17.08.2013 Views

4047 Mono-stable : astable Multivibrator.pdf

4047 Mono-stable : astable Multivibrator.pdf

4047 Mono-stable : astable Multivibrator.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

December 1992<br />

Features<br />

• High Voltage Type (20V Rating)<br />

• Low Power Consumption: Special CMOS Oscillator<br />

Configuration<br />

• <strong>Mono</strong><strong>stable</strong> (One-Shot) or A<strong>stable</strong> (Free-Running)<br />

Operation<br />

• True and Complemented Buffered Outputs<br />

• Only One External R and C Required<br />

• Buffered Inputs<br />

• 100% Tested for Quiescent Current at 20V<br />

• Standardized, Symmetrical Output Characteristics<br />

• 5V, 10V and 15V Parametric Ratings<br />

• Meets All Requirements of JEDEC Tentative Standard<br />

No. 13B, “Standard Specifications for Description of<br />

‘B’ Series CMOS Devices”<br />

<strong>Mono</strong><strong>stable</strong> <strong>Multivibrator</strong> Features<br />

• Positive or Negative Edge Trigger<br />

• Output Pulse Width Independent of Trigger Pulse<br />

Duration<br />

• Retriggerable Option for Pulse Width Expansion<br />

• Internal Power-On Reset Circuit<br />

• Long Pulse Widths Possible Using Small RC Components<br />

by Means of External Counter Provision<br />

• Fast Recovery Time Essentially Independent of Pulse<br />

Width<br />

• Pulse-Width Accuracy Maintained at Duty Cycles<br />

Approaching 100%<br />

A<strong>stable</strong> <strong>Multivibrator</strong> Features<br />

• Free-Running or Gatable Operating Modes<br />

• 50% Duty Cycle<br />

• Oscillator Output Available<br />

• Good A<strong>stable</strong> Frequency Stability: Frequency Deviation:<br />

- = ±2% + 0.03%/ oC at 100kHz<br />

- = ±0.5% + 0.015%/ oC at 10kHz (Circuits “Trimmed”<br />

to Frequency VDD = 10V ± 10%<br />

Applications<br />

Digital equipment where low power dissipation and/or high noise<br />

immunity are primary design requirements<br />

• Envelope Detection • Frequency Discriminators<br />

• Frequency Multiplication • Timing Circuits<br />

• Frequency Division • Time Delay Applications<br />

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.<br />

1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999<br />

7-897<br />

CD<strong>4047</strong>BMS<br />

CMOS Low-Power<br />

<strong>Mono</strong><strong>stable</strong>/A<strong>stable</strong> <strong>Multivibrator</strong><br />

Description<br />

CD<strong>4047</strong>BMS consists of a gatable a<strong>stable</strong> multivibrator with logic techniques<br />

incorporated to permit positive or negative edge triggered<br />

mono<strong>stable</strong> multivibrator action with retriggering and external counting<br />

options.<br />

Inputs include +TRIGGER, -TRIGGER, ASTABLE, ASTABLE,<br />

RETRIGGER, and EXTERNAL RESET. Buffered outputs are Q, Q, and<br />

OSCILLATOR. In all modes of operation, an external capacitor must be<br />

connected between C-Timing and RC-Common terminals, and an<br />

external resistor must be connected between the R-Timing and RC-<br />

Common terminals.<br />

A<strong>stable</strong> operation is enabled by a high level on the ASTABLE input or a<br />

low level on the ASTABLE input, or both. The period of the square wave<br />

at the Q and Q Outputs in this mode of operation is a function of the<br />

external components employed. “True” input pulses on the ASTABLE<br />

input or “Complement” pulses on the ASTABLE input allow the circuit to<br />

be used as a gatable multivibrator. The OSCILLATOR output period will<br />

be half of the Q terminal output in the a<strong>stable</strong> mode. However, a 50%<br />

duty cycle is not guaranteed at this output.<br />

The CD<strong>4047</strong>BMS triggers in the mono<strong>stable</strong> mode when a positive<br />

going edge occurs on the +TRIGGER input while the -TRIGGER is held<br />

low. Input pulses may be of any duration relative to the output pulse.<br />

If retrigger capability is desired, the RETRIGGER input is pulsed. The<br />

retriggerable mode of operation is limited to positive going edge. The<br />

CD<strong>4047</strong>BMS will retrigger as long as the RETRIGGER input is high,<br />

with or without transitions (See Figure 31)<br />

An external countdown option can be implemented by coupling “Q” to<br />

an external “N” counter and resetting the counter with trigger pulse. The<br />

counter output pulse is fed back to the ASTABLE input and has a duration<br />

equal to N times the period of the multivibrator.<br />

A high level on the EXTERNAL RESET input assures no output pulse<br />

during an “ON” power condition. This input can also be activated to terminate<br />

the output pulse at any time. For mono<strong>stable</strong> operation, whenever<br />

VDD is applied, an internal power on reset circuit will clock the Q<br />

output low within one output period (tM).<br />

The CD<strong>4047</strong>BMS is supplied in these 14-lead outline packages:<br />

Braze Seal DIP H4Q<br />

Frit Seal DIP H1B<br />

Ceramic Flatpack H3W<br />

Pinout<br />

C 1<br />

R 2<br />

R-C COMMON 3<br />

ASTABLE 4<br />

ASTABLE 5<br />

-TRIGGER 6<br />

VSS 7<br />

CD<strong>4047</strong>BMS<br />

TOP VIEW<br />

14 VDD<br />

13 OSC OUT<br />

12 RETRIGGER<br />

11 Q<br />

10 Q<br />

9 EXT. RESET<br />

8 +TRIGGER<br />

File Number 3313


Specifications CD<strong>4047</strong>BMS<br />

Absolute Maximum Ratings Reliability Information<br />

DC Supply Voltage Range, (VDD) . . . . . . . . . . . . . . . -0.5V to +20V<br />

(Voltage Referenced to VSS Terminals)<br />

Input Voltage Range, All Inputs . . . . . . . . . . . . .-0.5V to VDD +0.5V<br />

DC Input Current, Any One Input . . . . . . . . . . . . . . . . . . . . . . . .±10mA<br />

Operating Temperature Range. . . . . . . . . . . . . . . . -55 o C to +125 o C<br />

Package Types D, F, K, H<br />

Storage Temperature Range (TSTG) . . . . . . . . . . . -65 o C to +150 o C<br />

Lead Temperature (During Soldering) . . . . . . . . . . . . . . . . . +265 o C<br />

