18.08.2013 Views

Charge Your Battery Faster By Using a USB Port - Power Electronics

Charge Your Battery Faster By Using a USB Port - Power Electronics

Charge Your Battery Faster By Using a USB Port - Power Electronics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ac adapter<br />

3.7 V to 7 V<br />

350 mA<br />

charge<br />

<strong>USB</strong><br />

3.7 V to 6 V<br />

100 mA<br />

charge<br />

Dc input C1<br />

up to 4.7uF<br />

6.5 V.<br />

protected<br />

to 18 V<br />

Q1<br />

FDN302<br />

<strong>USB</strong> input<br />

Dc input C1<br />

up to 4.7uF<br />

6.5 V.<br />

protected<br />

to 18 V<br />

<strong>USB</strong> input<br />

<strong>USB</strong> PORT<br />

C1<br />

1uF<br />

C2<br />

1uF<br />

Dc<br />

<strong>USB</strong><br />

Gnd<br />

Q2<br />

FDN302 R1 1k<br />

C2<br />

1uF<br />

R2 10k<br />

4.7uF<br />

to Ref<br />

R3<br />

100 k R4<br />

1% 300 k<br />

1%<br />

Q1<br />

FDN302 R1 1k<br />

C2<br />

1uF<br />

C3<br />

4.7uF<br />

to Ref<br />

R2<br />

100 k<br />

1%<br />

U1<br />

Max1555<br />

R3<br />

300 k<br />

1%<br />

<strong>Charge</strong><br />

control<br />

Dc<br />

Dcok\<br />

Dclv<br />

Uok\<br />

<strong>USB</strong><br />

Dci<br />

<strong>By</strong>p<br />

C4<br />

2.2uF<br />

Dc<br />

Dcok\<br />

Dclv<br />

Uok\<br />

<strong>USB</strong><br />

Dci<br />

Chg\<br />

<strong>By</strong>p<br />

C4<br />

2.2uF<br />

C3<br />

1uF<br />

U1<br />

Max1874<br />

<strong>Charge</strong><br />

control<br />

<strong>Charge</strong><br />

control<br />

D1 MBR0520L<br />

D2 MBR0520L<br />

Pon<br />

Batt<br />

Chg\<br />

En<br />

UseL<br />

Ref<br />

Thrm<br />

Pgnd Gnd<br />

U1<br />

Max1874<br />

1-cell<br />

Li-Ion<br />

Pon<br />

Batt<br />

Chg\<br />

En<br />

UseL<br />

Ref<br />

Thrm<br />

Pgnd Gnd<br />

C5<br />

2.2uF<br />

D1 MBR0520L<br />

U2<br />

Max8881<br />

EUT33<br />

In Out<br />

Shdn\ Fb<br />

Pok<br />

Gnd<br />

C6<br />

2.2uF<br />

500 mA<br />

100 mA<br />

To<br />

system<br />

load<br />

Q3<br />

FDN302<br />

C6 R6<br />

0.1uF 10k 1%<br />

750 mA-hr<br />

to 2 A-hr<br />

Li-Iion cell<br />

Q2<br />

FDN302<br />

500 mA<br />

100 mA<br />

C5<br />

0.1uF<br />

C4<br />

4.7uF<br />

750 mA-hr<br />

to 2 A-hr<br />

Li-Iion cell<br />

To<br />

<strong>By</strong>p D4<br />

Led<br />

Th1<br />

NTC<br />

Thermistor<br />

10 k at 25 C<br />

nected, Fig. 5 operates in the same<br />

manner as Fig. 4 with no wait, regardless<br />

of battery state because Q2 turns<br />

off, passing the system load from the<br />

battery to the dc input via D1.<br />

Nickel-Metal Hydride<br />

Charging<br />

Although Li-Ion batteries provide<br />

the best performance for most portable<br />

information devices, Nickel-<br />

Metal Hydride (NiMH) cells are still<br />

a viable choice in minimum-cost<br />

designs. A good way to keep cost low<br />

when the load requirements aren’t too<br />

severe is by using one NiMH cell. This<br />

requires a dc-dc converter to boost the<br />

typically 1.3-V cell voltage into something<br />

the device can use (typically<br />

3.3 V). Because some type of regulator<br />

is needed for any battery-powered<br />

device, the dc-dc converter is really<br />

then only a different—not an additional—regulator.<br />

The connection in Fig. 6 uses an<br />

unusual approach to charge the<br />

NiMH cell and to switch the system<br />

load between the <strong>USB</strong> input and the<br />

battery with no external FETs. The<br />

“charger” is actually a dc-dc stepdown<br />

converter (U1) operated in<br />

current limit. It charges the battery<br />

with between 300 mA and 400 mA.<br />

Though not a precise current source,<br />

it has adequate current control for the<br />

purpose and can maintain current<br />

control even into a shorted cell. An advantage<br />

of the dc-dc charging topology<br />

over more common linear<br />

schemes is efficient use of the limited<br />

<strong>USB</strong> power resource. When charging<br />

one NiMH cell at 400 mA, the circuit<br />

draws only 150 mA from the <strong>USB</strong><br />

input, which leaves 350 mA for system<br />

use while charging.<br />

Load handoff from the battery to<br />

<strong>USB</strong> is done by diode or-ing (D1)<br />

<strong>USB</strong> power with the boost converter<br />

output. When <strong>USB</strong> is disconnected,<br />

the boost converter generates 3.3 V at<br />

the output. With <strong>USB</strong> connected, D1<br />

pulls the dc-dc boost converter (U2)<br />

output up to approximately 4.7 V.<br />

When U2’s output is pulled up this<br />

way, it automatically turns off and<br />

draws less than 1 µA from the battery.<br />

<strong>Power</strong> <strong>Electronics</strong> Technology January 2004 38<br />

www.powerelectronics.com<br />

R2<br />

1 M<br />

R5<br />

3 k<br />

To system<br />

load<br />

D2<br />

MBR0520L<br />

To byp D3<br />

Led<br />

R4<br />

10k 1%<br />

System<br />

3.3 V Vcc<br />

200 mA<br />

System<br />

reset\<br />

Chg\<br />

indicates<br />

battery full<br />

Fig. 3. With simple charging at 100 mA from <strong>USB</strong> and 350 mA from an ac adapter, no enumeration<br />

is needed for the charger because the <strong>USB</strong> charge current doesn’t exceed “one unit load.”<br />

Fig. 4. SOT-23 power MOSFETs add useful features such as overvoltage protection and battery<br />

disconnect when external power is applied.<br />

R5<br />

3 k<br />

Th1<br />

NTC<br />

Thermistor<br />

10 k at 25 C<br />

Fig. 5. A simplified design doesn’t pass <strong>USB</strong> power directly to the load, but does so for the dc<br />

input.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!