<br />

<br />

J Ž x.<br />

1<br />

i sinŽ kx. dx 62 H x<br />

<br />

We note that the first integrand is even and the<br />

second integrand is odd and there<strong>for</strong>e goes to<br />

zero, and so Eq. 62 becomes<br />

J Ž x.<br />

1<br />

FŽ . 2 cosŽ kx. dx 63 H x<br />

0<br />

Next, we note the standard integral Že.g.,<br />

6.693.2<br />

in Ref. 104.<br />

J Ž x.<br />

<br />

cos xdx<br />

0<br />

1 <br />

cos arcsin<br />

ž /<br />

<br />

cos<br />

2<br />

2 2 <br />

<br />

H x<br />

ž ' /<br />

<br />

Re 0 64<br />

in the present c<strong>as</strong>e 1, 1, and k.<br />

<br />

Thus, Eq. 59 becomes<br />

ž /<br />

ei 2 <br />

SŽ . cos arcsinž gr gr /<br />

<br />

gr 65<br />

and equals 0 otherwise.<br />

As an <strong>as</strong>ide, we consider Eq. 58 when t 2.<br />

² 2 We can calculate : a using the methods de-<br />

scribed previously Ži.e.,<br />

see Part 1, The GPD<br />

Approximation, especially Eq. 59 ,<br />

and set the<br />

limits of integration in accordance with the spin-<br />

.<br />

echo sequence with a constant <strong>gradient</strong> to be<br />

and noting<br />

4<br />

² 2: 2 2 3<br />

a g D 66 3<br />

ž /<br />

2J ŽgŽ 2t. r.<br />

1<br />

lim 1 67 gŽ 2t. r<br />

t2<br />

<br />

and so Eq. 58 becomes<br />

4<br />

2 2 3<br />

g D<br />

0<br />

Ž .<br />

3<br />

S 2 exp <br />

2<br />

2J ŽgŽ 2t. r.<br />

1<br />

lim<br />

t2ž<br />

gŽ 2t. r /<br />

ž /<br />

2<br />

2 2 3 exp g D 68 3<br />

<strong>as</strong> expected <strong>for</strong> the Hahn spin-echo sequence<br />

excluding the effects of spinspin relaxation.<br />

C<strong>as</strong>e 2: Gradient Directed along the Cylinder.<br />

Nowadays, we are more likely to be using a superconducting<br />

magnet with the <strong>gradient</strong> direction<br />

along the z axis, i.e., g g z.<br />

In this c<strong>as</strong>e, we<br />

define<br />

1 hŽ z . 0 l<br />

0 z 0 l<br />

z 0 l<br />

69 Ž .<br />

i.e., 1l is the normalization factor and, per<strong>for</strong>ming<br />

the same procedure <strong>as</strong> in the previous<br />

subsection, we have<br />

H<br />

SŽ 2. SŽ 2. gŽ . cos d<br />

<br />

g0 1 1 1<br />

<br />

<br />

H 0 0 0<br />

<br />

hŽ z . cosŽgŽ 2 t. z . dz 70 <br />

We first consider the integral over z in Eq. 70 ,<br />

0<br />

<br />

H hŽ z . cosŽgŽ 2 t. z .<br />

0 0 dz0<br />

<br />

1 l<br />

cosŽgŽ 2 t. z . dz<br />

H 0 0<br />

l 0<br />

sinŽgŽ 2 t. l.<br />

71 gŽ 2t. l

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!