At Distance 1/16 ± 1/32 Inch (1.59mm ± 0.79mm) from case for<br />

10s Maximum<br />

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS<br />

7-898<br />

Thermal Resistance . . . . . . . . . . . . . . . . θ ja θ jc<br />

Ceramic DIP and FRIT Package . . . . . 80 o C/W 20 o C/W<br />

Flatpack Package . . . . . . . . . . . . . . . . 70 o C/W 20 o C/W<br />

Maximum Package Power Dissipation (PD) at +125 o C<br />

For TA = -55 o C to +100 o C (Package Type D, F, K) . . . . . . 500mW<br />

For TA = +100 o C to +125 o C (Package Type D, F, K) . . . . .Derate<br />

Linearity at 12mW/ o C to 200mW<br />

Device Dissipation per Output Transistor . . . . . . . . . . . . . . . 100mW<br />

For TA = Full Package Temperature Range (All Package Types)<br />

Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175 o C<br />

GROUP A<br />

LIMITS<br />

PARAMETER SYMBOL CONDITIONS (NOTE 1) SUBGROUPS TEMPERATURE MIN MAX UNITS<br />

Supply Current IDD VDD = 20V, VIN = VDD or GND 1 +25 oC - 2 µA<br />

2 +125oC - 200 µA<br />

VDD = 18V, VIN = VDD or GND 3 -55oC - 2 µA<br />

Input Leakage Current IIL VIN = VDD or GND VDD = 20 1 +25o C -100 - nA<br />

2 +125oC -1000 - nA<br />

VDD = 18V 3 -55oC -100 - nA<br />

Input Leakage Current IIH VIN = VDD or GND VDD = 20 1 +25oC - 100 nA<br />

2 +125oC - 1000 nA<br />

VDD = 18V 3 -55oC - 100 nA<br />

Input Leakage Curent IIL VDD = 24V, VIN = 11V or GND 1 +25<br />

(Pin 3)<br />

oC -300 - nA<br />

2 +125oC -10 - µA<br />

Input Leakage Current IIH VDD = 26V, VIN = 13V or GND 1 +25<br />

(Pin 3)<br />

oC - 300 nA<br />

2 +125oC - 10 µA<br />

Output Voltage VOL15 VDD = 15V, No Load 1, 2, 3 +25oC, +125oC, -55oC - 50 mV<br />

Output Voltage VOH15 VDD = 15V, No Load (Note 3) 1, 2, 3 +25oC, +125oC, -55oC 14.95 - V<br />

Output Current (Sink)<br />

Q, Q, OSC Out<br />

IOL5 VDD = 5V, VOUT = 0.4V 1 +25oC 0.53 - mA<br />

Output Current (Sink)<br />

Q, Q, OSC Out<br />

Output Current (Sink)<br />

Q, Q, OSC Out<br />

Output Current (Source)<br />

Q, Q, OSC Out<br />

Output Current (Source)<br />

Q, Q, OSC Out<br />

Output Current (Source)<br />

Q, Q, OSC Out<br />

Output Current (Source)<br />

Q, Q, OSC Out<br />

IOL10 VDD = 10V, VOUT = 0.5V 1 +25 o C 1.4 - mA<br />

IOL15 VDD = 15V, VOUT = 1.5V 1 +25 o C 3.5 - mA<br />

IOH5A VDD = 5V, VOUT = 4.6V 1 +25 o C - -0.53 mA<br />

IOH5B VDD = 5V, VOUT = 2.5V 1 +25 o C - -1.8 mA<br />

IOH10 VDD = 10V, VOUT = 9.5V 1 +25 o C - -1.4 mA<br />

IOH15 VDD = 15V, VOUT = 13.5V 1 +25 o C - -3.5 mA<br />

Output Current (Sink) IOL5RC VDD = 5V, VOUT = 0.4V 1 +25oC 0.78 - mA<br />

Output Current (Sink) IOL10RC VDD = 10V, VOUT = 0.5V 1 +25oC 2.0 - mA<br />

Output Current (Sink) IOL15RC VDD = 15V, VOUT = 1.5V 1 +25 o C 5.2 - mA<br />

Output Current (Source) IOH5RC VDD = 5V, VOUT = 4.6V 1 +25 o C - -0.78 mA<br />

Output Current (Source) IOH10RC VDD = 10V, VOUT = 9.5V 1 +25 o C - -2 mA<br />

Output Current (Source) IOH15RC VDD = 15V, VOUT = 13.5V 1 +25 o C - -5.2 mA<br />

N Threshold Voltage VNTH VDD = 10V, ISS = -10µA 1 +25 o C -2.8 -0.7 V


Specifications CD<strong>4047</strong>BMS<br />

P Threshold Voltage VPTH VSS = 0V, IDD = 10µA 1 +25oC 0.7 2.8 V<br />

Functional F VDD = 2.8V, VIN = VDD or GND 7 +25oC VOH > VOL < V<br />

VDD = 20V, VIN = VDD or GND 7 +25<br />

VDD/2 VDD/2<br />

oC VDD = 18V, VIN = VDD or GND 8A +125oC VDD = 3V, VIN = VDD or GND 8B -55oC Input Voltage Low<br />

(Note 2)<br />

VIL VDD = 5V, VOH > 4.5V, VOL < 0.5V 1, 2, 3 +25oC, +125oC, -55oC - 1.5 V<br />

Input Voltage High<br />

(Note 2)<br />

Input Voltage Low<br />

(Note 2)<br />

Input Voltage High<br />

(Note 2)<br />

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)<br />

PARAMETER SYMBOL CONDITIONS (NOTE 1)<br />

VIH VDD = 5V, VOH > 4.5V, VOL < 0.5V 1, 2, 3 +25 o C, +125 o C, -55 o C 3.5 - V<br />

