14.11.2013 Views

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Maxwell Equations with the Transparent Boundary Condition 287<br />

For any Φ ∈ H(curl, B R ), ˆx × Φ| ΓR is in the trace space H −1/2 (Div; Γ R ), whose norm, for<br />

any λ = ∑ ∞<br />

n=1<br />

∑ n<br />

m=−n a nmU m n + b nm V m n , is defined by<br />

‖ λ ‖ 2 H −1/2 (Div;Γ R) = ∞ ∑<br />

n∑<br />

n=1 m=−n<br />

√<br />

n(n + 1)|anm | 2 +<br />

1<br />

√<br />

n(n + 1)<br />

|b nm | 2 . (2.6)<br />

It is also known that for Φ ∈ H(curl; B R ), the tangential component (ˆx ×Φ) × ˆx| ΓR belongs to<br />

H −1/2 (Curl; Γ R ) which is the dual space of H −1/2 (Div; Γ R ) with respect to the scalar product<br />

in L 2 t (Γ R) [10, Theorem 5.4.2, Lemma 5.3.1]. In the following we will always denote by 〈·, ·〉 ΓR<br />

the duality pairing between H −1/2 (Div; Γ R ) and H −1/2 (Curl; Γ R ).<br />

Let h (1)<br />

n (z) be the spherical Hankel function of the first kind of order n. We introduce the<br />

vector wave functions<br />

M m n (r, ˆx) = ∇ × {xh (1)<br />

n (kr)Y m n (ˆx)}, N m n (r, ˆx) = 1<br />

ik ∇ × Mm n (r, ˆx),<br />

which are the radiation solutions of the Maxwell equation (2.1) in R 3 \{0}.<br />

Given the tangential vector λ = ∑ ∞ ∑ n<br />

n=1 m=−n a nmU m n + b nm Vn m on Γ R , the solution E of<br />

(2.1)-(2.3) in the domain R 3 \ ¯B R can be written as<br />

E(r, ˆx) =<br />

∞∑<br />

n∑<br />

n=1 m=−n h (1)<br />

a nm M m n (r, ˆx)<br />

n (kR) √ n(n + 1) + ikRb nmN m n (r, ˆx)<br />

z n (1) (kR) √ n(n + 1) . (2.7)<br />

The series in (2.7) converges uniformly for r > R if λ ∈ L 2 t(Γ R ) = {u ∈ L 2 (Γ R ) 3 : u · ˆx =<br />

0 on Γ R } (cf., e.g., [9, Theorem 9.17]).<br />

The Calderon operator G e : H −1/2 (Div; Γ R ) → H −1/2 (Div; Γ R ) is the Dirichlet to Neumann<br />

operator defined by<br />

G e (λ) = 1 ˆx × (∇ × E),<br />

ik<br />

where E satisfies (2.1)-(2.3). Since<br />

we have<br />

1<br />

∞<br />

ik ∇ × E = ∑<br />

1<br />

ik ∇ × Mm n = N n m, − 1<br />

ik ∇ × Nm n = M m n ,<br />

n∑<br />

n=1 m=−n<br />

a mn N m n<br />

h (1)<br />

n (kR) √ n(n + 1) −<br />

ikRb mn M m n<br />

z n (1) (kR) √ n(n + 1) .<br />

On the other hand, it is easy to check that the vector wave functions satisfy<br />

Thus<br />

M m n (r, ˆx) = h(1) n (kr)∇ ∂B 1<br />

Yn m (ˆx) × ˆx,<br />

√<br />

n(n + 1)<br />

N m n (r, ˆx) = z n (1) (kr)U m n(n + 1)<br />

n (ˆx) + h (1)<br />

n (kr)Yn m (ˆx)ˆx.<br />

ikr<br />

ikr<br />

ˆx × M m n = √ n(n + 1)h (1)<br />

n (kr)U m n (ˆx), (2.8)<br />

√<br />

n(n + 1)<br />

ˆx × N m n = z n (1) (kr)Vn m (ˆx), (2.9)<br />

ikr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!