14.11.2013 Views

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Maxwell Equations with the Transparent Boundary Condition 295<br />

Denote ã mn = a mn χ [0,T] ,˜b mn = b mn χ [0,T] , where χ [0,T] is the characteristic function of the<br />

interval (0, T). Therefore<br />

∫ T<br />

e −2s1t 〈(L −1 ◦ G e ◦ L )(x × E), ˆx × E × ˆx〉 ΓR dt<br />

0<br />

∑<br />

∞ n∑<br />

∫ [ (<br />

∞<br />

√εµsRh (1)<br />

= R 2 e −2s1t L −1 n (i √ ) ]<br />

εµsR)<br />

n=1 m=−n −∞<br />

z n (1) (i √ ∗ ˜b mn<br />

¯˜bmn<br />

εµsR)<br />

∫ [ (<br />

∞<br />

+ e −2s1t L −1 z n (1) (i √ ) ]<br />

εµsR)<br />

√ (1)<br />

−∞<br />

εµsRh n (i √ ∗ ã mn<br />

¯ã mn .<br />

εµsR)<br />

Note that by the formula for the inverse Laplace transform we have<br />

g(t) = F −1 (e s1t L (g)(s 1 + is 2 )),<br />

where F −1 denotes the inverse Fourier transform with respect to s 2 . By the Plancherel identity<br />

we then obtain<br />

∫ T<br />

e −2s1t 〈(L −1 ◦ G e ◦ L )(x × E), ˆx × E × ˆx〉 ΓR dt<br />

0<br />

∑<br />

∞ n∑<br />

∫ (<br />

∞ √εµsRh (1)<br />

= 2πR 2 n (i √ )<br />

εµsR)<br />

n=1 m=−n −∞ z n (1) (i √ |L (˜b mn )| 2<br />

εµsR)<br />

∫ (<br />

∞<br />

z n (1) (i √ )<br />

εµsR)<br />

+ √ (1)<br />

−∞ εµsRh n (i √ |L (ã mn )| 2 .<br />

εµsR)<br />

Since k = i √ εµs satisfies Im(k) > 0, by using Lemmas 2.3 and 2.4 we obtain<br />

−Re<br />

∫ T<br />

0<br />

e −2s1t 〈(L −1 ◦ G e ◦ L )(x × E), ˆx × E × ˆx〉 ΓR dt ≥ 0.<br />

For any 0 < t ∗ < T, by taking Φ = e −2s1t Eχ (0,t ∗ ) in (3.9), Ψ = e −2s1t Hχ (0,t ∗ ) in (3.10), and<br />

adding the two equations, we obtain<br />

1<br />

2<br />

∫ t<br />

∗<br />

0<br />

e −2s1t d dt<br />

(<br />

)<br />

ε‖E‖ 2 L 2 (Ω + R) µ‖H‖2 L 2 (Ω R) dt ≤<br />

∫ t<br />

∗<br />

0<br />

e −2s1t (J,E)dt.<br />

By standard argument we can deduce<br />

[ ( )]<br />

max e −2s1t ε‖E‖ 2 L<br />

0≤t≤T<br />

2 (Ω + R) µ‖H‖2 L 2 (Ω R)<br />

(<br />

)<br />

≤ C ε‖E 0 ‖ 2 L 2 (Ω + µ‖H R) 0 ‖ 2 L 2 (Ω R) + C‖ e −s1t J ‖ L 1 (0,T;L 2 (Ω R)).<br />

By letting s 1 → 0, we obtain<br />

(<br />

)<br />

max ε‖E‖ 2 L<br />

0≤t≤T<br />

2 (Ω + R) µ‖H‖2 L 2 (Ω R)<br />

(<br />

)<br />

≤ C ε‖E 0 ‖ 2 L 2 (Ω + µ‖H R) 0 ‖ 2 L 2 (Ω R) + C‖J‖ L1 (0,T;L 2 (Ω R)).<br />

(3.18)<br />

Since E 0 ,H 0 has a compact support inside B R , a mn (R, 0) = b mn (R, 0) = 0 on Γ R . By differentiating<br />

(1.8) in time we know that<br />

√ µ<br />

ε ˆx × ∂ tH = (L −1 ◦ G e ◦ L )(ˆx × ∂ t E| ΓR ) on Γ R .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!