VIL VDD = 15V, VOH > 13.5V,<br />

VOL < 1.5V<br />

VIH VDD = 15V, VOH > 13.5V,<br />

VOL < 1.5V<br />

NOTES:<br />

1. All voltages referenced to device GND, 100% testing being implemented<br />

2. Go/No Go test with limits applied to inputs.<br />

3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max..<br />

7-899<br />

GROUP A<br />

SUBGROUPS TEMPERATURE<br />

LIMITS<br />

MIN MAX<br />

1, 2, 3 +25 o C, +125 o C, -55 o C - 4 V<br />

1, 2, 3 +25 o C, +125 o C, -55 o C 11 - V<br />

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS<br />

(NOTES 1, 2)<br />

GROUP A<br />

LIMITS<br />

PARAMETER SYMBOL CONDITIONS SUBGROUPS TEMPERATURE MIN MAX UNITS<br />

Propagation Delay TPLH1 VDD = 5V, VIN = VDD or GND 9 +25<br />

A<strong>stable</strong>, A<strong>stable</strong> to OSC<br />

oC - 400 ns<br />

10, 11 +125oC, -55oC - 540 ns<br />

Propagation Delay TPHL3 VDD = 5V, VIN = VDD or GND 9 +25<br />

Trigger to Q, Q<br />

TPLH3<br />

oC - 1000 ns<br />

10, 11 +125oC, -55oC - 1350 ns<br />

Propagation Delay TPLH2 VDD = 5V, VIN = VDD or GND 9 +25<br />

(Note 2)<br />

A<strong>stable</strong> or A<strong>stable</strong> to Q, Q<br />

TPLH2<br />

oC - 700 ns<br />

10, 11 +125oC, -55oC - 945 ns<br />

Propagation Delay TPHL4 VDD = 5V, VIN = VDD or GND 9 +25<br />

(Note 2)<br />

Retrigger to Q, Q<br />

TPLH4<br />

oC - 600 ns<br />

10, 11 +125oC, -55oC - 810 ns<br />

Propagation Delay TPLH5 VDD = 5V, VIN = VDD or GND 9 +25<br />

(Note 2)<br />

Reset to Q, Q<br />

TPLH5<br />

oC - 500 ns<br />

10, 11 +125o C, -55 o C - 675 ns<br />

Transition Time TTHL VDD = 5V, VIN = VDD or GND 9 +25<br />

TTLH<br />

o C - 200 ns<br />

10, 11 +125 o C, -55 o NOTES:<br />

C - 270 ns<br />

1. VDD = 5V, CL = 50pF, RL = 200K; input TR, TF < 20ns.<br />

2. -55 o C and +125 o C limits guaranteed, 100% testing being implemented.<br />

UNITS


Specifications CD<strong>4047</strong>BMS<br />

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS<br />

PARAMETER SYMBOL CONDITIONS NOTES TEMPERATURE MIN MAX UNITS<br />

Supply Current IDD VDD = 5V, VIN = VDD or GND 1, 2 -55oC, +25oC - 1 µA<br />

+125 o C - 30 µA<br />

VDD = 10V, VIN = VDD or GND 1, 2 -55 o C, +25 o C - 2 µA<br />

+125 oC - 60 µA<br />

VDD = 15V, VIN = VDD or GND 1, 2 -55oC, +25oC - 2 µA<br />

+125oC - 120 µA<br />

Output Voltage VOL VDD = 5V, No Load 1, 2 +25 oC, +125oC, -55o C<br />

- 50 mV<br />

Output Voltage VOL VDD = 10V, No Load 1, 2 +25 o C, +125 o C,<br />

-55 o C<br />

Output Voltage VOH VDD = 5V, No Load 1, 2 +25 o C, +125 o C,<br />

-55 o C<br />

Output Voltage VOH VDD = 10V, No Load 1, 2 +25 o C, +125 o C,<br />

-55 o C<br />

7-900<br />

LIMITS<br />

- 50 mV<br />

4.95 - V<br />

9.95 - V<br />

Output Current (Sink) IOL5 VDD = 5V, VOUT = 0.4V 1, 2 +125 oC 0.36 - mA<br />

-55oC 0.64 - mA<br />

Output Current (Sink) IOL10 VDD = 10V, VOUT = 0.5V 1, 2 +125 o C 0.9 - mA<br />

-55 oC 1.6 - mA<br />

Output Current (Sink) IOL15 VDD = 15V, VOUT = 1.5V 1, 2 +125oC 2.4 - mA<br />

-55 oC 4.2 - mA<br />

Output Current (Source) IOH5A VDD = 5V, VOUT = 4.6V 1, 2 +125oC - -0.36 mA<br />

-55 o C - -0.64 mA<br />

Output Current (Source) IOH5B VDD = 5V, VOUT = 2.5V 1, 2 +125 oC - -1.15 mA<br />

-55oC - -2.0 mA<br />

Output Current (Source) IOH10 VDD = 10V, VOUT = 9.5V 1, 2 +125 oC - -0.9 mA<br />

-55oC - -1.6 mA<br />

Output Current (Source) IOH15 VDD =15V, VOUT = 13.5V 1, 2 +125 o C - -2.4 mA<br />

-55 oC - -4.2 mA<br />

Input Voltage Low VIL VDD = 10V, VOH > 9V, VOL < 1V 1, 2 +25oC, +125oC, -55oC - 3 V<br />

Input Voltage High VIH VDD = 10V, VOH > 9V, VOL < 1V 1, 2 +25 o C, +125 o C,<br />

