18.08.2013 Views

Minimize Winding Losses in - Power Electronics

Minimize Winding Losses in - Power Electronics

Minimize Winding Losses in - Power Electronics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>M<strong>in</strong>imize</strong> <strong>W<strong>in</strong>d<strong>in</strong>g</strong> <strong>Losses</strong> <strong>in</strong><br />

High-Frequency<br />

Weyman<br />

InductorsBy<br />

Lundquist,<br />

President and Eng<strong>in</strong>eer<strong>in</strong>g<br />

Manager, West Coast<br />

Magnetics, Stockton,Calif.<br />

A foil-w<strong>in</strong>d<strong>in</strong>g technology, which reduces losses of <strong>in</strong>ductors<br />

at high ripple currents and high power levels, and a freeware<br />

program, which optimizes designs us<strong>in</strong>g Litz wire, offer designers<br />

new tools for reduc<strong>in</strong>g w<strong>in</strong>d<strong>in</strong>g losses at high frequencies.<br />

<strong>Power</strong> electronics are rapidly expand<strong>in</strong>g <strong>in</strong>to new applications as highpower<br />

semiconductor devices <strong>in</strong>crease their rated operat<strong>in</strong>g current and<br />

frequencies to higher and higher levels. As a basic build<strong>in</strong>g block of virtually<br />

all power electronics equipment, <strong>in</strong>ductors have a unique potential<br />

for improvement. That’s because <strong>in</strong>ductors are usually the largest, most<br />

expensive and volumetrically <strong>in</strong>efficient items <strong>in</strong> a power system.<br />

Consequently, improvements <strong>in</strong> <strong>in</strong>ductor design can have a great impact on the size<br />

and cost of the <strong>in</strong>ductor, which can have a significant impact on the rest of the power<br />

electronics design. One way to help shr<strong>in</strong>k a power <strong>in</strong>ductor is to reduce its losses at<br />

high frequencies, so that a lower value of <strong>in</strong>ductance may be specified and, therefore, a<br />

smaller <strong>in</strong>ductor may be used <strong>in</strong> the system.<br />

To lower an <strong>in</strong>ductor’s power losses at high frequencies, designers must understand<br />

the role of w<strong>in</strong>d<strong>in</strong>g losses and the options available for reduc<strong>in</strong>g those losses. Those options<br />

<strong>in</strong>clude a new foil-w<strong>in</strong>d<strong>in</strong>g technique that achieves low losses for <strong>in</strong>ductors operat<strong>in</strong>g<br />

at high ripple current and high power levels. For designers look<strong>in</strong>g to optimize <strong>in</strong>ductor<br />

designs us<strong>in</strong>g Litz wire, there’s also a new tool to aid the design process. This tool takes the<br />

form of a freeware program that<br />

allows the user to optimize the<br />

strand<strong>in</strong>g and position<strong>in</strong>g of the<br />

w<strong>in</strong>d<strong>in</strong>g <strong>in</strong>side of the available<br />

w<strong>in</strong>d<strong>in</strong>g w<strong>in</strong>dow.<br />

Understand<strong>in</strong>g<br />

<strong>W<strong>in</strong>d<strong>in</strong>g</strong> <strong>Losses</strong><br />

There are two pr<strong>in</strong>ciple mechanisms<br />

for loss <strong>in</strong> <strong>in</strong>ductors, core<br />

losses and w<strong>in</strong>d<strong>in</strong>g losses. Core<br />

losses <strong>in</strong>volve the magnetic prop-<br />

Fig. 1. A w<strong>in</strong>d<strong>in</strong>g cross section of a<br />

90-µH, 40-A <strong>in</strong>ductor is shown for<br />

six different types of w<strong>in</strong>d<strong>in</strong>gs.<br />

Standard foil Shaped foil #1 Shaped foil #2<br />

20/32 Litz wire Solid wire 50/40 Litz<br />

wire<br />

80/32 Litz wire Solid wire 500/40 Litz wire<br />

<strong>Power</strong> <strong>Electronics</strong> Technology July 2008 14<br />

www.powerelectronics.com


erties of the core material, which exhibits power losses <strong>in</strong> the<br />

form of hysteresis and eddy currents with<strong>in</strong> the core itself.<br />

<strong>W<strong>in</strong>d<strong>in</strong>g</strong> losses come from the resistance <strong>in</strong> the w<strong>in</strong>d<strong>in</strong>g,<br />

typically copper.<br />

Inductors used for switch-mode power applications are<br />

subject to high-frequency current ripple, which can make<br />

the effective w<strong>in</strong>d<strong>in</strong>g resistance and the associated copper<br />

losses very high. The w<strong>in</strong>d<strong>in</strong>g resistance of power <strong>in</strong>ductors<br />

