19.08.2013 Views

PDF - University of Maryland

PDF - University of Maryland

PDF - University of Maryland

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

test.col.pp4<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong><br />

Concepts and Technologies<br />

for Robotic Servicing <strong>of</strong><br />

Hubble Space Telescope<br />

David Akin, Brian Roberts,<br />

Walt Smith, and Brook Sullivan<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>,<br />

College Park<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Presentation Overview<br />

• Space Systems Laboratory background<br />

• Relevant SSL technologies<br />

• Ranger: system and experiences<br />

• Recent HST studies<br />

• Mission concepts<br />

• Conclusions<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

ARAMIS Telerobotics Study<br />

Survey <strong>of</strong> five NASA “Great Observatories” to<br />

assess impacts and benefits <strong>of</strong> telerobotic<br />

servicing - major results:<br />

• Ground-controlled telerobotics is a pivotal<br />

technology for future space operations<br />

• Robotic system should be designed to perform<br />

EVA-equivalent tasks using EVA interfaces<br />

– Maximum market penetration for robot<br />

– Maximum operational reliability<br />

– Designing to EVA standards well understood<br />

• Fully capable robotic system needs to be able to<br />

do rendezvous and proximity operations,<br />

grapple, dexterous manipulation<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Fundamental Concept <strong>of</strong> Robotic Servicing<br />

Human Workload<br />

Issues?<br />

Control Station<br />

Design?<br />

Manipulator<br />

Design?<br />

Ground Control?<br />

Flexible Connections<br />

to Work Site?<br />

Multi-arm Control and<br />

Operations?<br />

Interaction with Nonrobot<br />

Compatible<br />

Interfaces?<br />

Utility <strong>of</strong><br />

Interchangeable<br />

End Effectors?<br />

Ground-based<br />

Simulation<br />

Technologies?<br />

Capabilities and<br />

Limitations?<br />

Hazard Detection and<br />

Avoidance?<br />

Development,<br />

Production, and<br />

Operating Costs?<br />

Effects and Mitigation<br />

<strong>of</strong> Time Delays?<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Beam Assembly Teleoperator<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

SSL Relevant Experience Timeline (1)<br />

‘80 ‘81 ‘82 ‘83 ‘84 ‘85 ‘86 ‘87 ‘88 ‘89<br />

SSL studies applications<br />

<strong>of</strong> automation, robotics,<br />

and machine intelligence<br />

for servicing Hubble and<br />

other Great Observatories<br />

for NASA MSFC<br />

Initial operational<br />

tests <strong>of</strong> Beam<br />

Assembly<br />

Teleoperator<br />

Experimental<br />

Assembly <strong>of</strong><br />

Structures in EVA<br />

flies on STS 61-B<br />

BAT used for<br />

extensive<br />

servicing tests on<br />

HST training<br />

mockup<br />

SSL develops<br />

ParaShield<br />

flight test<br />

vehicle for<br />

suborbital<br />

mission<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Ranger Telerobotic Flight Experiment<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

SSL Relevant Experience Timeline (2)<br />

‘90 ‘91 ‘92 ‘93 ‘94 ‘95 ‘96 ‘97 ‘98 ‘99<br />

SSL<br />

designs<br />

Ranger<br />

based on<br />

experience<br />

with HST<br />

servicing<br />

UMd NBRF opens<br />

NASA<br />

selects<br />

Ranger TFX<br />

as low-cost<br />

robotic flight<br />

experiment<br />

Ranger NBV<br />

operational<br />

Ranger performs<br />

end-to-end HST<br />

servicing simulations<br />

SSL directed to<br />

redesign<br />

Ranger for<br />

shuttle mission:<br />

Ranger TSX<br />

Phase 0<br />

PSRP<br />

RTSX<br />

PDR<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong><br />

RTSX<br />

CDR<br />

Phase 1<br />

PSRP<br />

Phase 2<br />

PSRP<br />

Environmental<br />

testing at JSC


test.col.pp4<br />

Ranger Neutral Buoyancy Vehicle I<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Ranger Telerobotic Shuttle Experiment<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

SSL Relevant Experience Timeline (3)<br />

2000 2001 2002 2003 2004<br />

PXL in NB<br />

testing<br />

Development <strong>of</strong> ECU<br />

operations timeline<br />

All-up mockup for public<br />

outreach<br />

Ranger TSX<br />

program<br />

cancelled<br />

Dual-arm system in<br />

active test<br />

Modular<br />

miniature<br />

servicer<br />

development<br />

for DARPA<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Robotic HST Servicing - Batteries<br />

BAT (1987)<br />

RANGER (2003)<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Robotic HST Servicing - Instruments<br />

FGS<br />

ECU<br />

WFPC<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Ranger Flight Dexterous Arms<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Dexterous Arm Design Objectives<br />

• Approximately EVA-glove-sized end effectors with 30<br />

lbf capability and 30 lb-ft torque capability in any<br />

direction, and 45° per second joint velocities<br />

• Allow safe surface contact despite communications<br />

time delays requires active compliance-control loop<br />

closed onboard<br />

• Sufficient arm articulation for a wide range <strong>of</strong> tasks in<br />

a cluttered workspace<br />

• Allow exchange <strong>of</strong> specialized end effectors<br />

• Two mechanical tool drives to each end effector<br />

• For cooperative tasks, two arms with intersecting<br />

workspaces mounted on narrow base<br />

• Where feasible, additional sensors as alignment aids<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Dexterous Manipulator System Design<br />

Objectives Design Consequences<br />

Performance goals --- # <strong>of</strong> sensors, actuators --- # <strong>of</strong> wires<br />

Envelope requirements<br />

Reliability --- No external wiring<br />

Internal temperature monitoring<br />

Force/Torque sensing requirement<br />

Component temperature limits --- thermal analysis<br />

results<br />

Reliability, low maintenance<br />

Performance, low friction<br />

Thermal environment<br />

Component temperature limits --- thermal analysis<br />

results<br />

Serial communications,<br />

constant-length wiring<br />

through joint axes<br />

Short wiring runs<br />

for analog signals<br />

Brushless DC<br />

motors for arm<br />

actuation<br />

Internal heat sinks<br />

Aluminum and<br />

copper<br />

circumferential<br />

conductive paths<br />

Local<br />

processors for<br />

inner control<br />

loops<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Dexterous Manip System Design (cont.)<br />

Electrical Power<br />

limitations<br />

Thermal variation<br />

Thermal environment<br />

Objectives Design Consequences<br />

45-day nominal active design life without<br />

access for recalibration<br />

Control bandwidth goals<br />

Friction rejection<br />

Compliance Loop performance requirements --- stiff drive, no<br />

backlash<br />

Envelope<br />

requirements<br />

Unregulated Bus for<br />

high efficiency<br />

Joint-level control loops based on<br />

digital sensors to avoid analog drift<br />

and noise<br />

Co-located position<br />

sensors for high-gain inner<br />

joint loops<br />

Large<br />

harmonic<br />

drives<br />

Compliance Loop performance requirements --- high outer loop rate --- simple<br />

kinematics<br />

Contact stability requirements<br />

Task requirements --- ≥7 DOF (w/elbow pose)<br />

Envelope requirements<br />

Workspace requirements<br />

Current driver<br />

circuits rather<br />

than Voltage<br />

drivers<br />

Motors inside<br />

harmonic drives<br />

3 DOF intersecting<br />

axis shoulder<br />

4 DOF intersecting<br />

axis wrist<br />

1 elbow pitch w/<br />

<strong>of</strong>fset<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

4-Axis Skew Wrist Design<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Wrist Roll<br />