-55 o C<br />

Propagation Delay<br />

A<strong>stable</strong>, A<strong>stable</strong> to OSC<br />

Propagation Delay<br />

A<strong>stable</strong> or A<strong>stable</strong> to Q, Q<br />

Propagation Delay<br />

Trigger to Q, Q<br />

Propagation Delay<br />

Retrigger to Q, Q<br />

Propagation Delay<br />

Reset to Q, Q<br />

+7 - V<br />

TPLH1 VDD = 10V 1, 2, 3 +25oC - 200 ns<br />

VDD = 15V 1, 2, 3 +25oC - 160 ns<br />

TPLH2<br />

TPHL2<br />

TPHL3<br />

TPLH3<br />

TPHL4<br />

TPLH4<br />

TPLH5<br />

TPLH5<br />

Transition Time TTHL<br />

TTLH<br />

VDD = 10V 1, 2, 3 +25oC - 350 ns<br />

VDD = 15V 1, 2, 3 +25o C - 250 ns<br />

VDD = 10V 1, 2, 3 +25 o C - 450 ns<br />

VDD = 15V 1, 2, 3 +25oC - 300 ns<br />

VDD = 10V 1, 2, 3 +25oC - 300 ns<br />

VDD = 15V 1, 2, 3 +25oC - 200 ns<br />

VDD = 10V 1, 2, 3 +25 o C - 200 ns<br />

VDD = 15V 1, 2, 3 +25o C - 140 ns<br />

VDD = 10V 1, 2, 3 +25 o C - 100 ns<br />

VDD = 15V 1, 2, 3 +25oC - 80 ns


Q or Q Deviation from<br />

50% Duty Factor<br />

Minimum Pulse Width<br />

+ Trigger<br />

- Trigger<br />

Minimum Pulse Width<br />

Reset<br />

Specifications CD<strong>4047</strong>BMS<br />

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)<br />

PARAMETER SYMBOL CONDITIONS NOTES TEMPERATURE<br />

QD VDD = 5V 1, 2, 3 +25oC - ±1 %<br />

VDD = 10V 1, 2, 3 +25 o C - ±1 %<br />

VDD = 15V 1, 2, 3 +25 o C - ±0.5 %<br />

TW VDD = 5V 1, 2, 3 +25 oC - 400 ns<br />

VDD = 10V 1, 2, 3 +25oC - 160 ns<br />

VDD = 15V 1, 2, 3 +25oC - 100 ns<br />

TW VDD = 5V 1, 2, 3 +25 oC - 200 ns<br />

VDD = 10V 1, 2, 3 +25o C - 100 ns<br />

VDD = 15V 1, 2, 3 +25 o C - 60 ns<br />

Minimum Retrigger Pulse TW VDD = 5V 1, 2, 3 +25<br />

Width<br />

oC - 600 ns<br />

VDD = 10V 1, 2, 3 +25 o C - 230 ns<br />

VDD = 15V 1, 2, 3 +25 o C - 150 ns<br />

Input Capacitance CIN Any Input 1, 2 +25o NOTES:<br />

C - 7.7 pF<br />

1. All voltages referenced to device GND.<br />

2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized<br />

on initial design release and upon design changes which would affect these characteristics.<br />

3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.<br />

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS<br />

PARAMETER SYMBOL CONDITIONS NOTES TEMPERATURE MIN MAX UNITS<br />

Supply Current IDD VDD = 20V, VIN = VDD or GND 1, 4 +25 oC - 7.5 µA<br />

N Threshold Voltage VNTH VDD = 10V, ISS = -10µA 1, 4 +25oC -2.8 -0.2 V<br />

N Threshold Voltage<br />

Delta<br />

∆VTN VDD = 10V, ISS = -10µA 1, 4 +25oC - ±1 V<br />

7-901<br />

LIMITS<br />

P Threshold Voltage VTP VSS = 0V, IDD = 10µA 1, 4 +25oC 0.2 2.8 V<br />

P Threshold Voltage<br />

Delta<br />

∆VTP VSS = 0V, IDD = 10µA 1, 4 +25oC - ±1 V<br />

Functional F VDD = 18V, VIN = VDD or GND 1 +25oC VOH > VOL <<br />

VDD = 3V, VIN = VDD or GND<br />

VDD/2 VDD/2<br />

Propagation Delay Time TPHL VDD = 5V 1, 2, 3, 4 +25<br />

TPLH<br />

oC - 1.35 x<br />

+25oC Limit<br />

NOTES: 1. All voltages referenced to device GND.<br />

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.<br />

3. See Table 2 for +25oC limit.<br />

4. Read and Record<br />

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25 O C<br />

PARAMETER SYMBOL DELTA LIMIT<br />

Supply Current - MSI-1 IDD ± 0.2µA<br />

Output Current (Sink) IOL5 ± 20% x Pre-Test Reading<br />

Output Current (Source) IOH5A ± 20% x Pre-Test Reading<br />

LIMITS<br />

MIN MAX<br />

UNITS<br />

V<br />

ns


Specifications CD<strong>4047</strong>BMS<br />

TABLE 6. APPLICABLE SUBGROUPS<br />

CONFORMANCE GROUP<br />

MIL-STD-883<br />

METHOD GROUP A SUBGROUPS READ AND RECORD<br />

Initial Test (Pre Burn-In) 100% 5004 1, 7, 9 IDD, IOL5, IOH5A<br />

Interim Test 1 (Post Burn-In) 100% 5004 1, 7, 9 IDD, IOL5, IOH5A<br />

Interim Test 2 (Post Burn-In) 100% 5004 1, 7, 9 IDD, IOL5, IOH5A<br />

PDA (Note 1) 100% 5004 1, 7, 9, Deltas<br />

Interim Test 3 (Post Burn-In) 100% 5004 1, 7, 9 IDD, IOL5, IOH5A<br />

PDA (Note 1) 100% 5004 1, 7, 9, Deltas<br />

Final Test 100% 5004 2, 3, 8A, 8B, 10, 11<br />

Group A Sample 5005 1, 2, 3, 7, 8A, 8B, 9, 10, 11<br />

Group B Subgroup B-5 Sample 5005 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas Subgroups 1, 2, 3, 9, 10, 11<br />

Subgroup B-6 Sample 5005 1, 7, 9<br />

Group D Sample 5005 1, 2, 3, 8A, 8B, 9 Subgroups 1, 2 3<br />

NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.<br />

TABLE 7. TOTAL DOSE IRRADIATION<br />

MIL-STD-883<br />

TEST READ AND RECORD<br />

CONFORMANCE GROUPS METHOD PRE-IRRAD POST-IRRAD PRE-IRRAD POST-IRRAD<br />

Group E Subgroup 2 5005 1, 7, 9 Table 4 1, 9 Table 4<br />

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS<br />

FUNCTION OPEN GROUND VDD 9V ± -0.5V<br />

50kHz 25kHz<br />

Static Burn-In 1<br />

Note 1<br />

1, 2, 10, 11, 13 3-9, 12 14<br />

Static Burn-In 2<br />

Note 1<br />

1, 2, 10, 11, 13 7 3-6, 8, 9, 12, 14<br />

Dynamic Burn-<br />

In Note 1<br />

- 7, 9, 12 4, 5, 14 1, 2, 10, 11, 13 6, 8 3<br />

Irradiation<br />

Note 2<br />

NOTE:<br />

1, 2, 10, 11, 13 7 3-6, 8, 9, 12, 14<br />

1. Each pin except VDD and GND will have a series resistor of 10K ± 5%, VDD = 18V ± 0.5V<br />

2. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures,<br />

VDD = 10V ± 0.5V<br />

7-902<br />

OSCILLATOR


CD<strong>4047</strong>BMS<br />

TABLE 9. FUNCTIONAL TERMINAL CONNECTIONS<br />

In all cases External resistor between terminals 2 and 3 (Note 1)<br />

External capacitor between terminals 1 and 3 (Note 1)<br />

TERMINAL CONNECTIONS OUTPUT PULSE OUTPUT PERIOD OR PULSE<br />

FUNCTION<br />

ASTABLE MULTIVIBRATOR<br />

TO VDD TO VSS INPUT TO FROM<br />

WIDTH<br />

Free Running 4, 5, 6, 14 7, 8, 9, 12 - 10, 11, 13 TA (10, 11) = 4.40 RC<br />

True Gating 4, 6, 14 7, 8, 9, 12 5 10, 11, 13 TA (13) = 2.20 RC (Note 2)<br />

Complement Gating<br />

MONOSTABLE MULTIVIBRATOR<br />

6, 14 5, 7, 8, 9, 12 4 10, 11, 13<br />

Positive Edge Trigger 4, 14 5, 6, 7, 9, 12 8 10, 11 tM (10, 11) = 2.48 RC<br />

Negative Edge Trigger 4, 8, 14 5, 7, 9, 12 6 10, 11<br />

Retriggerable 4, 14 5, 6, 7, 9 8, 12 10, 11<br />

External Countdown (Note 3)<br />

NOTES:<br />

1. See text.<br />

14 5, 6, 7, 8, 9, 12 - 10, 11<br />

2. First positive 1 / 2 cycle pulse width = 2.48 RC. See note follow <strong>Mono</strong><strong>stable</strong> Mode Design Information.<br />