<strong>in</strong>cludes both the dc resistance and an<br />

ac component of resistance that is<br />

a result of both sk<strong>in</strong> effects and<br />

proximity effects.<br />

A time-dependent current<br />

<strong>in</strong>duces a flux, which <strong>in</strong> turn<br />

<strong>in</strong>duces small currents<br />

with<strong>in</strong> the wire. S<strong>in</strong>ce<br />

very little current passes<br />

through the center of the<br />

w<strong>in</strong>d<strong>in</strong>g, the effective<br />

cross-sectional area is<br />

reduced and the resistance<br />

is <strong>in</strong>creased. These<br />

losses <strong>in</strong>crease <strong>in</strong> magnitude<br />

as the frequency<br />

and current <strong>in</strong>crease.<br />

At switch-mode frequencies,<br />

the ac component<br />

of resistance can be<br />

very high, often greatly<br />

exceed<strong>in</strong>g dc resistance<br />

and result<strong>in</strong>g <strong>in</strong> high<br />

copper losses. With<br />

gapped-power <strong>in</strong>ductors,<br />

the field near the<br />

gap produces a strong<br />

local proximity effect<br />

and can produce very<br />

high ac copper resistance<br />

and losses, even lead<strong>in</strong>g to the<br />

failure of the <strong>in</strong>ductor.<br />

<strong>Power</strong> loss <strong>in</strong> any magnetic device<br />

is the sum of these effects, and the design<br />

process is made more difficult by their relationship<br />

to one another. For <strong>in</strong>stance, common methods of reduc<strong>in</strong>g<br />

ac resistance, such as the use of Litz wire, greatly reduce<br />

the cross-sectional area of the conductor and drastically<br />

<strong>in</strong>crease dc resistance. Foil <strong>in</strong>ductors are often used to<br />

m<strong>in</strong>imize w<strong>in</strong>d<strong>in</strong>g losses <strong>in</strong> an application of high dc current,<br />

because of their efficient use of the w<strong>in</strong>d<strong>in</strong>g w<strong>in</strong>dow.<br />

However, even a small amount of ac current can cause<br />

significant losses <strong>in</strong> these coils.<br />

Such sacrifices are unacceptable <strong>in</strong> many of today’s<br />

applications. Many dc-dc converters require an <strong>in</strong>ductor<br />

that can carry a large dc current with an ac ripple. Even<br />

when the ac component is small <strong>in</strong> comparison to the<br />

dc current, the ac resistance can be orders of magnitude<br />

larger than the dc resistance. The problem is more acute<br />

as current level and frequency of operation <strong>in</strong>crease <strong>in</strong><br />

modern designs.<br />

Fortunately, there are solutions to the problem of ac<br />

copper losses. Keep<strong>in</strong>g the w<strong>in</strong>d<strong>in</strong>gs to a s<strong>in</strong>gle layer substantially<br />

mitigates ac copper losses. Us<strong>in</strong>g a powdered core<br />

with no gap will substantially reduce proximity effects and<br />

the result<strong>in</strong>g ac copper losses.<br />

However, powdered cores typically have significantly<br />

higher core losses than ferrite cores, and for high-ripple<br />

applications, a gapped core is sometimes preferred due<br />

to lower core losses. Or, it may also be desirable to use a<br />

relatively high-permeability powdered core with a gap, to<br />

take advantage of the higher B SAT available with this type of<br />

core material. In these cases, the gap-fr<strong>in</strong>g<strong>in</strong>g field must be<br />

dealt with or copper losses can be very high.<br />

Shaped-Foil Technology<br />

Foil w<strong>in</strong>d<strong>in</strong>gs are a compell<strong>in</strong>g alternative because of<br />

the comparatively high w<strong>in</strong>dow utilization and very low<br />

result<strong>in</strong>g dc resistance. West Coast Magnetics has worked<br />

with the Thayer School of Eng<strong>in</strong>eer<strong>in</strong>g at Dartmouth to<br />

develop a shaped-foil technology [1] that has both low dc<br />

and low ac copper losses. The new technology shapes the<br />

foil <strong>in</strong> the vic<strong>in</strong>ity of the gap to use the gap-fr<strong>in</strong>g<strong>in</strong>g flux to<br />

