14.11.2013 Views

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

ON MAXWELL EQUATIONS WITH THE TRANSPARENT ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Maxwell Equations with the Transparent Boundary Condition 289<br />

This implies r|h (1)<br />

n (kr)| 2 is a strictly decreasing function for r ∈ (0, ∞). Consequently,<br />

d<br />

[<br />

r|h (1)<br />

n<br />

dr<br />

(kr)|2]∣ ∣<br />

∣r=R = |h (1)<br />

n (kR)|2 + Re<br />

This completes the proof.<br />

]<br />

[kRh (1)′<br />

n (kR)h(1) n (kR) < 0.<br />

□<br />

Lemma 2.4. Let R > 0, n ∈ Z, k = k 1 + ik 2 , k 1 , k 2 ∈ R such that k 2 > 0, we have<br />

( )<br />

z n (1) (kR)<br />

Im k 1 ≥ 0.<br />

h (1)<br />

n (kR)<br />

Proof. By the definition of the vector wave function ∇ × M m n = ikN m n and (2.8)-(2.9) we<br />

have<br />

Thus we only need to prove<br />

〈∇ × M m n × ˆx, ˆx × Mm n × ˆx〉 Γ R<br />

= ik〈N m n × ˆx, ˆx × M m n × ˆx〉 ΓR = n(n + 1)Rz (1)<br />

n (kR)h (1)<br />

n (kR). (2.12)<br />

Im (k 1 〈∇ × M m n × ˆx, ˆx × Mm n × ˆx〉 Γ R<br />

) ≥ 0.<br />

Since M m n<br />

satisfies the Maxwell equation<br />

∇ × ∇ × M m n − k2 M m n = 0 in R3 \{0}.<br />

By multiplying the above equation by M m n and integrating over Ω R,ρ = B ρ \ ¯B R , we obtain<br />

‖ ∇ × M m n ‖2 L 2 (Ω − R,ρ) k2 ‖M m n ‖2 L 2 (Ω − 〈∇ × R,ρ) Mm n × n,n × Mm n × n〉 Γ R∪Γ ρ<br />

= 0.<br />

Notice that Im(−k 1 k 2 ) = −2k1k 2 2 ≤ 0, we have<br />

−Im (k 1 〈∇ × M m n × n,n × M m n × n〉 ΓR )<br />

≥ Im ( k 1 〈∇ × M m n × n,n × Mm n × n〉 )<br />

Γ ρ ,<br />

which implies, since n = −ˆx on Γ R and n = ˆx on Γ ρ ,<br />

Im (k 1 〈∇ × M m n × ˆx, ˆx × Mm n × ˆx〉 Γ R<br />

)<br />

≥ Im ( k 1 〈∇ × M m n × ˆx, ˆx × M m )<br />

n × ˆx〉 Γρ . (2.13)<br />

By (2.12)<br />

Im ( k 1 〈∇ × M m n × ˆx, ˆx × Mm n × ˆx〉 )<br />

Γ ρ<br />

)<br />

= n(n + 1)Im<br />

(k 1 kρ 2 h (1)′<br />

n (kρ)h(1) n (kρ) .<br />

We are now going to show that<br />

Since h (1)′<br />

n (z) = − n+1<br />

z h(1) n (z) − h (1)<br />

n−1 (z), we have<br />

|kρ 2 h (1)′<br />

n (kρ)h(1) n (kρ)| → 0, as ρ → ∞. (2.14)<br />

|kρ 2 h (1)′<br />

n (kρ)h (1)<br />

n (kρ)| ≤ (n + 1)ρ|h (1)<br />

n (kρ)| 2 + |kρ 2 ||h (1)<br />

n (kρ)||h (1)<br />

n−1 (kρ)|.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!