3. Input Pulse to Reset of External Counting Chip External Counting Chip Output to Terminal 4.<br />

Logic Diagrams<br />

5<br />

4<br />

6<br />

8<br />

12<br />

9<br />

ASTABLE<br />

ASTABLE<br />

-TRIGGER<br />

+TRIGGER<br />

RETRIGGER<br />

EXTERNAL<br />

RESET<br />

ASTABLE<br />

GATE<br />

CONTROL<br />

MONOSTABLE<br />

CONTROL<br />

C-TIMING<br />

RC<br />

COMMON<br />

3<br />

C<br />

LOW POWER<br />

ASTABLE<br />

MULTIVIBRATOR<br />

RETRIGGER<br />

CONTROL<br />

FIGURE 1. CD<strong>4047</strong>BMS LOGIC BLOCK DIAGRAM<br />

1<br />

7-903<br />

R<br />

2<br />

R-TIMING<br />

OSCILLATOR OUT<br />

FREQUENCY<br />

DIVIDER (÷2)<br />

Q<br />

Q<br />

13<br />

10<br />

11


Logic Diagrams (Continued)<br />

*<br />

ASTABLE 5<br />

*<br />

ASTABLE 4<br />

*<br />

+TRIGGER 8<br />

*<br />

-TRIGGER 6<br />

VDD<br />

VSS<br />

EXTERNAL<br />

RESET<br />

14<br />

7<br />

*<br />

9<br />

* INPUTS PROTECTED<br />

BY CMOS<br />

PROTECTION<br />

NETWORK<br />

CL<br />

CL<br />

S<br />

D Q<br />

Q<br />

R<br />

FF2, FF4<br />

CL<br />

CL<br />

VDD<br />

VDD<br />

VSS<br />

D Q<br />

FF1<br />

D Q<br />

CL<br />

CL<br />

R1 R2<br />

R1 R2<br />

FF1, FF3<br />

D<br />

CD<strong>4047</strong>BMS<br />

*<br />

RETRIGGER 12<br />

VSS<br />

FIGURE 2. CD<strong>4047</strong>BMS LOGIC DIAGRAM<br />

CL<br />

p<br />

n<br />

CL<br />

(a)<br />

(b)<br />

FIGURE 3. DETAIL LOGIC DIAGRAM FOR FLIP-FLOPS FF1 AND FF3 (a) AND FOR FLIP-FLOPS FF2 AND FF4 (b)<br />

7-904<br />

VDD<br />

S<br />

D Q<br />

FF2<br />

CL<br />

CL Q<br />

R<br />

3 RC<br />

**<br />

COMMON<br />

CAUTION: Terminal 3 is more sensitive<br />

to static electrical discharge. Extra<br />

handling precautions are recommended.<br />

D<br />

S<br />

CL<br />

p<br />

n<br />

CL<br />

CL<br />

p<br />

n<br />

CL<br />

R<br />

CL<br />

p<br />

n<br />

CL<br />

R1 R2<br />

CL<br />

p<br />

n<br />

CL<br />

CL<br />

p<br />

n<br />

CL<br />

D Q<br />

FF3<br />

CL<br />

CL<br />

R1 R2<br />

R2 R1<br />

R<br />

CL<br />

p<br />

n<br />

CL<br />

CTC<br />

S<br />

D Q<br />

FF4<br />

CL<br />

CL<br />

R<br />

1<br />

** SPECIAL<br />

RC COMMON<br />

PROTECTION<br />

NETWORK<br />

Q<br />

S<br />

CL<br />

p<br />

n<br />

CL<br />

2 RTC<br />

Q<br />

Q<br />

OSC<br />

OUT<br />

13<br />

10<br />

11<br />

VDD<br />

VSS<br />

Q<br />

Q


Typical Performance Characteristics<br />

OUTPUT LOW (SINK) CURRENT (IOL) (mA)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

GATE-TO-SOURCE VOLTAGE (VGS) = 15V<br />

5V<br />

10V<br />

0 5 10 15<br />

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)<br />

FIGURE 4. TYPICAL OUTPUT LOW (SINK) CURRENT<br />

CHARACTERISTICS<br />

PROPAGATION DELAY TIME (t PHL , t PLH) (ns)<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

FIGURE 6. TYP. OUTPUT HIGH (SOURCE) CURRENT<br />

CHARACTERISTICS<br />

400<br />

300<br />

200<br />

100<br />

GATE-TO-SOURCE VOLTAGE (VGS) = -5V<br />

0<br />

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)<br />

-15 -10 -5<br />

-15V<br />

-10V<br />

0<br />

0<br />

FIGURE 8. TYP. PROPAGATION DELAY TIME AS A FUNCTION OF<br />

LOAD CAPACITANCE (ASTABLE, ASTABLE TO Q, Q)<br />

CD<strong>4047</strong>BMS<br />

-2.5<br />

-5<br />

-7.5<br />

-10<br />

-12.5<br />

-15<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

10V<br />

15V<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

20 40 60 80 100<br />

LOAD CAPACITANCE (CL) (pF)<br />

OUTPUT HIGH (SOURCE) CURRENT (IOH) (mA)<br />

PROPAGATION DELAY TIME (t PHL , t PLH ) (ns)<br />

7-905<br />

OUTPUT LOW (SINK) CURRENT (IOL) (mA)<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

GATE-TO-SOURCE VOLTAGE (VGS) = 15V<br />

5V<br />

10V<br />

0 5 10 15<br />

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)<br />

FIGURE 5. MINIMUM OUTPUT LOW (SINK) CURRENT<br />

CHARACTERISTICS<br />

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)<br />

-15 -10 -5<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

GATE-TO-SOURCE VOLTAGE (VGS) = -5V<br />

-15V<br />

-10V<br />

0<br />

0<br />

FIGURE 7. MINIMUM OUTPUT HIGH (SOURCE) CURRENT<br />

CHARACTERISTICS<br />

600<br />

400<br />

200<br />

0<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

10V<br />

15V<br />

FIGURE 9. TYP. PROPAGATION DELAY TIME AS A FUNCTION<br />

OF LOAD CAPACITANCE (+ OR - TRIGGER TO Q, Q)<br />

-2.5<br />

-5<br />

-7.5<br />

OUTPUT HIGH (SOURCE) CURRENT (IOH) (mA)<br />

20 40 60 80 100<br />

LOAD CAPACITANCE (CL) (pF)