Drive (aft)<br />

Why a Skew Axis?<br />

• Lower interference <strong>of</strong> the tool with the<br />

forearm extends pitch travel<br />

• Single-sided support <strong>of</strong> the inner wrist<br />

allows for greater yaw range<br />

• Frontal area <strong>of</strong> the wrist reduced by<br />

skew layback <strong>of</strong> pitch actuator<br />

Orthogonal 4-axis<br />

Yaw Drive<br />

Pitch Drive<br />

Hand Roll &<br />

Tool Drives<br />

Wrist Roll<br />

Drive (aft)<br />

Skew 4-axis<br />

Pitch Drive<br />

Yaw Drive<br />

Wrist Roll &<br />

Tool Drives<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


Pitch<br />

test.col.pp4<br />

180°<br />

135°<br />

90°<br />

45°<br />

0°<br />

-45°<br />

-90°<br />

-135°<br />

-180°<br />

Wrist Workspace Evolution<br />

3-DOF Wrist<br />

-180° -135° -90° -45° 0° 45° 90° 135° 180°<br />

Yaw<br />

Yaw, Wrist Roll, Hand Roll<br />

Pitch<br />

180°<br />

135°<br />

90°<br />

45°<br />

0°<br />

-45°<br />

-90°<br />

-135°<br />

-180°<br />

-180° -135° -90° -45° 0° 45° 90° 135° 180°<br />

- Workspace<br />

Orthogonal 4-DOF Wrist<br />

Yaw<br />

- Tool aligned with second link<br />

Yaw, Wrist Roll<br />

Yaw<br />

- Single singularity: redundancy lost in one or more axis;<br />

constrained axes are indicated<br />

- Double singularity; wrist drops to 2-DOF<br />

Hand Roll, Pitch<br />

Hand Roll, Pitch<br />

Pitch<br />

180°<br />

135°<br />

90°<br />

45°<br />

0°<br />

-45°<br />

-90°<br />

-135°<br />

-180°<br />

Skew 4-DOF Wrist<br />

-180° -135° -90° -45° 0° 45° 90° 135° 180°<br />

Yaw<br />

Yaw, Wrist Roll<br />

Hand Roll<br />

Pitch<br />

Yaw<br />

Hand Roll<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

φ (deg)<br />

1080<br />

720<br />

(deg)<br />

φ<br />

360<br />

0<br />

Toolspace Comparison<br />

skew RPYR<br />

orthogonal RPYR<br />

RPR<br />

0 45 90 135 180<br />

θ (deg)<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Wrist Yaw Axis<br />

Hand Roll Axis<br />

Slow Tool Axis<br />

Fast Tool Axis<br />

Dexterous Arm Cross-Section<br />

Wrist Camera<br />

Wrist Pitch Axis<br />

Elbow Roll Axis<br />

Force/Torque Sensor<br />

Wrist Roll Axis<br />

Elbow Pitch Axis<br />

Shoulder Pitch Axis<br />

Shoulder Roll Axis<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Inner Wrist (Exploded View)<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Bearing/Housing Design<br />

• Problem: Steel (α = 7 µin/in°F) bearing<br />

installed in Aluminum (α = 13.1 µin/in°F)<br />

housing. Over a wide temperature range<br />

the mismatch can cause the bearing to<br />

spin in housing or seize.<br />

• Solution: Install appropriately-sized Invar<br />

(α = 0.7 µin/in°F) sleeve between bearing<br />

and housing. Sleeve size is chosen taking<br />

into account elastic deformation <strong>of</strong><br />

bearing race, sleeve, and housing.<br />

Preload is provided by interference<br />

(shrink) fit <strong>of</strong> sleeve in housing.<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


Bearing Installed<br />

Directly in Housing<br />

test.col.pp4<br />

Bearing Design Example<br />

.250"<br />

Ø6.250"<br />

Aluminum 6061-T6<br />

Housing<br />

Invar Sleeve<br />

Kaydon KC055BD6C<br />

Ball Bearing<br />

.250"<br />

.082"<br />

Sleeve Installed<br />

Between Bearing<br />

and Housing<br />

Effect <strong>of</strong> Invar sleeve is to make bearing preload invariate with temperature<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Actuator Performance Summary<br />

Wrist Yaw<br />

Wrist Pitch<br />

Shoulder Roll Elbow Roll Hand Roll<br />

Shoulder Pitch Elbow Pitch Wrist Roll Slow Tool Fast Tool<br />

Motor RBE-02112A RBE-01812A RBE-01812A BMS-3302A RBE-01512B<br />

Ratio 101 101 61 120 1<br />

Torque (ft lb) 201 118 71 52 1<br />

No-load Vel (°/s) 56 101 168 139 15675<br />

Motor rpm (max) 948 1707 1708 2797 5225<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Dexterous Arm Parameters<br />

• Modular arm with co-located electronics<br />

– Embedded 386EX rad-tolerant processors<br />

– Only power and 1553 data passed along arm<br />

• 53 inch reach mounting plate-tool interface plate<br />

• 8 DOF with two additional tool drives (10<br />

actuators)<br />

• Interchangeable end effectors with secure tool<br />

exchange<br />

• 30 pounds tip force, full extension<br />

• 150 pounds (could be significantly reduced)<br />

• 250 W (average 1G ops)<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Design Loads<br />

• Nominal Operations; Structural Load Path<br />

– Fx, Fy, Fz: 300 lbf<br />

– Mx, My, Mz: 200 lb-ft<br />

• Actuator Input-side Loads (pure moment)<br />

– Shoulder Actuators: 650 oz-in<br />

– Elbow, Wrist Roll Actuators: 400 oz-in<br />

– Wrist Pitch, Yaw, Hand Roll, Slow Tool Actuators: 230 oz-in<br />

– Fast Tool Actuator: 240 oz-in<br />

• Actuator Output-side Loads (pure moment)<br />

– Shoulder Actuators: 200 lb-ft<br />

– Elbow Actuators: 120 lb-ft<br />

– Wrist Roll Actuator: 70 lb-ft<br />

– Wrist Pitch, Yaw, Hand Roll, Slow Tool Actuators: 50 lb-ft<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Design Loads (continued)<br />

• Collision Loads; External Housings<br />

– Maximal collision: 10 Joules (equivalent to 20 kg @ 1 meter/sec)<br />

– Method: assume kinetic energy converted to strain energy; find<br />

stresses for concentrated loading <strong>of</strong> component that produces<br />

the same strain energy<br />

• Launch and Landing Loads<br />

– Assume Stowed Configuration<br />

– Accelerations:<br />

– X: ± 7.9 G<br />

– Y: ± 4.9 G<br />

– Z: + 8.3 G, - 6.3 G<br />

– Subject to refinement with coupled-loads analysis<br />

• Consider additional loads in some cases:<br />

– Thermal ambient operational limits: -60° to +100° C<br />

– Assembly<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Generalized Inverse Kinematics<br />

WRIST JOINT<br />

ANGLES<br />

WRIST<br />

FORWARD<br />

KINEMATICS<br />

WRIST<br />

JACOBIAN<br />

MANIPULABILITY,<br />

JOINT LIMIT INDEX<br />

0<br />

RT J W<br />

ROTATIONAL<br />

CHANGE<br />

WRIST<br />

PSEUDOINVERSE<br />

JACOBIAN<br />

WRIST<br />

NULLSPACE<br />

JACOBIAN<br />

NULLSPACE<br />

VELOCITY<br />

0<br />

RT des<br />

Δr<br />

†<br />

J W<br />

0/<br />

JW r 0/<br />

HAND<br />

CONTROLLER<br />

φ,θ,ψ<br />

DESIRED<br />

TOOL<br />

ORIENATION<br />

Δθ p<br />

Δθ 0/<br />

+<br />

Δθ<br />

+<br />

W<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Singularity Avoidance (Experiment)<br />

Forearm rolls to avoid singularity<br />

0:13<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Interchangeable End Effector Mech.<br />

• 3 Mechanical Interfaces<br />

– Hand Roll Drive<br />

– Fast Tool Drive<br />

– Slow Tool Drive<br />

• No power or data<br />

interface<br />

Each IEEM is<br />

approximately<br />

2.75” Ø by 2”.<br />

Weight is 2 lbs.<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Interchangeable End-Effector Mechanism (IEEM)<br />

• Objectives<br />

– Permit teleoperated and possible autonomous tool changeout<br />

– Allow a rigid connection <strong>of</strong> Hand Roll DOF to tool structure<br />

– Allow a connection <strong>of</strong> two, Tool Drive actuators<br />

– Avoid introducing extra actuators or sensors<br />

– Minimize risk <strong>of</strong> tool detaching from DX Manipulator<br />

– Minimize risk <strong>of</strong> tool detaching from Tool Post<br />

– Package mechanism compactly<br />

» Minimize Tool/Wrist-center distance<br />

» Maintain clear Wrist Camera field <strong>of</strong> view<br />

» Maintain center shaft clear for boresight laser<br />

• Design Consequences: 5-State Mechanism<br />

– IEEM locked to Tool Post, back-driving blocked<br />

– DX Manipulator “S<strong>of</strong>t-Docked” to IEEM, IEEM locked to Tool Post<br />

