11.08.2013 Views

Coordination by Option Contracts in a Retailer-Led Supply Chain with

Coordination by Option Contracts in a Retailer-Led Supply Chain with

Coordination by Option Contracts in a Retailer-Led Supply Chain with

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WANG Xiaolong (王小龙) et al:<strong>Coord<strong>in</strong>ation</strong> <strong>by</strong> <strong>Option</strong> <strong>Contracts</strong> <strong>in</strong> a <strong>Retailer</strong>-<strong>Led</strong> …<br />

∞<br />

∫ eq ( 1+ q2 −d)d<br />

F( x| ε ).<br />

q1+ q2 Here, ΠS( ε , q1, q2)<br />

represents his second-stage problem.<br />

After mak<strong>in</strong>g the supplier’s second-stage problem<br />

<strong>in</strong>dependent of q 1 and after some algebra, the sup-<br />

plier’s problem is<br />

max Π ( q ) = ( c −c − o + o ) q + ( w − o ) d +<br />

q1d1 S 1 2 1 2 1 1 1 1 1<br />

∫<br />

0<br />

∞<br />

Π ( ε, q )d G(<br />

ε),<br />

S 1<br />

where ΠS( ε, q1) = max πS( ε,<br />

q)<br />

and<br />

qmax{ d, q1}<br />

π S( ε,<br />

q) = ( e− c2+ o2) q+ w2d2−ed−o2max{ d−q1,0} −<br />

q<br />

( e−v) ∫ F( x| ε )d x .<br />

d<br />

N N<br />

Let ( q , q 1 ) denote the solution to this problem, and<br />

then we have Proposition 1.<br />

Proposition 1 Given an option contract specified<br />

<strong>by</strong> the retailer, the supplier’s optimal total production<br />

quantity is<br />

N ⎧ N −1⎛e−<br />

c2 + o2<br />

⎞⎫<br />

q = max ⎨q1, F ⎜ ε ⎟⎬<br />

⎩ ⎝ e−v ⎠⎭<br />

.<br />

The proof is relatively straight forward s<strong>in</strong>ce the supplier’s<br />

problem follows a newsvendor structure.<br />

N<br />

Proposition 1 shows clearly that to coord<strong>in</strong>ate q =<br />

c<br />

e− c2 + o2 p− c2 + s<br />

q , it is necessary to set = , i.e.,<br />

e−v p− v+ s<br />

p− v+ s<br />

e= p+ s− o2<br />

(5)<br />

c2−v Based on Eq. (5), e v e+ o > c to make<br />

> and 2 2<br />

−1⎛ e− c2+ o2<br />

⎞<br />

F ⎜ | ε ⎟ mean<strong>in</strong>gful. Economically these two<br />

⎝ e−v ⎠<br />

conditions prevent the supplier from suffer<strong>in</strong>g losses.<br />

e+ o2is<br />

all the revenue that the supplier can get from<br />

one unit of product if it can be sold after the market<br />

demand is realized. If e+ o2 < c2,<br />

the supplier has no<br />

<strong>in</strong>centive to overproduce <strong>in</strong> the second period, and thus<br />

channel coord<strong>in</strong>ation is never reached. S<strong>in</strong>ce e= p+ s−<br />

p− v+ s<br />

o2<br />

, the two conditions are equivalent <strong>with</strong><br />

c2−v o2 < ( c2 − v)<br />

. Therefore, o2 < ( c2 − v)<br />

from now on.<br />

Next, consider the retailer’s problem. In all the fol-<br />

p− v+ s<br />

low<strong>in</strong>g parts, assume that e= p+ s− o2holds<br />

c2−v except where specified.<br />

The retailer’s problem is<br />

575<br />

∞<br />

max ΠR( d1) =−o1( q1−d1) − wd 1 1+∫ ΠR( ε, d1) d G(<br />

ε),<br />

d10<br />

0<br />

where ΠR( ε, d1) = max πR( ε,<br />

d)<br />

and<br />

dd1 π R( ε , d) = −w2d2 −o2( q2 −max{ d − q1,0})<br />

+<br />

pE m<strong>in</strong>{ D, q} + v( d −Em<strong>in</strong>{ D, d})<br />

−<br />

eE m<strong>in</strong>{max{ D −d,0}, q −d} −<br />

sED ( − Em<strong>in</strong>{ Dq , }).<br />

Rearrang<strong>in</strong>g,<br />

max Π ( d ) = ( o − o ) q + ( w − w + o ) d +<br />

where<br />

d10<br />

R 1 2 1 1 2 1 1 1<br />

∫<br />

∞<br />

Π<br />

0<br />

R( ε, d1)d G(<br />

ε),<br />

ΠR( ε, d1) = max πR( ε,<br />

d)<br />

and<br />

dd R 2<br />

1<br />

π ( ε, d) = ( e−w ) d −( e− v) F( x| ε)dx+<br />

o max{ d − q ,0} + ( p+ s−e−o ) q−<br />

2 1 2<br />

∫<br />

( p+ s−e) F( x| ε )dx−sED.<br />

0<br />

q<br />

N N<br />

Let ( 1 , d d ) denote the optimal solution to the retailer’s<br />

problem. Proposition 2 describes the retailer’s<br />

order<strong>in</strong>g behavior.<br />

e−w2 e− w2 + o2<br />

Proposition 2 Denote α = , β = ,<br />

e−v e−v N −1<br />

N<br />

and γ ( ε) = max{ d1, F (max{ α,0}| ε)}.<br />

Def<strong>in</strong>e ˆ( ε d1<br />

) =<br />

N<br />

N<br />

sup{ ε: Fd ( 1 | ε) max{ α,0}}<br />

and allow ˆ( ε d1<br />

) = +∞<br />

if ε max is <strong>in</strong>f<strong>in</strong>ite. For a given option contract, the<br />

optimal order<strong>in</strong>g behavior for the retailer has the follow<strong>in</strong>g<br />

structure:<br />

(1) After the market signal ε has appeared, the optimal<br />

total order quantity is determ<strong>in</strong>ed as follows:<br />

(i) If Fq ( 1 | ε ) β ,<br />

N<br />

d = γ ( ε ) ;<br />

(ii) Otherwise,<br />

−1<br />

⎧ γε ( ), if πR( ε, F (max{ α,0}| ε))<br />

><br />

⎪ N −1<br />

d = ⎨ πR( ε, F ( β | ε));<br />

⎪⎩ −1<br />

F ( β | ε),<br />

otherwise.<br />

(2) The optimal first-period order quantity is given<br />

<strong>by</strong><br />

N ˆ( ε d1<br />

)<br />

N<br />

2 1 1<br />

0<br />

2 1<br />

∫<br />

w − w + o + [ e−w −( e− v) F( d | ε)]d G(<br />

ε)<br />

= 0<br />

when e+ o1 > w1.<br />

Otherwise, N<br />

d1 ≡ 0 .<br />

Corollary For some second-period option price(s)<br />

−1<br />

o 2 such that β > 0 and set A= { ε : πR( ε, F (max{ α,<br />

−1<br />

0}| ε )) π ( ε, F ( β | ε))}<br />

is not empty, there exists a<br />

R<br />

∫<br />

0<br />

d

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!