equalize the current distribution throughout the foil and<br />

m<strong>in</strong>imize the sk<strong>in</strong> and proximity effects.<br />

An <strong>in</strong>ductor employ<strong>in</strong>g this technology comb<strong>in</strong>es the<br />

very low dc resistance of a copper-foil w<strong>in</strong>d<strong>in</strong>g with the<br />

low ac resistance of a Litz-wire w<strong>in</strong>d<strong>in</strong>g. In particular,<br />

for high-current, high-ripple <strong>in</strong>ductors, the shaped-foil<br />

Fig. 2. A comparison of power losses for <strong>in</strong>ductors us<strong>in</strong>g shaped<br />

foil conductors versus conventional w<strong>in</strong>d<strong>in</strong>gs reveals that<br />

shaped-foil technology achieves the lowest losses for ripple-<br />

current values exceed<strong>in</strong>g 10% and at frequencies from 25 kHz<br />

up to 500 kHz.<br />

0708PETWCoast_F2<br />

www.powerelectronics.com 15<br />

<strong>Power</strong> <strong>Electronics</strong> Technology July 2008<br />

10<br />

9<br />

8<br />

7<br />

6<br />

<strong>Power</strong> losses (W) 11<br />

5<br />

4<br />

500/40 Litz wire<br />

80/32 Litz wire<br />

Solid wire<br />

Standard foil<br />

Shaped foil #1<br />

Shaped foil #2<br />

3<br />

0 5 10 15 20 25 30<br />

AC ripple at 50 kHz (%)


INNOVATIVE<br />

MAGNETICS<br />

TO POWER<br />

YOUR PRODUCTS<br />

BETTER PERFORMANCE.<br />

BETTER PRICE.<br />

GUARANTEED.<br />

* *<br />

If we can’t<br />

improve your<br />

<strong>Power</strong> Magnetics,<br />

we’ll give you a<br />

$25 STARBUCKS<br />

GIFT CARD just<br />

for lett<strong>in</strong>g us try.<br />

sales@magicall.biz<br />

www.magicall.biz<br />

(805) 484-4300<br />

w<strong>in</strong>d<strong>in</strong>g <strong>Losses</strong><br />

w<strong>in</strong>d<strong>in</strong>g technology can be the lowestloss<br />

solution.<br />

An experiment was conducted<br />

to compare the new foil technology<br />

to conventional w<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>clud<strong>in</strong>g<br />

solid-wire, Litz-wire and full unmodified-foil<br />

w<strong>in</strong>d<strong>in</strong>gs. [2] For this<br />

experiment, a series of 90-µH, 40-A<br />

<strong>in</strong>ductors were built and tested us<strong>in</strong>g<br />

best practices. Each of the prototype<br />

<strong>in</strong>ductors was constructed us<strong>in</strong>g the<br />

same E70/33/32 ferrite core of material<br />

EPCOS N67, which had a 2.63-mm<br />

gap <strong>in</strong> the center leg (designated<br />

B66371-G-X167). Fifteen turns were<br />

wound on all the <strong>in</strong>ductors, produc<strong>in</strong>g<br />

an <strong>in</strong>ductance of 90 µH to 95 µH.<br />

The w<strong>in</strong>d<strong>in</strong>gs are shown <strong>in</strong> Fig. 1.<br />

In each case, best w<strong>in</strong>d<strong>in</strong>g practices<br />

were employed, which <strong>in</strong>cluded s<strong>in</strong>glelayer<br />