– IEEM locked to both DX Manipulator and Tool Post<br />

– IEEM locked to DX Manipulator, “S<strong>of</strong>t-Docked” with Tool Post<br />

– IEEM locked to DX Manipulator, free from Tool Post, back-driving blocked<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

IEEM Attached to Tool Post<br />

6 inches<br />

5<br />

4<br />

3<br />

2<br />

4<br />

0<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

IEEM Exploded View<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

State 1: IEEM Locked to Tool Post<br />

Tool Post<br />

Slotted Ring<br />

Blocking Latch<br />

Ball-Locks<br />

• Slotted Ring retains mushroom end <strong>of</strong> Tool Post<br />

• Two Ball-locks prevent ring rotation<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

State 2: Manipulator Engages IEEM<br />

Manipulator teeth engaging<br />

Slotted Ring<br />

• Three teeth on Manipulator engage Slotted Ring<br />

• Two Ball-locks are released, permitting Ring rotation<br />

• Tool drives self-align and engage<br />

Ball-lock (Released)<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

States 3, 4: Manipulator Rotates 60°<br />

Three Manipulator flanges<br />

engage IEEM flanges<br />

60°<br />

• State 3: Three flanges on Manipulator engage flanges on IEEM at<br />

beginning <strong>of</strong> rotation, locking Manipulator axially to IEEM<br />

• State 4: At end <strong>of</strong> rotation, mushroom end <strong>of</strong> Tool Post is free to<br />

disengage from IEEM<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

State 5: Disengage Tool Post<br />

Blocking Latch<br />

(rotated)<br />

• Outward radial motion <strong>of</strong> Tool Post rotates Blocking Latch,<br />

preventing reverse rotation <strong>of</strong> Slotted Ring<br />

• When Tool Post is free, spring plunger in detent prevents<br />

back-rotation <strong>of</strong> Blocking Latch<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

IEEM Bearing Design<br />

• Problem: Locking Collar has poor thermal<br />

contact with IEEM inner structure, since it<br />

is supported on ball bearings. If a large<br />

temperature difference develops, the<br />

bearings could seize.<br />

• Solution: Design contact angle <strong>of</strong><br />

bearings such that contact cones intersect<br />

on centerline <strong>of</strong> IEEM. Then any<br />

differential expansion <strong>of</strong> Locking Collar<br />

w.r.t. center structure occurs parallel to<br />

bearing contact, not affecting clearance or<br />

preload.<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Schematic <strong>of</strong> IEEM Bearings<br />

As Installed, Homogeneous<br />

Temperature<br />

Bearing Contact Cones<br />

Intersect on Centerline<br />

Locking Collar Contracted 2%<br />

(4000°F ΔT)<br />

No change in clearance<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Arm Side<br />

Wrist Camera View<br />

IEEM<br />

Tool Side<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Tool Drives<br />

• Tool Drive Motor Controllers are primary method<br />

for commanding / sensing EE gripping force or<br />

output torque<br />

• Tool Drive Motor Specifications<br />

– Hand Roll Drive (High Torque, Low Speed)<br />

– Slow Tool Drive (High Torque, Low Speed)<br />

– 52 ft-lbs, 139 °/s no load<br />

– Fast Tool Drive (Low Torque, High Speed)<br />

– 1 ft-lb, 15,675 °/s no load<br />

– Must add gearing to use<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

End Effector Design Drivers<br />

• Structural / Mechanical Requirements<br />

– Grasp must be non-back-driveable<br />

– Factor <strong>of</strong> safety <strong>of</strong> 1.4 (Test) or 2.0 ( Analysis)<br />

– Withstand 300 lbs Force Along All Axes<br />

– Withstand 200 ft-lbs Moment About All Axes<br />

– Survive 6.75J Impact<br />

– Withstand Launch & Landing Loads<br />

– Meet NASA EVA contact spec<br />

– Meet RTSX Thermal Range<br />

• Operational<br />

– Visual Turn Indicators<br />

– Tool Color Should Contrast With Task Equipment (Not Black)<br />

– Visual Access for Grasp Verification<br />

– Neutral Buoyancy Compatible<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Bare Bolt Drive<br />

RTSX End Effectors<br />

Right Angle Drive<br />

Microconical<br />

End Effector<br />

Tether Loop<br />

Gripper<br />

EVA Handrail<br />

SPAR Gripper<br />

Gripper<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

• Interfaces<br />

– 7/16” Hex Head Bolts<br />

– ECU Keyway Slot Bolts<br />

– APFR Latch Bolts<br />

• Characteristics<br />

• 5 lbs.<br />

• 12” x 3”ø<br />

• Status<br />

– NBV version in use<br />

Bare Bolt Drive (BBD)<br />

IEEM<br />

NBV<br />

Prototype<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Microconical End Effector (MEE)<br />

• Interfaces<br />

– RPCM Microconical Interface<br />

• Characteristics<br />

• 12 lbs. est.<br />

• 8” x 3”ø<br />

• Status<br />

– Drawings and Stress Analysis for EVA<br />

version received from OSS<br />

– IDEAS models completed<br />

– Not currently fabricated<br />

IEEM<br />

Microconical<br />

Interface<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

• Interfaces<br />

– 7/16” Hex Head Bolts<br />

– ECU Connector Drive<br />

• Characteristics<br />

• 6 lbs.<br />

• 8” x 6” x 3”<br />

• Status<br />

– NBV version in use<br />

Right Angle Drive (RAD)<br />

IEEM<br />

NBV<br />

Prototype<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

• Interfaces<br />

APFR Paddle Gripper (APG)<br />

– APFR Locking Collar<br />

– APFR Paddles<br />

– APFR Detent Levers<br />

• Characteristics<br />

– 9 Lbs.<br />

– 14” X 11” X 3”<br />

– PJM Based<br />

• Typical <strong>of</strong> parallel<br />

jaw mechanism<br />

flexibility for<br />

specialized<br />

interfaces<br />

IEEM<br />

Levers<br />

Paddles<br />

Collar<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


Tether<br />

Loop<br />

Gripper<br />

test.col.pp4<br />

Bare<br />

Bolt<br />

Drive<br />

Right<br />

Angle<br />

Drive<br />

Task Interfaces - ECU<br />

Electronic Controller Unit<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Task Interfaces - APFR<br />

Yoke<br />

Interfaces Include:<br />

1. Quarter Turn Rings (2)<br />

2. Latch Bolts (2)<br />

3. Lock Knob<br />

4. Yoke<br />

5. Detent Levers<br />

6. Locking Collar<br />

7. Paddles<br />

AQP<br />

BBD<br />

AQP<br />

TLG<br />

APG<br />

APG<br />

APG<br />

Plus use BBD to rotate APFR probe<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Ranger PXL System Requirements<br />

• Device to supply full 6 DOF mobility within a limited work<br />

volume<br />

• Force max: 25 lbf Torque max: 200 ft-lbf<br />

• Stiffness: 250 Klbf/rad Angular Speed max: 12º/sec<br />

• End point accuracy +/-.12”, precision .01”<br />

• Provide means to react loads generated by Ranger<br />

performing task duties while minimizing overall deflection<br />

• Design to maximize natural frequency <strong>of</strong> device with a target<br />

minimum <strong>of</strong> 10 Hz<br />

• Capable <strong>of</strong> reacting 580 ft-lbf torque due to Primary<br />

Reaction Control System firings (PRCS)<br />

• Brakes engage when no power is supplied<br />

• Brakes must have manual (EVA) over-ride<br />

• EVA interfaces to be at least 24” away from SLP end<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