FIGURE 10. TYP. TRANSITION TIME AS A FUNCTION OF LOAD<br />

CAPACITANCE<br />

FIGURE 12. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD<br />

ACCURACY vs SUPPLY VOLTAGE<br />

FIGURE 14. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD<br />

ACCURACY vs AMBIENT TEMPERATURE (ULTRA<br />

LOW FREQ.)<br />

CD<strong>4047</strong>BMS<br />

Typical Performance Characteristics (Continued)<br />

TRANSITION TIME (fTHL, fTLH) (ns)<br />

PERIOD ACCURACY (%)<br />

PERIOD ACCURACY (%)<br />

200<br />

150<br />

100<br />

50<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

0<br />

0 20 40 60 80 100<br />

LOAD CAPACITANCE (CL) (pF)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

CX = 0.01µF<br />

100kΩ<br />

RX = 1MΩ<br />

10V<br />

15V<br />

0 2 4 6 8 10 12 14 16 18 20<br />

SUPPLY VOLTAGE (VDD) (V)<br />

1 CX = 1µF<br />

RX = 1MΩ<br />

0<br />

-1<br />

-2<br />

10MΩ<br />

10kΩ<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

10V, 15V<br />

10MΩ<br />

10kΩ<br />

1MΩ<br />

100kΩ<br />

10V, 15V<br />

-55 -15 25 65 105 145<br />

AMBIENT TEMPERATURE (TA ) ( o -3<br />

C)<br />

5V<br />

7-906<br />

PERIOD ACCURACY (%)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

CX = 1µF<br />

10MΩ<br />

1MΩ AND 100kΩ<br />

10kΩ<br />

10MΩ<br />

-2<br />

-3<br />

RX = 1MΩ AND<br />

100kΩ<br />

-4<br />

10kΩ<br />

0 2 4 6 8 10 12 14 16 18 20<br />

SUPPLY VOLTAGE (VDD) (V)<br />

FIGURE 11. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD<br />

ACCURACY vs SUPPLY VOLTAGE<br />

PERIOD ACCURACY (%)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

CX = 1000pF<br />

RX = 1MΩ AND<br />

10kΩ<br />

100kΩ<br />

10kΩ<br />

1MΩ AND<br />

10kΩ 10MΩ<br />

-3<br />

10kΩ<br />

-4<br />

0 2 4 6 8 10 12 14 16 18 20<br />

SUPPLY VOLTAGE (VDD) (V)<br />

FIGURE 13. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD<br />

ACCURACY vs SUPPLY VOLTAGE<br />

PERIOD ACCURACY (%)<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-55<br />

CX = 0.1µF<br />

RX = 1MΩ<br />

5V<br />

10V<br />

15V<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

15V<br />

10V<br />

AMBIENT TEMPERATURE (TA ) ( o -15 25 65 105 145<br />

C)<br />

FIGURE 15. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD<br />

ACCURACY vs AMBIENT TEMPERATURE (LOW<br />

FREQ.)


FIGURE 16. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD<br />

ACCURACY vs AMBIENT TEMPERATURE (MEDIUM<br />

FREQ.)<br />

FIGURE 18. TYPICAL ASTABLE OSCILLATOR OR Q, Q PERIOD<br />

ACCURACY vs AMBIENT TEMPERATURE<br />

FIGURE 20. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs<br />

SUPPLY VOLTAGE<br />

CD<strong>4047</strong>BMS<br />

Typical Performance Characteristics (Continued)<br />

PERIOD ACCURACY (%)<br />

PERIOD ACCURACY (%)<br />

OUTPUT PULSE-WIDTH VARIATION (%)<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CX = 0.01µF<br />

RX = 100kΩ<br />

5V AND 10V<br />

15V<br />

SUPPLY VOLTAGE (VDD) = 5V, 10V<br />

15V<br />

-55 -15 25 65 105 145<br />

AMBIENT TEMPERATURE (T A ) ( o C)<br />

20<br />

10<br />

0<br />

-10<br />

-55 -15 25 65 105 145<br />

AMBIENT TEMPERATURE (T A ) ( o C)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

RX = 10kΩ<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

0.01µF, 0.1µF, 1µF<br />

0.001µF<br />

CX = 100pF<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

CX = 0.1µF<br />

10MΩ<br />

RX = 10kΩ, 100kΩ, 1MΩ<br />

100pF<br />

0.001µF<br />

0.01µF, 0.1µF, 1µF<br />

10kΩ, 100kΩ, 1MΩ AND 10MΩ<br />

0 5 10 15 20 25<br />

SUPPLY VOLTAGE (VDD) (V)<br />

7-907<br />

PERIOD ACCURACY (%)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

CX = 1000pF<br />

RX = 10kΩ<br />

10V AND 15V<br />

5V<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

10V, 15V<br />

-55 -15 25 65 105 145<br />

AMBIENT TEMPERATURE (TA ) ( o -4<br />

-35 -5 45 85 125<br />

C)<br />

FIGURE 17. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD<br />

ACCURACY vs AMBIENT TEMPERATURE (HIGH<br />

FREQ.)<br />

OUTPUT PULSE-WIDTH VARIATION (%)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

CX = 1µF<br />

10kΩ<br />

1kΩ<br />

RX = 100kΩ, 1MΩ, 10MΩ<br />

100kΩ<br />

10kΩ, 1MΩ AND 10MΩ<br />

1kΩ<br />

0 5 10 15 20 25<br />

SUPPLY VOLTAGE (VDD) (V)<br />

FIGURE 19. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs<br />

SUPPLY VOLTAGE<br />

OUTPUT PULSE-WIDTH VARIATION (%)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