w<strong>in</strong>d<strong>in</strong>gs for the Litz and solidwire<br />

samples, and <strong>in</strong> every case, the<br />

conductor area was maximized <strong>in</strong> the<br />

w<strong>in</strong>d<strong>in</strong>g w<strong>in</strong>dow.<br />

The solid-wire sample consisted<br />

of four layers of 10-gauge wire, 15<br />

turns per layer, with the w<strong>in</strong>d<strong>in</strong>gs<br />

connected <strong>in</strong> parallel. Two Litz-wire<br />

samples were constructed, one us<strong>in</strong>g<br />

500 strands of 40 AWG Litz wire and<br />

the other 80 strands of 32 AWG Litz<br />

wire. As with the solid-wire prototype,<br />

these <strong>in</strong>ductors were wound <strong>in</strong> four<br />

parallel layers of 15 turns.<br />

A standard foil <strong>in</strong>ductor was constructed<br />

of 15 turns of 0.020-<strong>in</strong>. copper,<br />

measur<strong>in</strong>g 1.55 <strong>in</strong>. wide and<br />

separated by 0.003 <strong>in</strong>. 3 1.69 <strong>in</strong>. of<br />

Nomex <strong>in</strong>sulator. Two samples were<br />

built us<strong>in</strong>g the new shaped-foil technology.<br />

One sample had a foil shape<br />

optimized for a current of 40 Adc with<br />

a 15% (6-A peak-to-peak) ripple at<br />

50 kHz, and the other sample was optimized<br />

for a ripple of 22.5% at 50 kHz.<br />

The total core and copper losses for<br />

each of these <strong>in</strong>ductors were determ<strong>in</strong>ed<br />

experimentally and the results<br />

are plotted <strong>in</strong> Fig. 2. The hatched area<br />

illustrates the loss reduction that is<br />

observed with the new foil-w<strong>in</strong>d<strong>in</strong>g<br />

technology versus conventionally<br />

wound <strong>in</strong>ductors. Core losses were the<br />

same for all the <strong>in</strong>ductors, so the loss<br />

reduction is observed <strong>in</strong> the w<strong>in</strong>d<strong>in</strong>gs<br />

exclusively.<br />

Wire placement <strong>in</strong> green, gap at (0, bw/2)<br />

Experimental data was collected<br />

for these sample <strong>in</strong>ductors at ripple-current<br />

values from 1% to 30%<br />

and frequencies from 10 kHz up to<br />

500 kHz. This data demonstrates that<br />

the shaped-foil technology was the<br />

lowest-loss solution for ripple-current<br />

values exceed<strong>in</strong>g 10% and at frequencies<br />

from 25 kHz up to 500 kHz.<br />

Litz-Wire <strong>W<strong>in</strong>d<strong>in</strong>g</strong>s<br />

Other work done by the Thayer<br />

School of Eng<strong>in</strong>eer<strong>in</strong>g and West Coast<br />

Magnetics has led to advances <strong>in</strong> the<br />

use of Litz wire for w<strong>in</strong>d<strong>in</strong>g gappedpower<br />

<strong>in</strong>ductors. The field around the<br />

gap <strong>in</strong> a power <strong>in</strong>ductor can be quite<br />

strong and create localized losses <strong>in</strong><br />

w<strong>in</strong>d<strong>in</strong>gs close to the gap.<br />

For a given core and bobb<strong>in</strong> geometry,<br />

it has been shown that there is an<br />

optimal solution for Litz-wire strand<strong>in</strong>g<br />

and placement <strong>in</strong>side the bobb<strong>in</strong>.<br />

<strong>Power</strong> <strong>Electronics</strong> Technology July 2008 16<br />

www.powerelectronics.com<br />

Bobb<strong>in</strong> breadth (mm)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3<br />

Bobb<strong>in</strong> height (mm)<br />

Fig. 3. The ShapeOpt program deter-<br />

0708PETWCoast_F3<br />

m<strong>in</strong>es the optimal placement of the<br />

w<strong>in</strong>d<strong>in</strong>g <strong>in</strong>side the specified bobb<strong>in</strong><br />

w<strong>in</strong>dow for a 10.6-µH <strong>in</strong>ductor.


10<br />

Gap<br />

10<br />

By choos<strong>in</strong>g the Litz strand<strong>in</strong>g and<br />

07008PET_WCoast_F4<br />

placement of the w<strong>in</strong>d<strong>in</strong>g <strong>in</strong>side of<br />

the bobb<strong>in</strong> w<strong>in</strong>dow, it is possible to<br />

m<strong>in</strong>imize w<strong>in</strong>d<strong>in</strong>g losses.<br />

A freeware simulation program<br />

called ShapeOpt allows the user to<br />

optimize the strand<strong>in</strong>g and position<strong>in</strong>g<br />

of the w<strong>in</strong>d<strong>in</strong>g <strong>in</strong>side of the available<br />

w<strong>in</strong>d<strong>in</strong>g w<strong>in</strong>dow. This program<br />

is available for use by designers at<br />

www.thayer.dartmouth.edu/<strong>in</strong>ductor/<br />

shapeopt. The program is simple to<br />

use and the <strong>in</strong>puts <strong>in</strong>clude:<br />

l Core-w<strong>in</strong>dow width and height<br />

l Bobb<strong>in</strong>-w<strong>in</strong>dow width and<br />

height<br />

l Ripple-current magnitude and<br />

frequency<br />

l Gap length<br />

l Bobb<strong>in</strong>-fill factor<br />

l Litz-wire strand diameter<br />

l Turn length<br />

l Number of turns.<br />

With this <strong>in</strong>formation as <strong>in</strong>put, the<br />

program will generate an output detail<strong>in</strong>g<br />

the field strength <strong>in</strong> the bobb<strong>in</strong><br />

w<strong>in</strong>dow as well as the ideal placement<br />

of the w<strong>in</strong>d<strong>in</strong>g <strong>in</strong> the bobb<strong>in</strong> w<strong>in</strong>dow.<br />