Design Requirements<br />

• Control electronics same as in the DX & VM<br />

• Co-located at actuator operated by serial command<br />

1553<br />

• Main power 48VDC 10A max, control power 28VDC<br />

• No changing form factors on cards from DX design<br />

• Pass through hole to be integrated in spine <strong>of</strong> mechanism<br />

approximately 1” diameter<br />

• Drive system to use DC brush-less motors<br />

• Each actuator to have triple redundant position feedback. One<br />

feedback system gives absolute position information that<br />

maintains position after power loss<br />

• Actuator drive system back drive-able under zero power<br />

conditions<br />

• Actuators connected using aerospace standard V-couplings to<br />

facilitate assembly<br />

test.col.pp4<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

~19”<br />

Ø 9.5”<br />

~75”<br />

Design:PXL Assembly<br />

Pitch<br />

Joints<br />

Electronics’ Housing<br />

Roll<br />

Joints<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong><br />

EVA<br />

Interface


Inner<br />

Housing<br />

Absolute Encoder<br />

test.col.pp4<br />

Design: Roll Joint<br />

Outer Housing Main Drive Gear Motor<br />

Driveshaft<br />

Flexspline<br />

Wave<br />

Generator<br />

Incremental<br />

Encoder<br />

Brake<br />

EVA Interface<br />

Pass Through<br />

Tube (Ø .80”)<br />

Brake<br />

Release<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

PXL in Stowed Configuration<br />

Side View<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Components: Harmonic Drive<br />

• Double the torsional<br />

stiffness<br />

• Double the peak torque<br />

ratings<br />

• Double the life<br />

• No reduction in efficiency<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


Components: Brake<br />

• Electroid Model MRFSB-150-16<br />

test.col.pp4<br />

– Release mechanism will need<br />

augmentation to penetrate<br />

housing<br />

– Drive shaft hub through hole can<br />

be enlarged up to Ø1.25” with any<br />

keyed or spline pr<strong>of</strong>ile<br />

– Supply voltage can be changed to<br />

48VDC<br />

– Release has detent which releases<br />

when power is supplied<br />

– Brake material Kinel 5504<br />

» Polyimide material<br />

» Mfg Thermech Eng. Crop<br />

» Per MSFC 82496<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Components: Incremental Encoder<br />

Stegmann model HG900E<br />

• Reader supported by<br />

bearings in respect to disk<br />

• Clamps directly to shaft and<br />

uses torque reaction bar to<br />

stabilize<br />

• No external housing reduces<br />

bending moment load on<br />

drive<br />

• Through hole size 30mm<br />

(1.18”)<br />

• Company has space<br />

experience with lower quality<br />

version <strong>of</strong> same model (K15)<br />

on space station<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Back Up: Components,Absolute Encoder<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Components: Absolute Encoder<br />

BEI Model µS14/40L Absolute Through Hole<br />

Encoder<br />

– Ø1” through hole<br />

– Reader supported by bearings in respect to disk<br />

– Robust design with much space history<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Components: Motor<br />

Kollmorgen Model RBE-03010A-00<br />

• Brushless design with integrated Hall effect sensors<br />

• Frameless design permits for efficient packaging with<br />

other components such as harmonic drive, brake and<br />

encoders<br />

• Company has much space and flight experience<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Components: V-Clamp<br />

40º V-Clamp System to Aerospace standard AS1895<br />

• History <strong>of</strong> accessory mounting applications<br />

• Very high preload<br />

• Approximately 17,000 lbf depending on clamp material<br />

• Keeps joint rigid preventing stressing internal components<br />

• Pilot feature ensures proper alignment<br />

• Failsafe latch device protects against bolt failure<br />

• Joint can be disassembled without removing nut<br />

• Available in A286, Titanium, Aluminum or Inconel<br />

• Multiple vendors including Voss Aerospace and local EG&G Pressure<br />

Science<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

PXL Assembly and Testing<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

PXL Underwater Operations<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Ranger Control Station<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Ground Control Station<br />

Video Rack Operator Console #1<br />

Operator Console #2<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Control Stations Overview<br />

• Ranger was designed from the outset to be<br />

controlled from the ground<br />

• Ground Control Station Functions<br />

– Real-time ground team control <strong>of</strong> robot<br />

– On-ground monitoring <strong>of</strong> FCS operations<br />

– Command, telemetry, and video recording<br />

– Video distribution to Payload Officer<br />

– Recording <strong>of</strong> RTSX related audio loops<br />

• Same control station is used to control identical<br />

underwater robot in neutral buoyancy simulation<br />

– Preflight training<br />

– Inflight contingency workarounds<br />

– Automated sequence development<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Flight<br />

Control<br />

Station<br />

Orbiter<br />

Ku Ch.2 (Data&Cmd))<br />

RS-422<br />

(128kbps/2 Mbps)<br />

Ku Ch.3 (Digital Video)<br />

RS-422 (10 Mbps)<br />

RTSX Telemetry Distribution<br />

OCA<br />

Router<br />

Video<br />

DeMUX and<br />

Dist.<br />

MUX<br />

Note: No DeMUX<br />

T1/T3 Modem<br />

To<br />

UMD<br />

NOTE:<br />

10 BaseT<br />

Video Distribution is shown<br />

on a separate diagram for<br />

clarity<br />

10 BaseT<br />

PCC<br />

Ethernet<br />

Hub<br />

10 BaseT<br />

10 BaseT<br />

10 BaseT<br />

10 BaseT<br />

10 BaseT<br />

10 BaseT<br />

RTSX<br />

Operator<br />

Position<br />

#1<br />

RTSX<br />

Operator<br />

Position<br />

#2<br />

RTSX<br />

Graphics<br />

Engine<br />

RTSX<br />

Data<br />

Archiver<br />

MCC/FCR<br />

Payload<br />

Officer<br />

Console<br />

CSR<br />

RTSX<br />

Telemetry<br />

Display<br />

RTSX Equipment<br />

JSC Equipment<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong><br />

To<br />

Rest<br />

Of<br />

NASA/<br />

PAO


test.col.pp4<br />

Flight<br />

Control<br />

Station<br />

Orbiter<br />

GCS Audio / Video Distribution<br />

Ku Ch.2 (Data/Cmd))<br />

RS-422<br />

(128kbps/2 Mbps)<br />

Ku Ch.3 (Digital Video)<br />

RS-422 (10 Mbps)<br />

RTSX<br />

Telemetry<br />

Dist.<br />

Video<br />

DeMUX and<br />

Decoder<br />

MUX<br />

Note: No DeMUX<br />

T1/T3 Modem<br />

To<br />

UMD<br />

NOTE:<br />

Telemetry Distribution is<br />

shown on a separate diagram<br />

for clarity<br />

NTSC Composite<br />

PCC<br />

Video<br />

Distribution<br />

Amplifiers<br />

and<br />

Matrix<br />

Switcher<br />

NTSC<br />

Composite<br />

NTSC<br />

Composite<br />

NTSC Composite<br />

RTSX<br />

Operator<br />

Consoles<br />

RTSX<br />

Video<br />

Recorders<br />

DVIS<br />

NTSC Composite<br />

To<br />

NASA Video Dist.<br />

(FCR, PAO, etc.)<br />

CSR<br />

RTSX<br />

Video<br />

Display<br />

RTSX Equipment<br />

JSC Equipment<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

• Power<br />

GCS Services / Interfaces<br />

– GCS is powered from 110 VAC standard wall outlets<br />

– Total power consumption: 5200 W<br />

• Floor Space<br />

– Operator Consoles: approx 60 ft2<br />

– Video Rack: approx 20 ft2<br />

• Ethernet comm to spacecraft via TDRSS<br />

(equivalent to OCA bent-pipe to orbiter)<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


• Video Rack Functions<br />

– Decodes / demutiplexes the Ku<br />

Ch.3 downlinked video<br />

– Records 5 video feeds (4<br />

downlinked, one ground<br />

generated)<br />

– Amplifies and distributes video<br />

to rest <strong>of</strong> GCS and Payload<br />

Officer<br />

– Provides constant video<br />

“preview” <strong>of</strong> downlinked<br />

channels<br />

– Records RTSX voice loops on<br />

VCRs<br />

test.col.pp4<br />

GCS Components: Video Rack<br />

Item Manufacturer Part Number Quantity<br />

VCRs Sony EV-C200 5<br />

4” Quadruple<br />

Mono<br />

Monititors<br />

Sony PVM-411 2<br />

VDA Chassis Grass Valley 8900T2 1<br />

VDAs Grass Valley 8801 4<br />

Video Switcher<br />

(32x32)<br />

Autopatch 4YDM.3232.V1 1<br />

Video Decoder Enerdyne DEC1000R10 1<br />

CrystalEyes<br />

View/Record<br />

Unit<br />

Sterographics VW (NTSC) 1<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

GCS Components: Ops Console #1<br />

• Operator Console #1<br />

Functions<br />

– Provides real-time control <strong>of</strong><br />

Ranger<br />

– Displays telemetry <strong>of</strong> operator’s<br />

choice on SGI display<br />

– Interfaces with the translational and<br />

rotation hand controllers as primary<br />

mode <strong>of</strong> robot control (see Control<br />

Station S<strong>of</strong>tware section for more<br />

info)<br />

– Interfaces with 3D advanced input<br />

device -- Specific device TBD<br />

– Displays video <strong>of</strong> operator’s choice<br />

on video displays<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

GCS Components: Ops Console #2<br />

• Operator Console #2 Functions<br />

– Provides real-time control <strong>of</strong><br />

Ranger<br />

– Displays telemetry <strong>of</strong> operator’s<br />

choice on SGI display<br />

– Interfaces with the translational and<br />

rotation hand controllers as primary<br />

mode <strong>of</strong> Robot control (see Control<br />

Station S<strong>of</strong>tware section for more<br />

info)<br />

– Interfaces with 3D advanced input<br />

device<br />

– Displays video <strong>of</strong> operator’s choice<br />

on video displays<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Predictive and Commanded Displays<br />

