14.11.2013 Views

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Maxwell Equations with the Transparent Boundary Condition 285<br />

propagation, see the review papers Givoli [5], Tsynkov [11], Hagstrom [7] and the references<br />

therein. The purpose of this paper is to study the transparent boundary condition for Maxwell<br />

scattering problems.<br />

For any s ∈ C such that Re (s) > 0, we let E L<br />

= L (E) and H L<br />

= L (H) be respectively<br />

the Laplace transform of E and H in time<br />

E L<br />

(x, s) =<br />

∫ ∞<br />

0<br />

e −st E(x, t)dt, H L<br />

(x, s) =<br />

∫ ∞<br />

0<br />

e −st H(x, t)dt.<br />

Since L (∂ t E) = sE L<br />

−E 0 and L (∂ t H) = sH L<br />

−H 0 , by taking the Laplace transform of (1.1)<br />

and (1.2) we get<br />

ε(sE L<br />

− E 0 ) − ∇ × H L<br />

= J L<br />

in R 3 \ ¯D, (1.5)<br />

µ(sH L<br />

− H 0 ) + ∇ × E L<br />

= 0 in R 3 \ ¯D, (1.6)<br />

where J L<br />

= L (J). Because J, E 0 , H 0 are supported inside B R = {x ∈ R 2 : |x| < R}, we know<br />

that E L<br />

satisfies the time-harmonic Maxwell equation outside B R<br />

∇ × ∇ × E − k 2 E L<br />

= 0<br />

in R 3 \¯D,<br />

where the wave number k = i √ εµs so that Im(k) = √ εµs 1 > 0. Let G e : H −1/2 (Div; Γ R ) →<br />

H −1/2 (Div; Γ R ) be the Dirichlet to Neumann operator<br />

By using (1.6) we have<br />

G e (ˆx × E L<br />

) = 1<br />

ik ˆx × (∇ × E L ) = − 1 √ εµ<br />

1<br />

s ˆx × (∇ × E L ).<br />

G e (ˆx × E L<br />

) =<br />

√ µ<br />

ε ˆx × H L<br />

on Γ R . (1.7)<br />

For ˆx × E L<br />

| ΓR = ∑ ∞ ∑ n<br />

n=1 m=−n a mnU m n (ˆx) + b mnVn m (ˆx), we know that (cf., e.g., in Monk [9]<br />

and also the discussion in Section 2)<br />

G e (ˆx × E L<br />

) =<br />

∞∑<br />

n∑<br />

n=1 m=−n<br />

−ikRb mn h (1)<br />

n (kR)<br />

z n (1) (kR)<br />

U m n + a mnz n (1) (kR)<br />

ikRh (1)<br />

n (kR) Vm n ,<br />

where U m n ,Vn m are the vector spherical harmonics, h (1)<br />

n (z) is the spherical Hankel function of<br />

the first order of order n, and z n (1) (z) = h (1)<br />

n (z) + zh (1)′<br />

n (z).<br />

By taking the inverse Laplace transform of (1.7) we obtain the following transparent boundary<br />

condition for the electromagnetic scattering problems<br />

√ µ<br />

ε ˆx × H = (L −1 ◦ G e ◦ L )(ˆx × E| ΓR ) on Γ R , (1.8)<br />

where<br />

(L −1 ◦ G e ◦ L )(ˆx × E| ΓR )<br />

[ (<br />

∞∑ n∑ √εµsRh (1)<br />

= L −1 n (i √ ) ]<br />

εµsR)<br />

n=1 m=−n z n (1) (i √ ∗ b mn (R, t) U m n<br />

εµsR)<br />

(<br />

−<br />

[L −1 z n (1) (i √ ) ]<br />

εµsR)<br />

√ (1) εµsRh n (i √ ∗ a mn (R, t) Vn m , (1.9)<br />

εµsR)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!