AMBIENT TEMPERATURE (T A ) = +25 o C<br />

CX = 1000pF<br />

RX = 1MΩ AND 10Ω<br />

100kΩ<br />

10kΩ<br />

0 5 10 15 20 25<br />

SUPPLY VOLTAGE (VDD) (V)<br />

FIGURE 21. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs<br />

SUPPLY VOLTAGE


FIGURE 22. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs<br />

AMBIENT TEMPERATURE<br />

FIGURE 24. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs<br />

AMBIENT TEMPERATURE<br />

FIGURE 26. TYPICAL POWER DISSIPATION vs OUTPUT<br />

FREQUENCY (VDD = 5V)<br />

CD<strong>4047</strong>BMS<br />

Typical Performance Characteristics (Continued)<br />

OUTPUT PULSE-WIDTH VARIATION (%)<br />

OUTPUT PULSE-WIDTH VARIATION (%)<br />

POWER DISSIPATION (PD) (µW)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

RX = 100kΩ<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

0.001µF<br />

0.1µF<br />

0.01µF<br />

0.1µF<br />

0.01µF<br />

-8<br />

-55 -15 25 65 105 145<br />

AMBIENT TEMPERATURE (TA ) ( o 0.001µF<br />

-35 5 45 85 125<br />

C)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

CX = 1000pF<br />

SUPPLY VOLTAGE (VDD) = 5V OR 10V<br />

-55 -15 25 65 105 145<br />

AMBIENT TEMPERATURE (TA ) ( o -12<br />

-35 5 45 85 125<br />

C)<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

100kΩ<br />

10kΩ<br />

10MΩ<br />

RX = 1MΩ<br />

ASTABLE MODE<br />

SUPPLY VOLTAGE (VDD) = 5V<br />

C = 0.1µF<br />

C = 0.01µF<br />

C =1000pF<br />

10MΩ<br />

10kΩ<br />

100kΩ<br />

1MΩ<br />

10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6<br />

Q OR Q FREQUENCY (F) (Hz)<br />

C =100pF<br />

C =10pF<br />

7-908<br />

OUTPUT PULSE-WIDTH VARIATION (%)<br />

RX = 100kΩ<br />

SUPPLY VOLTAGE (VDD) = 10V OR 15V<br />

-12<br />

-50<br />

AMBIENT TEMPERATURE (TA ) ( o 10<br />

8<br />

6<br />

4<br />

CX = 100pF<br />

2<br />

0.01µF<br />

0<br />

-2<br />

-4<br />

0.1µF, 0.01µF<br />

-6<br />

-8<br />

0.1µF AND 0.001µF<br />

0.001µF<br />

-10<br />

100pF<br />

-35 -15 5 25 45 65 85 105 125 145<br />

C)<br />

FIGURE 23. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs<br />

AMBIENT TEMPERATURE<br />

OUTPUT PULSE-WIDTH VARIATION (%)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-50<br />

10MΩ<br />

RX = 1MΩ<br />

10kΩ<br />

CX = 1000pF<br />

SUPPLY VOLTAGE (VDD) = 15V<br />

100kΩ<br />

10MΩ<br />

10kΩ<br />

100kΩ<br />

AMBIENT TEMPERATURE (TA ) ( o -35 -15 5 25 45 65 85 105 125 145<br />

C)<br />

FIGURE 25. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs<br />

AMBIENT TEMPERATURE<br />

POWER DISSIPATION (PD) (µW)<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

ASTABLE MODE<br />

SUPPLY VOLTAGE (VDD) = 10V<br />

C = 0.1µF<br />

C = 0.01µF<br />

C =1000pF<br />

FIGURE 27. TYPICAL POWER DISSIPATION vs OUTPUT<br />

FREQUENCY (VDD = 10V)<br />

1MΩ<br />

10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6<br />

Q OR Q FREQUENCY (F) (Hz)<br />

C =100pF<br />

C =10pF


CD<strong>4047</strong>BMS<br />

Typical Performance Characteristics (Continued)<br />

POWER DISSIPATION (PD) (µW)<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

ASTABLE MODE<br />

SUPPLY VOLTAGE (VDD) = 15V<br />

C = 0.1µF<br />

C =1000pF<br />

C = 0.01µF<br />

10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6<br />

Q OR Q FREQUENCY (F) (Hz)<br />

FIGURE 28. TYPICAL POWER DISSIPATION vs OUTPUT FREQUENCY (VDD = 15V)<br />

A<strong>stable</strong> Mode Design Information<br />

Unit-to-Unit Transfer Voltage Variations<br />

The following analysis presents variations from unit to unit as<br />

a function of transfer voltage (VTR) shift (33%-67% VDD) for<br />

free running (a<strong>stable</strong>) operation.<br />

TERMINAL 13<br />

TERMINAL 10<br />

FIGURE 29. ASTABLE MODE WAVEFORMS<br />

t1 = -RC In<br />

t2 = -RC In<br />

VTR<br />

;<br />

VDD + VTR<br />

typically, t1 = 1.1RC<br />

VDD - VTR ;<br />

2VDD - VTR<br />

typically, t2 = 1.1RC<br />

tA = 2(t1 + t2)<br />

(VTR)(VDD - VTR)<br />

= -2RC In<br />

(VDD + VTR)(2VDD - VTR)<br />

Typ:<br />

Min:<br />

Max:<br />

VTR = 0.5VDD<br />

VTR = 0.33VDD<br />

VTR = 0.67VDD<br />

t1 t2 t1 t2<br />

t A /2 t A /2<br />

t A = 4.40RC<br />

t A = 4.62RC<br />

t A = 4.62RC<br />

thus if tA = 4.40RC is used, the variation will be +5%, -0%<br />

due to variations in transfer voltage.<br />

Variations Due to VDD and Temperature Changes<br />

In addition to variations from unit to unit, the a<strong>stable</strong> period<br />

varies with VDD and temperature, Typical variations are presented<br />

in graphical form in Figures 11 to 18 with 10V as reference<br />

for voltage variations curves and +25 o C as reference<br />

for temperature variations curves.<br />

t A<br />

7-909<br />

C =100pF<br />

C =10pF<br />

<strong>Mono</strong><strong>stable</strong> Mode Design Information<br />

The following analysis presents variations from unit to unit as a<br />

function of transfer voltage (VTR) shift (33% - 67% VDD) for<br />

one shot (mono<strong>stable</strong>) operation.<br />

TERMINAL 8<br />

TERMINAL 13<br />

TERMINAL 10<br />

FIGURE 30. MONOSTABLE WAVEFORMS<br />

t1´ = -RC In<br />

VTR<br />

;<br />

2VDD<br />

typically, t1´ = 1.38RC<br />

tM = (t1´ + t2)<br />

(VTR)(VDD - VTR)<br />

tM = -RC In<br />

(2VDD - VTR)(2VDD)<br />

where tM = <strong>Mono</strong><strong>stable</strong> mode pulse width.<br />

Values for tM are as follows:<br />

Typ:<br />

Min:<br />

Max:<br />

VTR = 0.5VDD<br />

VTR = 0.33VDD<br />

VTR = 0.67VDD<br />

t1´ t2 t1´ t2<br />

tM tM<br />

tM = 2.48RC<br />

tM = 2.71RC<br />

tM = 2.48RC<br />

thus if tM = 2.48RC<br />

is used, the variation will be +9.3%,<br />

-0% due to variations in transfer voltage.<br />

NOTES:<br />

1. In the a<strong>stable</strong> mode, the first positive half cycle has a duration of<br />

tM; succeeding durations are tA /s.<br />

2. In addition to variations from unit to unit, the mono<strong>stable</strong> pulse<br />

width varies with VDD and temperature. These variations are<br />

presented in graphical form in Figures 19 to 26 with 10V as reference<br />

for voltage variation curves and +25 o C as reference for<br />

temperature variation curves.


