14.08.2013 Views

A comparative discrete-dislocation/nonlocal crystal-plasticity

A comparative discrete-dislocation/nonlocal crystal-plasticity

A comparative discrete-dislocation/nonlocal crystal-plasticity

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

typeset2:/sco3/jobs1/ELSEVIER/msa/week.17/Pmsa15088y.001 Wed May 16 07:53:37 2001 Page Wed<br />

D. Columbus, M. Grujicic / Materials Science and Engineering A000 (2001) 000–000 17<br />

<strong>crystal</strong> lattice, C 1 , is generally an open contour, and<br />

hence, the line integral C 1dY defines the closure failure.<br />

Since the total Burgers vector B completes the circuit<br />

C 1 , it can be defined as:<br />

B=− dY=− FpdX (A2)<br />

C 1<br />

C<br />

Eq. (A2) can be transformed into:<br />

B=− (×F pT ) Tr0 dS= r0 dS (A3)<br />

S<br />

using a generalized Stokes theorem. in Eq. (A2) is the<br />

so-called Nye’s tensor [26], and is defined as the tensorial<br />

curl of F p as:<br />

−(×F pT ) T (A4)<br />

The material derivative of the Nye’s tensor can be<br />

defined as:<br />

−(×F pT ) T (A5)<br />

which through the use of Eq. (19), becomes:<br />

=−[×(LpFp ) T ] T =−× <br />

m pnTT<br />

0n0 F<br />

(A6)<br />

Next, the portion of associated with activity of slip<br />

system is defined as:<br />

−{×[( m 0 n0 )F p ] T } T<br />

S<br />

=−m 0 [×( F pT n0 )] (A7)<br />

Thus<br />

= <br />

<br />

(A8)<br />

Next, a phenomenological equation for is defined as<br />

follows. is assumed to scale with the accumulation<br />

rate of three sets of geometrically necessary <strong>dislocation</strong>s<br />

all with Burgers vectors in the m0 direction: (a) a set of<br />

screw <strong>dislocation</strong>s with tangent vector in the m0-direc tion; (b) a set of edge <strong>dislocation</strong>s with tangent vector<br />

in the x3-direction; and (c) a set of edge <strong>dislocation</strong>s<br />

with tangent vector in the n0-direction. Hence, for a<br />

cubic lattice with a common Burgers vector magnitude,<br />

b, can be written as:<br />

=m0b( G m0+ G p0+ G n0) (A9)<br />

(s )<br />

(e )1<br />

(e )2<br />

where G , G , and G are the accumulation<br />

(s ) (e )1<br />

(e )2<br />

rates of density of the three aforementioned sets of<br />

geometrically necessary <strong>dislocation</strong>s, respectively. A<br />

comparison of the second Eq. (A7) and Eq. (A9) yields:<br />

UNCORRECTED PROOF<br />

−×( F pT n 0 )=b( G (s)m 0 + G (e)1p 0 + G (e)2n 0 ) (A10)<br />

It can be easily shown that for in-plane-strain deformation,<br />

(F P 13=F P 23=F P 31=F P 32=0, F P 33=1), Eq. (A10)<br />

yields:<br />

G (s)=0, G (e)2=0<br />

and<br />

G (e )1<br />

= 1<br />

d<br />

[ P P (F 11n<br />

0(1) +F21n<br />

0(2) )]<br />

bp 0(3) dx2 − d<br />

[<br />

dx1 P P (F 12n<br />

0(1) +F22n<br />

0(2) )] (A11)<br />

Eq. (A11) is an evolution equation for the density of<br />

geometrically necessary <strong>dislocation</strong>s and is used in Section<br />

2.2 to evaluate the non-local contribution to the<br />

slip resistance.<br />

References<br />

[1] G.R. Irwin, Fracture, in: S. Flugge (Ed.), Encyclopedia of<br />

Physics, vol. 6, Springer New York, New York, 1958, pp.<br />

551–590.<br />

[2] L.B. Freund, The mechanics of <strong>dislocation</strong>s in strained-layer<br />

semiconductor-materials, Adv. Appl. Mech. 30 (1994) 1–66.<br />

[3] V. Tvergaard, J.W. Hutchinson, The relation between crack<br />

growth resistance and fracture process parameters in elastic-plastic<br />

solids, J. Mech. Phys. Solids 40 (1992) 1377–1397.<br />

[4] I.-H. Lin, R. Thomson, Cleavage, <strong>dislocation</strong> emission, and<br />

shielding for cracks under general loading, Acta Metall. 34<br />

(1986) 187–206.<br />

[5] V. Shastry, P.M. Anderson, R. Thomson, Nonlocal effects of<br />

existing <strong>dislocation</strong>s on crack-tip emission and cleavage, J.<br />

Mater. Res. 9 (1994) 1–16.<br />

[6] A. Needleman, A continuum model for void nucleation by<br />

inclusion debonding, J. Appl. Mech. 54 (1987) 525–531.<br />

[7] N.A. Fleck, J.W. Hutchinson, Strain gradient <strong>plasticity</strong>, Adv.<br />

Appl. Mech. 33 (1997) 295–361.<br />

[8] N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain<br />

gradient <strong>plasticity</strong>: theory and experiment, Acta Metall. Mater.<br />

42 (1994) 475–487.<br />

[9] A. Acharya, J.L. Bassani, Incompatibility and <strong>crystal</strong> <strong>plasticity</strong>,<br />

J. Mech. Phys. Solids (1998) (in press).<br />

[10] H. Dao, Parks, Geometrically necessary <strong>dislocation</strong> density in<br />

continuum <strong>plasticity</strong> theory, FEM implementation and application,<br />

PhD Thesis, MIT, August 1997.<br />

[11] Z. Suo, C.F. Shih, A.G. Varias, A theory for cleavage cracking<br />

in the presence of plastic flow, Acta Metall. Mater. 41 (1993)<br />

1551–1557.<br />

[12] H.H. M. Cleveringa, E. van der Giessen, A. Needleman, A<br />

<strong>discrete</strong> <strong>dislocation</strong> analysis of mode I crack growth, J. Mech.<br />

Phys. Solids (in press)<br />

[13] H.H. M. Cleveringa, E. van der Giessen, A. Needleman, A<br />

<strong>discrete</strong> <strong>dislocation</strong> analysis of rate effects in mode I crack<br />

growth, Mater. Sci. Eng. (in print).<br />

[14] ABAQUS Theory Manual, Version 5.8, Habbilt, Karlsson, and<br />

Soreassen, Providence, RI, 1999.<br />

[15] J.H. Rose, J. Ferrante, J. Smith, Universal binding energy curves<br />

for metals and bimetallic interfaces, Phys. Rev. Lett. 47 (1981)<br />

675–678.<br />

[16] M. Grujicic, D. Columbus, Discrete-<strong>dislocation</strong> analysis of ductile-to-brittle<br />

transition in BCC-like metallic materials, J. Mater.<br />

Sci. (2000) (in print).<br />

[17] A.S. Krausz, H.E. Eyring, Deformation Kinetics, Wiley, New<br />

York, 1975.<br />

[18] V.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and<br />

Kinetics of Slip, Pergamon, London, 1975 in Progress in Materials<br />

Science.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!