Predictive Display<br />

• Predictive displays run a simulation<br />

to forecast what the actual system<br />

will do<br />

• Only as good as the model <strong>of</strong> the<br />

simulation and its error calibration<br />

technique<br />

• Dynamic simulation can require a<br />

large amount <strong>of</strong> processing<br />

• Simulation typically runs faster and<br />

is updated by actual sensor data to<br />

calibrate any errors<br />

• Can show dynamics and transient<br />

motion <strong>of</strong> the system<br />

• Useful for handling force and<br />

contact operations<br />

Commanded Display<br />

• Commanded displays use supervisory<br />

control methods and display the<br />

command sent to the actual system<br />

• The display is integral in the control <strong>of</strong><br />

the system<br />

• Requires on board processing to close<br />

the loop about the displayed command<br />

• Commanded simulation can be simple<br />

requiring little processing, processing<br />

load is placed on board<br />

• Does not show dynamics, only the<br />

steady state solution<br />

• Can be used to control the vehicle in<br />

real time, or can be used <strong>of</strong>f-line to<br />

develop a script <strong>of</strong> actions<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Time Delay and Sampling Rate<br />

50 6<br />

40<br />

3<br />

6P<br />

30<br />

3P<br />

20<br />

1.5<br />

6C<br />

10<br />

3C<br />

0<br />

1.5C<br />

2.5 5 10 20<br />

0<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Sampling Rate Across Time<br />

Delay and Display Method<br />

0<br />

Unmitigated Time<br />

Delay Effects<br />

3 1.5 0 0<br />

6 in/s<br />

1.3 in/s<br />

• The Modified Fitts’ Law task was used<br />

to determine the effects on performance<br />

due to time delay, the usage <strong>of</strong><br />

commanded and predictive displays, and<br />

command sampling rate<br />

• Time delay increased completion time,<br />

at 0.01 statistical significance<br />

• The effects <strong>of</strong> unmitigated time delay<br />

caused a linear increase in completion<br />

time<br />

• Decreasing sampling rate degraded<br />

performance, at 0.01 statistical<br />

significance for each level <strong>of</strong> reduction<br />

• A knee in performance occurred at a<br />

sampling rate <strong>of</strong> 5 Hz, below that a<br />

substantial effect on completion time<br />

existed<br />

• Unmitigated time delay was more<br />

affected by reduced sampling rate, even<br />

at rates above 5 Hz<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Commanded and Predictive Displays<br />

Time Delay and Display Method Effects<br />

• The commanded display severely reduced the performance degradation<br />

with 0.01 statistical significance<br />

• The commanded display reduced time delay effects on completion time up<br />

to 91% at 1.5-second delay<br />

– Subjects controlled the manipulator more accurately with the commanded display<br />

– Impacts were detected and compensated faster<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

6 3 6P 3P 1.5 6C 3C 1.5C 0<br />

Time Delay and Display Method<br />

• The predictive display also had better performance than time delay alone,<br />

at 0.01 statistical significance<br />

• The minor calibration errors caused the predictive displays to be about<br />

half as effective as the commanded display, a 0.01 statistical significant<br />

difference<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Impact Comparison<br />

Commanded Display’s Reduction <strong>of</strong> Impacts<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.00<br />

6 3 6P 3P 1.5 6C 3C 1.5C 0<br />

Time Delay and Display Method<br />

• Time delay and predictive display usage had no statistical significant<br />

effects on number <strong>of</strong> impacts<br />

• Use <strong>of</strong> the commanded display dramatically reduced errors, at 0.01<br />

significant level, even when compared to no time delay<br />

• Only 3 errors were made with a commanded display over 4 hours <strong>of</strong><br />

testing including 4 subjects testing a total <strong>of</strong> 1440 trials.<br />

• 20 times more errors were made without a commanded display<br />

• This reduction was due to subjects carefully positioning the<br />

commanded display to avoid an impact<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


45<br />

35<br />

25<br />

15<br />

5<br />

-5<br />

test.col.pp4<br />

Erroneous Commanded Displays<br />

Fixed Offset Error/Varying Time Delay Random Error/Varying Time Delay<br />

0 0.5 1 1.5 3<br />

NoCmd<br />

1.0o<br />

0.5o<br />

0.25o<br />

0.1o<br />

Cmd*<br />

0 0.5 1 1.5 3<br />

• The peg-in-hole task was used to determine the usefulness <strong>of</strong> erroneous<br />

commanded displays in ameliorating time delay effects<br />

• As error increased performance decreased, however the erroneous display<br />

still performed better than when no commanded display existed<br />

• The above performance curves are statistically significant at the 0.01 level,<br />

except between the 0.1 random error and the error free actual display only.<br />

• The increase in completion time at 0.5 second time delay may be due to the<br />

small delay or to the commanded display occluding the actual display<br />

• Number <strong>of</strong> impacts increased as the random error increased<br />

• Fixed error had a significant effect that didn’t scale with increased error<br />

45<br />

35<br />

25<br />

15<br />

5<br />

-5<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


Truncated Speed Limit Comparison<br />

test.col.pp4<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Scaled Speed Limit Comparison<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1 2 3 4 5 7.5 9<br />

Truncated Manipulator Speed [in/s]<br />

1 2 3 4 5 7.5 9<br />

Scaled Manipulator Speed [in/s]<br />

Manipulator Speed<br />

• The peg-in-hole task was used to compare various<br />

maximum allowable manipulator speeds<br />

• 1 and 2 inches/second speeds were slower than<br />

other speeds with 0.1 statistical significance or<br />

better<br />

• No preferred speed was found for the truncated<br />

speed limit<br />

• Only 10% time reduction separated the fastest<br />

from the slowest completion time between 2 and 9<br />

inches/second truncated manipulator speeds<br />

• A preferred speed <strong>of</strong> 7.5 inches/second was found<br />

when compared to all other scaled speeds at the<br />

0.1 significance level or better<br />

• Subject’s previous experience concentrated at 7.5<br />

inches/second speed, which may have influenced<br />

the results<br />

• Only 5% difference separated the times between 5<br />

and 9 inches/second scaled speeds<br />

• Number <strong>of</strong> impacts increased when operating at 9<br />

inches/second<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Summary Control Scheme Study<br />

• The peg-in-hole task was used to reinvestigate the effects <strong>of</strong> time delay,<br />

commanded display usage, error, manipulator speed, and output method<br />

– As with most previous studies, time delay was revisited to quantify its<br />

performance degradation<br />

– The amelioration effect <strong>of</strong> the commanded display was retested as well<br />

– One <strong>of</strong> the larger random error treatments was tested with zero error; it was<br />

expected that the error would degrade performance<br />

– The level <strong>of</strong> random error was high enough to create a meaningful effect<br />

without overwhelming the subject<br />

– The random error was tested with all other treatments not just the<br />

commanded display treatments, this simulated a malfunction in the system<br />

that the subject would compensate for<br />

– The two manipulator speeds evaluated, 3 and 6 inches/second, showed a small<br />

difference in the manipulator speed study that could be enhanced by<br />

interaction effects<br />

– Stereo and monoscopic displays were tested using the CrystalEyes LCD<br />

glasses; subjects were also tested on a 2-D monitor<br />

– It was believed that stereo would enhance performance, and that the use <strong>of</strong><br />