The program also will determ<strong>in</strong>e the<br />

total w<strong>in</strong>d<strong>in</strong>g losses and choose the<br />

number of strands necessary to fill the<br />

available w<strong>in</strong>dow area.<br />

By way of example, consider a<br />

10.6-µH <strong>in</strong>ductor operat<strong>in</strong>g at 250<br />

kHz with a 4-A rms ripple. This <strong>in</strong>ductor<br />

uses an E19/8/5 core with a<br />

10<br />

w<strong>in</strong>d<strong>in</strong>g <strong>Losses</strong><br />

9<br />

9<br />

9<br />

9<br />

8<br />

Wire<br />

8<br />

8<br />

8<br />

7<br />

7<br />

7<br />

7<br />

6<br />

6<br />

6<br />

6<br />

5<br />

5<br />

5<br />

5 Empty<br />

4<br />

4<br />

4<br />

4<br />

3<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5<br />

h dimension (mm) W h dimension (mm) W h dimension (mm) W h dimension (mm)<br />

W<br />

10 kHz<br />

50 kHz 100 kHz 200 kHz<br />

Fig. 4.The ShapeOpt program generates the optimized w<strong>in</strong>d<strong>in</strong>g placement for a s<strong>in</strong>gle<br />

<strong>in</strong>ductor as a function of operat<strong>in</strong>g frequency.<br />

10<br />

0.65-mm gap and 13 turns. With a<br />

Litz-wire strand diameter of 0.05 mm<br />

(44 AWG) selected, ShapeOpt yields<br />

an optimal result of 314 total strands<br />

and a total w<strong>in</strong>d<strong>in</strong>g loss of 0.28 W.<br />

Fig. 3 details the placement of the<br />

w<strong>in</strong>d<strong>in</strong>g <strong>in</strong>side the bobb<strong>in</strong> w<strong>in</strong>dow<br />

with the green area be<strong>in</strong>g acceptable<br />

for w<strong>in</strong>d<strong>in</strong>g and the white area be<strong>in</strong>g<br />

void space.<br />

In practice, this bobb<strong>in</strong> could<br />

quickly be prepped with a tape to mask<br />

out a rectangular cross section, which<br />

closely approximates the result shown<br />

<strong>in</strong> Fig. 3. This type of tape prep is very<br />

similar to the marg<strong>in</strong>-tape application<br />

widely used to ma<strong>in</strong>ta<strong>in</strong> creepage and<br />

clearance values to meet isolation<br />

requirements <strong>in</strong> transformers.<br />

From this simulation, it can be seen<br />

that it is not optimal to completely<br />

fill the bobb<strong>in</strong> with wire. In fact,<br />

that approach would result <strong>in</strong> much<br />

higher losses. This problem becomes<br />

even more acute as the frequency<br />

<strong>in</strong>creases.<br />

Fig. 4 is an example of an optimal<br />

solution for a s<strong>in</strong>gle <strong>in</strong>ductor<br />

as a function of frequency. As the<br />

frequency of the power <strong>in</strong>ductor<br />

<strong>in</strong>creases, the placement of the w<strong>in</strong>d<strong>in</strong>g<br />

<strong>in</strong>side the core w<strong>in</strong>dow becomes<br />

critical to obta<strong>in</strong><strong>in</strong>g the m<strong>in</strong>imumloss<br />

solution.<br />

Another topic <strong>in</strong>vestigated by<br />

Thayer researchers us<strong>in</strong>g the ShapeOpt<br />

Standard and<br />

Custom <strong>Power</strong><br />

Transformer<br />

Solutions<br />

Lam<strong>in</strong>ated and Toroidal<br />

<strong>Power</strong> Transformers,<br />

Inductors, and Custom<br />

High Frequency<br />

Magnetics<br />

Capabilities from 0.1 VA<br />

to 45 KVA<br />

PC and Chassis Mount<br />

4 RoHS-Compliant Products<br />

UL, CSA, VDE, IEC,<br />

and EN Certifi ed<br />

In-House Agency<br />

Certifi cation Program<br />

Large, F<strong>in</strong>ished Goods<br />

Inventory<br />

www.powerelectronics.com 17<br />

<strong>Power</strong> <strong>Electronics</strong> Technology July 2008<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