Retrigger Mode Operation<br />

The CD<strong>4047</strong>BMS can be used in the retrigger mode to extend<br />

the output pulse duration, or to compare the frequency of an<br />

input signal with that of the internal oscillator. In the retrigger<br />

mode the input pulse is applied to terminal 12, and the output is<br />

taken from terminal 10 or 11. As shown in Figure 31 normal<br />

mono<strong>stable</strong> action is obtained when one retrigger pulse is<br />

applied. Extended pulse duration is obtained when more than<br />

one pulse is applied.<br />

For two input pulses, tRE = t1´ + t1 + 2t2. For more than two<br />

pulses, the output pulse width is an integral number of time periods,<br />

with the first time period being t1´ + t2, typically, 2.48RC, and<br />

all subsequent time periods being t1 + t2, typically, 2.2RC.<br />

External Counter Option<br />

Time tM can be extended by any amount with the use of external<br />

counting circuitry. Advantages include digitally controlled pulse<br />

duration, small timing capacitors for long time periods, and<br />

extremely fast recovery time. A typical implementation is shown<br />

in Figure 32. The pulse duration at the output is<br />

text = (N - 1) (t A ) + (tM + t A /2)<br />

where text = pulse duration of the circuitry, and N is the number<br />

of counts used.<br />

AST<br />

CD<strong>4047</strong>BMS<br />

Q<br />

INPUT<br />

PULSE<br />

CL<br />

CD4017BMS<br />

R<br />

11<br />

FIGURE 32. IMPLEMENTATION OF EXTERNAL COUNTER OPTION<br />

Timing Component Limitations<br />

OUT<br />

The capacitor used in the circuit should be non polarized and<br />

have low leakage (i.e. the parallel resistance of the capacitor<br />

should be at least an order of magnitude greater than the external<br />

resistor used). There is no upper or lower limit for either R or<br />

C value to maintain oscillation.<br />

+TRIGGER &<br />

RETRIGGER<br />

TERMINALS<br />

8 & 12<br />

OSC OUTPUT<br />

TERMINAL 13<br />

Q OUTPUT<br />

TERMINAL 10<br />

t1´ t2<br />

tRE<br />

12<br />

OPTIONAL<br />

BUFFER<br />

TEXT<br />

t1´ t2 t1´ t2<br />

tRE<br />

CD<strong>4047</strong>BMS<br />

7-910<br />

However, in consideration of accuracy, C must be much larger<br />

than the inherent stray capacitance in the system (unless this<br />

capacitance can be measured and taken into account). R must<br />

be much larger than the CMOS “ON” resistance in series with<br />

it, which typically is hundreds of Ω. In addition, with very large<br />

values of R, some short term instability with respect to time may<br />

be noted.<br />

The recommended values for these components to maintain<br />

agreement with previously calculated formulas without trimming<br />

should be:<br />

C ≥ 100pF, up to any practical value, for a<strong>stable</strong> modes;<br />

C ≥ 1000pF, up to any practical value for mono<strong>stable</strong> modes.<br />

10kΩ≤ R ≤ 1MΩ<br />

Power Consumption<br />

In the standby mode (<strong>Mono</strong><strong>stable</strong> or A<strong>stable</strong>), power dissipation<br />

will be a function of leakage current in the circuit, as shown<br />

in the static electrical characteristics. For dynamic operation,<br />

the power needed to charge the external timing capacitor C is<br />

given by the following formula:<br />

A<strong>stable</strong> Mode:<br />

<strong>Mono</strong><strong>stable</strong> Mode:<br />

P = 2CV 2 f. (Output at terminal No. 13)<br />

P = 4CV 2 f. (Output at terminal Nos. 10 and 11)<br />

P = (2.9CV2 ) (Duty Cycle)<br />

T<br />

(Output at terminal Nos. 10 to 11)<br />

FIGURE 31. RETRIGGER MODE WAVEFORMS<br />

The circuit is designed so that most of the total power is consumed<br />

in the external components. In practice, the lower the<br />

values of frequency and voltage used, the closer the actual<br />

power dissipation will be to the calculated value.<br />

Because the power dissipation does not depend on R, a<br />

design for minimum power dissipation would be a small value<br />

of C. The value of R would depend on the desired period<br />

(within the limitations discussed above). See Figures 26, 27,<br />

and 28 for typical power consumption in a<strong>stable</strong> mode.<br />

t1´ t2 t1´ t2 t1´ t2 t1´ t2<br />

tRE<br />

t1´ t2 t1´ t2 t1´ t2<br />

tRE


Chip Dimensions and Pad Layout<br />

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.<br />

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without<br />

notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate<br />

and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which<br />

may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.<br />

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com<br />

Sales Office Headquarters<br />

NORTH AMERICA<br />

Intersil Corporation<br />

P. O. Box 883, Mail Stop 53-204<br />

Melbourne, FL 32902<br />

TEL: (321) 724-7000<br />

FAX: (321) 724-7240<br />

CD<strong>4047</strong>BMS<br />

Dimensions in parenthesis are in millimeters and are<br />

derived from the basic inch dimensions as indicated.<br />

Grid graduations are in mils (10 -3 inch).<br />

METALLIZATION: Thickness: 11kÅ − 14kÅ, AL.<br />

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane<br />

BOND PADS: 0.004 inches X 0.004 inches MIN<br />

DIE THICKNESS: 0.0198 inches - 0.0218 inches<br />

EUROPE<br />

Intersil SA<br />

Mercure Center<br />

100, Rue de la Fusee<br />

1130 Brussels, Belgium<br />

TEL: (32) 2.724.2111<br />

FAX: (32) 2.724.22.05<br />

911<br />

ASIA<br />

Intersil (Taiwan) Ltd.<br />

Taiwan Limited<br />

7F-6, No. 101 Fu Hsing North Road<br />

Taipei, Taiwan<br />

Republic of China<br />

TEL: (886) 2 2716 9310<br />

FAX: (886) 2 2715 3029

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!