CrystalEyes would increase simulator sickness<br />

– All output methods had the same screen resolution and frame rate<br />

• This study also focused on any interaction between the above listed<br />

effects<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Time Delay and Commanded Display<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Completion Time<br />

Comparison<br />

0<br />

1.5C<br />

1.5<br />

3 NoE 3 Err 6 NoE 6 Err<br />

Manipulator Speed and<br />

Random Error<br />

Impacts Comparison<br />

• Results found that differences between the monitor, CrystalEyes without<br />

stereo, and stereo CrystalEyes were negligible<br />

• Previous results were confirmed, all completion time comparisons<br />

between zero time delay, 1.5 second delay with commanded display, and<br />

1.5 second delay with no commanded display were statistically significant<br />

at the 0.01 level<br />

• With no induced error, the commanded displays had statistically<br />

significant reduction <strong>of</strong> impacts<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

1.5C<br />

1.5<br />

3 NoE 3 Err 6 NoE 6 Err<br />

Manipulator Speed and Random<br />

Error<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

No Error<br />

Error<br />

Completion Time<br />

Comparison<br />

0TD 3 0TD 6 1.5C 3 1.5C 6 1.5TD 3 1.5TD 6<br />

Time Delay, Display Method, and Manipluator Speed<br />

All Error Comparisons are Significant at the 0.01 level<br />

Effects <strong>of</strong> Error<br />

Impacts Comparison<br />

• Error within the system degraded performance (statistically significant at<br />

the 0.01 level)<br />

• The effects <strong>of</strong> error were more dramatic with the commanded display,<br />

averaging a 60% increase in completion time when using the commanded<br />

display compared to 17% increase without a commanded display<br />

• Even with the error, the command display was still effective relieving the<br />

effects <strong>of</strong> time delay<br />

• Due to the random error algorithm, the effect on impacts was greater for<br />

the 3 inches/second manipulator speed increasing impacts by 450%<br />

• 6 inches/second manipulator speed was also affected with 77% increase<br />

in number <strong>of</strong> impacts<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

No Error<br />

Error<br />

0TD 3 0TD 6 1.5C 3 1.5C 6 1.5TD 3 1.5TD 6<br />

Time Delay, Display Method, Manipulator Speed<br />

All Error Comparisons are Significant at the 0.01 level<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

VII:Manipulator Speed Comparison<br />

3 in/s<br />

6 in/s<br />

Completion Time Comparison<br />

0<br />

0TD 0TD 1.5C 1.5C 1.5TD 1.5TD<br />

NoE Err NoE* Err NoE Err<br />

Time Delay, Display Method, Random Error<br />

* Not Statistically Significant<br />

• The error and speed interaction was reaffirmed,<br />

error caused greater degradation with the slower<br />

3 inches/second manipulator speed<br />

– With no error, less impacts occurred with the slower<br />

manipulator speed<br />

– The addition <strong>of</strong> error flipped the results, impacts<br />

increased with the slower speed with 0.01 statistical<br />

significance or better.<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

3 in/s<br />

6 in/s<br />

Impacts Comparison<br />

0TD 0TD 1.5C 1.5C 1.5TD 1.5TD<br />

NoE Err NoE* Err NoE Err<br />

Time Delay, Display Method, Random Error<br />

* Not Statistically Significant<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Overall Ranking <strong>of</strong> Effects<br />

Completion Time Comparison<br />

1.5TD 3 Err<br />

1.5TD 3 NoE*<br />

1.5TD 6 Err*<br />

1.5TD 6 NoE<br />

1.5C 3 Err<br />

1.5C 6 Err<br />

0TD 3 Err*<br />

1.5C 6 NoE*<br />

1.5C 3 NoE*<br />

0TD 6 Err<br />

0TD 3 NoE<br />

OTD 6 NoE<br />

* These Cells are<br />

not Statistically<br />

0 10 20 30 40 50 60<br />

Significant to Eachother Average Completion Time<br />

1.5TD 3 Err<br />

1.5C 3 Err<br />

0TD 3 Err<br />

1.5TD 6 Err<br />

0TD 6 Err<br />

1.5C 6 Err<br />

1.5TD 6 NoE<br />

OTD 6 NoE<br />

1.5TD 3 NoE<br />

0TD 3 NoE<br />

1.5C 6 NoE<br />

1.5C 3 NoE<br />

Impacts Comparison<br />

0 0.2 0.4 0.6 0.8<br />

Average Number <strong>of</strong> Impacts<br />

• The ranking <strong>of</strong> effects for completion time from most to least important<br />

was the following: time delay, command display usage, error,<br />

manipulator speed, and output method<br />

• For impacts the ranking <strong>of</strong> effects were the following: error,<br />

commanded display usage, manipulator speed, time delay and output<br />

method<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Learning Effects<br />

Initial Learning Curve Hand Controller Usage with Experience<br />

Naïve Subject<br />

Experienced Subject<br />

Power (Naïve Subject)<br />

Power (Experienced Subject)<br />

0 50 100 150<br />

Trial Number<br />

y = 201.18x -0.269<br />

R 2 = 0.4637<br />

y = 41.642x -0.1095<br />

R 2 = 0.1121<br />

1.02<br />

1.00<br />

0.98<br />

0.96<br />

0.94<br />

0.92<br />

0.90<br />

0.88<br />

0.86<br />

0.84<br />

0.82<br />

Naïve 1st Test<br />

Naïve 2nd Test<br />

Naïve 3rd Test<br />

Naïve 4th Test<br />

Experienced 1st Test<br />

Experienced 2nd Test<br />

Experienced 3rd Test<br />

Experienced 4th Test<br />

0 1 2 3 4 5 6 7<br />

Commanded Manipulator Velocity [in/s]<br />

• Two subjects performed four test sessions with the peg-in-hole task, using stereo<br />

vision, 1.5 second delay and a commanded display with random error at 6 inches/<br />

second manipulator speed<br />

• A completely naïve subject exhibited 83% learning, while a subject with extensive<br />

robotic experience who had never performed the experimental task had 93%<br />

learning<br />

• Hand controller usage showed that with increased experience, subjects spent less<br />

time waiting<br />

• Using 93% learning as a gauge, one experiment needed 10 hours <strong>of</strong> training which<br />

would cut completion times in half, and an additional 20 hours <strong>of</strong> experimental<br />

testing results in 8% reduction <strong>of</strong> completion time<br />

• This could cause a bias for test cells taken at the end <strong>of</strong> the experiment<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Conclusions (1 <strong>of</strong> 2)<br />

• Time delay increased completion time linearly; this linear relationship<br />

occurred for both commanded display and unmitigated treatments<br />

• Commanded displays without error alleviated the majority <strong>of</strong> time delay<br />

effects, up to a 91% reduction<br />

– Even with no delay the commanded display reduced completion time by 22%<br />

– Impacts were faster to detect and compensate for using the commanded display<br />

– The commanded display facilitated more accurate control even when compared to<br />

no time delay, for the Modified Fitts’ Law Study:<br />

– Only 3 errors were made with a commanded display over 4 hours <strong>of</strong> testing<br />

including 4 subjects testing a total <strong>of</strong> 1440 trials.<br />

– 20 times more errors were made without a commanded display<br />

• A correlation was found between hand controller usage and completion<br />

time: the longer the subjects did not move the controllers the more time a<br />

task took<br />

– The move and wait strategy was evidence, at larger delay subjects spent more<br />

time waiting<br />

– The commanded display enabled the subjects to effectively use the hand<br />

controllers during time delay, resulting in lower completion times<br />

– Moderate levels <strong>of</strong> random error caused subjects to ignore the commanded<br />

display for fine maneuvering and revert to a move and wait strategy; however, the<br />

commanded display still saved time during coarse movements<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Conclusions (2 <strong>of</strong> 2)<br />

• A commanded display was shown to be useful even with large<br />

amounts <strong>of</strong> error<br />

• Evidence indicated that subjects pulsed hand controllers<br />

during time delay operations<br />

• Although manipulator speed was a factor in lowering task<br />

completion time, no specific speed presented itself as<br />

superior<br />

• The ability to move the viewpoint was more powerful than<br />

stereo vision at improving the subject depth perception<br />

• The use <strong>of</strong> LCD shutter glasses outperformed the HMD tested<br />

for stereo viewing; its greater resolution and more natural<br />

optics may outweigh the greater head tracking provided by<br />

the HMD for a given application<br />

• Simulator sickness symptoms occurred most with the HMD,<br />

next the LCD shutter glasses, and least with the monitor<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