Custom Designs Welcome!<br />

PRONTO ®<br />

24 HOUR SHIPPING!<br />

Phone: 866/239-5777<br />

Fax: 516/239-7208<br />

Signal S ignal Transformer<br />

www.signaltransformer.com<br />

sales@signaltransformer.com<br />

Signal/<strong>Power</strong> Elec. 2/4/08.<strong>in</strong>dd 1 2/4/08 9:23:48 AM


W / h W<br />

w<strong>in</strong>d<strong>in</strong>g <strong>Losses</strong><br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Fig. 5. A survey of the ratio of height-to-width for several typical E-core geometries<br />

reveals that most of the available cores and bobb<strong>in</strong>s do not have optimal shapes for<br />

power <strong>in</strong>ductors us<strong>in</strong>g gapped cores.<br />

program was the optimal ratio of<br />

07008PET_WCoast_F5<br />

core-w<strong>in</strong>d<strong>in</strong>g w<strong>in</strong>dow height to core-<br />

strand<strong>in</strong>g) and vary<strong>in</strong>g the w<strong>in</strong>dow<br />

height to w<strong>in</strong>dow breadth. When this<br />

w<strong>in</strong>d<strong>in</strong>g w<strong>in</strong>dow width. Obta<strong>in</strong><strong>in</strong>g is done, some <strong>in</strong>terest<strong>in</strong>g conclusions<br />

this optimal ratio <strong>in</strong>volves solv<strong>in</strong>g for can be drawn.<br />

the total w<strong>in</strong>d<strong>in</strong>g losses, while hold- At low frequencies, <strong>in</strong> the 1-kHz<br />

<strong>in</strong>g two factors constant (w<strong>in</strong>d<strong>in</strong>g- to 10-kHz range, the optimal ratio of<br />

Magnetics w<strong>in</strong>dow Generic perimeter Ad half and Litz-wire 11_07 1/18/08 w<strong>in</strong>dow 11:02 width AM to height Page 1is<br />

about 1. By<br />

Strip Wound Cores<br />

Tape Wound Cores<br />

Bobb<strong>in</strong> Cores<br />

Cut Cores<br />

110 Delta Drive<br />

Pittsburgh, Pa 15238<br />

Toll-Free: 1 800 245 3984<br />

Phone: 412 696 1333<br />

Fax: 412 696 0333<br />

Web: www.mag-<strong>in</strong>c.com<br />

Email: magnetics@spang.com<br />

EE ETD EC RM PQ<br />

Magnetics Hong Kong<br />

Asia Sales and Service<br />

Phone: +852 3102 9337<br />

Fax: +852 3585 1482<br />

Email: asiasales@spang.com<br />

Powder Cores<br />

Kool Mu ® Cores<br />

Molypermalloy Cores<br />

High Flux Cores<br />

XFLUX <br />

Optimal range<br />

for all<br />

frequencies<br />

the time the frequency <strong>in</strong>creases to<br />

500 kHz, the optimal ratio of width<br />

to height <strong>in</strong>creases to about 2.<br />

Compar<strong>in</strong>g this result to the ratio<br />

of height to width for several typical<br />

E-core geometries (Fig. 5), it quickly<br />

becomes apparent that most core<br />

and bobb<strong>in</strong>s available on the market<br />

today do not have optimal shapes for<br />

power <strong>in</strong>ductor designs us<strong>in</strong>g gapped<br />

cores.<br />

References<br />

1. The shaped-foil technology is<br />

patented by Dartmouth College, and<br />

West Coast Magnetics is a licensee.<br />

2. This experiment was designed by<br />

West Coast Magnetics and electrical<br />

eng<strong>in</strong>eer Jennifer Pollock, Ph.D., of<br />

Dartmouth’s Thayer School of Eng<strong>in</strong>eer<strong>in</strong>g.<br />

Professor Charles Sullivan of<br />

the Thayer School of Eng<strong>in</strong>eer<strong>in</strong>g and<br />

Ryan Goldhahn, a Duke University<br />

Ph.D. candidate, also were <strong>in</strong>volved<br />

with the experiment. PETech<br />

Ferrite Cores<br />

<strong>Power</strong> Materials<br />

High Permeability Materials<br />

Special Materials<br />

<strong>Power</strong> <strong>Electronics</strong> Technology July 2008 18<br />

www.powerelectronics.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!