Future Research<br />

• Reevaluate stereo viewing using different output devices: newer HMDs, LCD<br />

glasses, ‘cave’ technology, and prism screen monitors<br />

• Concentrate on the effects <strong>of</strong> display resolution, field <strong>of</strong> view, and frame rate<br />

on performing a task with a commanded display<br />

• Look at using a variety <strong>of</strong> ways to control the manipulator speeds, moving<br />

faster when accuracy is less important<br />

• Investigate different methods to control the manipulator and the view inside<br />

the virtual environment: head tracking, hand controllers, 6 DOF mice,<br />

forceballs, touchscreens, and mechanical master arms<br />

• Determine how to build the best commanded display using transparency,<br />

wireframes, flashing, and color to create an overlay that is helpful without<br />

occluding the actual display<br />

• Compare the effectiveness <strong>of</strong> the commanded display against the predictive<br />

display with dynamic systems and contact operations<br />

• Research should be directed to how best to use commanded displays for<br />

different applications, including using the command display with other<br />

advanced supervisory control methods<br />

test.col.pp4<br />

– Using commanded displays to control multiple systems<br />

– Use the commanded display to plan, simulate, and alter scripts which are then run<br />

autonomously by the remote system<br />

– Using a commanded display to overlay on live video<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Ranger Spacecraft Servicing System<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

How the Robot Interacts with the Worksite<br />

Ranger’s Place in Space Robotics<br />

How the Operator Interacts with the Robot<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Missions Enabled by Space Robotics<br />

How the Robot Interacts with the Worksite<br />

Specialized<br />

Robotic<br />

Interfaces<br />

Any EVA-<br />

Compatible<br />

Interface<br />

Any Human-<br />

Compatible<br />

Interface<br />

How the Operator Interacts with the Robot<br />

Locally<br />

Teleoperated<br />

• Payload<br />

Positioning<br />

• ISS Planned<br />

Robotic Servicing<br />

• Free-flying<br />

Cameras<br />

• All ISS Servicing<br />

• NGST<br />

Ass’y/Servicing*<br />

• Aerobrake Ass’y<br />

• LEO Contingency<br />

Repairs<br />

• Telepresence<br />

Remote<br />

(Ground)<br />

Teleoperated<br />

• Lunar Long-<br />

Distance Surveying<br />

• Future ISS<br />

Servicing<br />

• Lunar Nearside<br />

Infrastructure<br />

• “Grand<br />

Observatories”<br />

Ass’y/Servicing<br />

• Mars EVA Robotic<br />

Assistant<br />

• Lunar/HEO<br />

Contingency<br />

Repairs<br />

• Dexterous<br />

Science Teleops<br />

* Feasibility Study Currently Underway for NASA Goddard<br />

Supervisory/<br />

Autonomous<br />

Control<br />

• Planetary Rovers<br />

• Deep Space<br />

Visual Inspection<br />

• Mars Base<br />

Construction<br />

• Mars ISRU<br />

Servicing<br />

• Mars Geology/<br />

Life Sciences<br />

• Deep Space<br />

Contingency<br />

Repairs<br />

• Dexterous<br />

Science Ops<br />

Missions<br />

Supported<br />

by Ranger<br />

Flight<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


Engineering Arm Performing HST ECU Task<br />

2:00 Bare bolt drive (BBD) on arm<br />

0:55 Arm (with BBD) moves to ECU<br />

0:51 BBD on lower left bolt<br />

0:48 BBD turns lower left bolt 6 times<br />

0:51 Arm moves from lower left bolt to upper left bolt<br />

0:48 BBD turns upper left bolt 6 times<br />

1:13 Arm moves from upper left bolt to upper right bolt<br />

0:48 BBD turns upper right bolt 6 times<br />

0:59 Arm moves from upper right bolt to lower right bolt<br />

0:48 BBD turns lower right bolt 6 times<br />

1:10 Arm moves from lower right bolt to tool post<br />

2:00 Right angle drive (RAD) on arm<br />

2:00 (Tether loop gripper on other arm)<br />

0:57 Arm (with RAD) moves to connector drive mechanism<br />

0:39 RAD on connector drive mechanism<br />

0:28 Tether loop gripper closes on tether loop<br />

0:20 RAD turns connector drive mechanism to lift ECU<br />

0:12 Tether loop gripper opens from tether loop<br />

17:47 Total time<br />

test.col.pp4<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Time (hrs)<br />

0.75 18:00<br />

15:00 0.63<br />

12:00 0.50<br />

9:00 0.38<br />

6:00 0.25<br />

3:00 0.13<br />

0:000<br />

Ranger Application to HST SM1<br />

EVA Daily Average from SM1<br />

EVA Day 1 EVA Day 2 EVA Day 3 EVA Day 4 EVA Day 5<br />

Ranger (pre-EVA)<br />

Ranger (post-EVA)<br />

EV1 - with Ranger Ranger (during EVA) EV2 - with Ranger<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Impact <strong>of</strong> Ranger-class Robot on SM3A<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

325<br />

76<br />

52<br />

Grasp Analysis <strong>of</strong> SM-3B<br />

250<br />

1,157<br />

1DOF tasks<br />

2DOF tasks<br />

Modified tasks<br />

Dexterous tasks<br />

Not yet categorized<br />

Numbers refer to instances <strong>of</strong> grasp type over five EVAs<br />

Total discrete end effector types required ~8-10<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Results <strong>of</strong> Robot Dexterity Analysis<br />

• Broke 63 crew-hrs <strong>of</strong> EVA activity on SM<br />

-3B into 1860 task primitives<br />

• 13.4% not yet categorized<br />

• Of categorized task primitives, 95.3% are<br />

viable candidates for 2DOF robotic end<br />

effectors<br />

– 71.8% 1DOF tasks<br />

– 3.2% 2DOF tasks<br />

– 20.2% tasks performed differently by robot than EVA<br />

(e.g., torque settings)<br />

• 4.7% require additional dexterity<br />

• All SM-3B robotic tasks can be performed<br />

by suite <strong>of</strong> 8-10 different end effectors<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Baseline SM4 Task Allocations<br />

• RSUs (3) 3:00<br />

• Battery Modules (2) 2:50<br />

• COS 3:10<br />

• WFC3 2:55<br />

• ASCS/CPL 3:30<br />

• FGS3 3:35<br />

• NOBLs (3) 1:50<br />

• ASCS/STIK 1:55<br />

• DSC 1:00<br />

• Setup & Closeout 5:00<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

HERCULES (Single Arm; Stowed)<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

HERCULES (Dual Arm; non-EVA Ops)<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


HERCULES (Dual Arm; EVA Operations)<br />

test.col.pp4<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Approaches to Ranger Operations<br />

• All scenarios assume Ranger dexterous<br />

manipulator(s) mounted on RMS throughout<br />

SM4<br />

• Case 1: Single dexterous arm on modified MFR<br />

– Case 1A: Operates only during EVA in support <strong>of</strong> crew (“third<br />

hand”)<br />

– Case 1B: Operates only when EVA is not underway (conservative<br />

mode)<br />

– Case 1C: Operates with and without EVA crew<br />

• Case 2: Dual dexterous arms on RMS<br />

– Case 2A: Mounted on MFR; used only for EVA support<br />

– Case 2B: Mounted on MFR; used only outside <strong>of</strong> EVA<br />

– Case 2C: Mounted on MFR; used with and without EVA<br />

– Case 2D: Dedicated RMS mount; both EVA crew free-floating<br />

– Only Case 2C has been considered to date in any detail<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Estimates <strong>of</strong> Relative Time Savings<br />

SM4 Task Case 1A Case 1B Case 1C Case 2C<br />

RSUs – – – 10%<br />

Batteries 10% 20% 30% 90%<br />

COS 10% 10% 20% 35%<br />

WFC3 10% 10% 20% 35%<br />

ASCS/CPL 5% 5% 10% 30%<br />

FGS3 – 5% 5% 10%<br />

NOBLs 10% 20% 30% 80%<br />

ASCS/STIK 5% 5% 10% 30%<br />

DSC – – – 10%<br />

Setup &<br />

Closeout<br />

10% 60% 70% 90%<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


HERCULES/EVA Team in SM4 Operations<br />

test.col.pp4<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

HERCULES Pro<strong>of</strong>-<strong>of</strong>-Concept Testing<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

SM4 Time Savings with Ranger Arm(s)<br />

SM4 Task Case 1A Case 1B Case 1C Case 2C<br />

RSUs – – – 0:18<br />

Batteries 0:17 0:34 0:51 2:33<br />

COS 0:19 0:19 0:38 1:06<br />

WFC3 0:17 0:17 0:35 1:01<br />

ASCS/CPL 0:10 0:10 0:21 1:03<br />

FGS3 – 0:11 0:11 0:21<br />

NOBLs 0:11 0:22 0:33 1:22<br />

ASCS/STIK 0:06 0:06 0:11 0:34<br />

DSC – – – 0:06<br />

Setup &<br />

Closeout<br />

0:30 3:00 3:30 4:30<br />

Totals 1:50 4:59 6:50 12:54<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

SM4R(obotic) Concept Overview<br />

Ranger Telerobotic Servicing System<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong><br />

Interim Control Module<br />

Naval Research Laboratory<br />

HST SM4 Servicing Hardware<br />

NASA Goddard<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Maneuvering Spacecraft Bus - ICM<br />

• Developed by Naval<br />

Research Laboratory for<br />

NASA ISS<br />

• Sufficient payload on EELV<br />

for Ranger robotics, SM-4<br />

servicing hardware, HST<br />

flight support hardware<br />

• Sufficient maneuvering<br />

capability for extensive<br />

coorbital operations,<br />

followed by HST deorbit or<br />

boost to disposal altitude<br />

• Currently in bonded<br />

storage at NRL<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Dexterous Robotics - Ranger<br />

• Developed by <strong>University</strong> <strong>of</strong><br />

<strong>Maryland</strong> for NASA as low-cost<br />

flight demonstration <strong>of</strong><br />

dexterous telerobotics<br />

• Designed to be capable <strong>of</strong><br />

using EVA interfaces and<br />

performing EVA tasks<br />

• System passed through NASA<br />

Phase 0/1/2 PSRP safety<br />

reviews for shuttle flight<br />

• High-fidelity qualification arms<br />

in extended tests at UMd SSL<br />

• 70% <strong>of</strong> flight dexterous<br />

manipulator components in<br />

bonded storage at UMd<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Servicing Option 1<br />

• Limited to critical<br />

servicing options<br />

– Batteries<br />

– Rate sensor<br />

units<br />

– Battery carrier<br />

plates, SOPE,<br />

COPE<br />

• HST payload<br />

mass 3194 lbs<br />

• Total ICM payload<br />

4454 lbs<br />

• Servicer empty<br />

mass 11,065 lb<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Servicing Option 2<br />

• Limited to<br />

critical servicing<br />

options<br />

– Batteries<br />

– Rate sensor<br />

units<br />

– Battery<br />

carrier plates,<br />

SOPE, COPE<br />

• HST payload<br />

mass 3194 lbs<br />

• Total ICM<br />

payload 4454 lbs<br />

• Servicer empty<br />

mass 11,065 lb<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Servicing Option 3<br />

• All SM4 ORUs<br />

and launch<br />

protective<br />

enclosures<br />

• HST payload<br />

mass 9574 lbs<br />

• Total ICM<br />

payload 10,834<br />

lbs<br />

• Servicer empty<br />

mass 17,445 lb<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Modifications to Existing Hardware<br />

• ICM<br />

– Addition <strong>of</strong> TDRSS Ku-band command data links<br />

– Mounting interfaces for robotic hardware, HST servicing<br />

hardware, MMS berthing ring<br />

– Attachment to EELV payload adapter<br />

• Ranger<br />

– Addition <strong>of</strong> longer strut elements to provide needed reach for<br />

positioning leg<br />

– Completion <strong>of</strong> flight manipulator units<br />

– Development <strong>of</strong> required end effectors for servicing tasks<br />

– Implementation <strong>of</strong> launch restraints for robot on ICM deck<br />

– Development <strong>of</strong> control station for teleoperated/supervisory<br />

control<br />

• HST servicing hardware<br />

– Modification <strong>of</strong> shuttle launch restraints to ICM deck<br />

– Verification <strong>of</strong> thermal environment for ORUs<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

SM4R Mission Scenario<br />

• Launch on EELV, rendezvous and dock to HST at aft<br />

bulkhead MMS fittings (high level supervisory control)<br />

• Perform high-priority servicing (batteries/gyros), other<br />

targets <strong>of</strong> opportunity (e.g., SM4 instrument<br />

changeouts), boost HST to multi-decade stable altitude<br />

• Separate ICM and move into coorbital location to allow<br />

HST to perform nominal science data collection (no<br />

impact to HST pointing or stability) - ICM can be used as<br />

robotics testbed during this time<br />

• ICM can redock and service multiple times if needed<br />

(e.g., periodic gyro replacements)<br />

• ICM is based on design with proven flight duration <strong>of</strong> 6<br />

years on-station<br />

• At end <strong>of</strong> HST science mission, ICM redocks and<br />

performs deorbit/disposal boost mission<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Launch Vehicle Considerations<br />

• Due to size <strong>of</strong> ICM and servicing hardware, an<br />

EELV with a 5-meter payload fairing is required<br />

– Delta IV Medium+ (5,2)<br />

– Atlas V 501<br />

• Also considered next larger size EELV for<br />

heavier mission cases<br />

– Delta IV Medium+ (5,4)<br />

– Atlas V 521<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

ICM Propellant Loads<br />

Delta IV M+(5,2)<br />

Atlas V 501<br />

Delta IV M+(5,4)<br />

Atlas V 521<br />

Option 1 Option 2 Option 3<br />

11,700 11,040 7,515<br />

11,700 11,700 11,700<br />

Propellant Mass in lbs<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Assumptions:<br />

• 300 m/sec deltaV reserve for rendezvous and docking<br />

• Remaining propellant used to raise orbit from 330 NMi to<br />

new circular altitude, then deorbit from that altitude<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Achievable Boost Altitude<br />

Delta IV M+ (5,2) Delta IV M+ (5,4)<br />

Option 1<br />

Option 2<br />

Option 3<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Mission Assurance<br />

• Use existing hardware to initiate comprehensive<br />

testing program<br />

– Hubble SM4 EVA neutral buoyancy training hardware<br />

– Ranger neutral buoyancy robot<br />

– UMd Neutral Buoyancy Research Facility<br />

• Three keys to success:<br />

– Test<br />

– Test<br />

– Test<br />

• Evaluate every SM4 task in first 6-9 months and<br />

decide on whether or not to perform it on-orbit<br />

• Aim for 25-30 hours <strong>of</strong> end-to-end simulation for<br />

every hour <strong>of</strong> on-orbit operations<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Why SM4R?<br />

• No other options come close to matching technology<br />

readiness:<br />

– ICM based on “black” spacecraft with flight heritage, currently<br />

ready to fly<br />

– Ranger manipulators developed and tested; 70% <strong>of</strong> dexterous<br />

manipulator flight components already procured<br />

• No other options come close to matching the proven<br />

capabilities<br />

– Long on-orbit endurance and high maneuvering capacity<br />

provide assurance <strong>of</strong> successful deorbit at Hubble end-<strong>of</strong>-life<br />

– Ranger manipulators designed for EVA-equivalent servicing,<br />

building on 20-year heritage <strong>of</strong> HST robotic servicing operations<br />

• No other options come close to matching the flexibility<br />

– Interchangeable end effectors provide unlimited interfaces<br />

– Ranger arm design parameters (force, speed, clean kinematics)<br />

unrivaled among flight-qualified manipulators<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Results <strong>of</strong> a Successful SM4R Mission<br />

Demonstration <strong>of</strong> Dexterous<br />

Robotic Capabilities<br />

Precursor for Low-Cost<br />

Free-Flying Servicing Vehicles<br />

Understanding <strong>of</strong> Human Factors<br />

<strong>of</strong> Complex Telerobot Control<br />

Lead-in to Cooperative<br />

EVA/Robotic Work Sites<br />

Pathfinder for Flight<br />

Testing <strong>of</strong> Advanced Robotics<br />

Dexterous Robotics for<br />

Advanced Space Science<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

Ranger on SMV<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>


test.col.pp4<br />

For More Information<br />

http://www.ssl.umd.edu<br />

http://robotics.ssl.umd.edu<br />

Space Systems Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!