25.12.2013 Views

A Solution to the Inherent List on Nimitz Class Aircraft Carriers

A Solution to the Inherent List on Nimitz Class Aircraft Carriers

A Solution to the Inherent List on Nimitz Class Aircraft Carriers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Inherent</str<strong>on</strong>g> <str<strong>on</strong>g>List</str<strong>on</strong>g> <strong>on</strong> <strong>Nimitz</strong> <strong>Class</strong> <strong>Aircraft</strong> <strong>Carriers</strong><br />

by<br />

Dianna Wolf s<strong>on</strong><br />

B.S. Marine Engineering Systems, United States Merchant Marine Academy, 1996<br />

Submitted <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Departments of Ocean Engineering and Civil and Envir<strong>on</strong>mental Engineering<br />

in Partial Fulfillment of <str<strong>on</strong>g>the</str<strong>on</strong>g> Requirements for <str<strong>on</strong>g>the</str<strong>on</strong>g> Degrees of<br />

Naval Engineer<br />

and<br />

Master of Science in Civil and Envir<strong>on</strong>mental Engineering<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Massachusetts Institute of Technology<br />

June 2004<br />

© 2004 Dianna Wolfs<strong>on</strong><br />

All rights reserved<br />

The author hereby grants MIT and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Government permissi<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> reproduce and <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

distribute publicly paper and electr<strong>on</strong>ic copies of this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis document in whole or in part.<br />

Author<br />

Certified by<br />

Certified by<br />

Department of Ocean Engineering and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Department of Civil and Envir<strong>on</strong>mental Engineering<br />

May 07, 2004<br />

David V. Burke, Senior Lecturer<br />

Department of Ocean Engineering<br />

Thesis Supervisor<br />

Eduardo Kausel, Professor of Civil and Envir<strong>on</strong>mental Engineering<br />

Department of Civil and Envir<strong>on</strong>mental Engineering<br />

Thesis Reader<br />

Accepted by<br />

Heidi Nepf,<br />

ssociate Professor of Civil and Envir<strong>on</strong>mental Engineering<br />

Chairman, Departmental Committee <strong>on</strong> Graduate Studies<br />

Department of Civil and Envir<strong>on</strong>mental Engineering<br />

Accepted by<br />

DISTRIBUTION STATEMENT A<br />

Approved for Public Release<br />

Distributi<strong>on</strong> Unlimited<br />

Michael S. Triantafyllou, Professor of Ocean Engineering<br />

Chairman, Departmental Committee <strong>on</strong> Graduate Studies<br />

Department of Ocean Engineering<br />

BEST AVAILABLE COPY<br />

20040901 104


PAGE INTENTIONALLY LEFT BLANK


A <str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Inherent</str<strong>on</strong>g> <str<strong>on</strong>g>List</str<strong>on</strong>g> <strong>on</strong> <strong>Nimitz</strong> <strong>Class</strong> <strong>Aircraft</strong> <strong>Carriers</strong><br />

by<br />

Dianna Wolfs<strong>on</strong><br />

Abstract<br />

Submitted <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Departments of Ocean Engineering and<br />

Civil and Envir<strong>on</strong>mental Engineering<br />

<strong>on</strong> May 07, 2004, in partial fulfillment of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Requirements for <str<strong>on</strong>g>the</str<strong>on</strong>g> degrees of<br />

Naval Engineer<br />

and<br />

Master of Science in Civil and Envir<strong>on</strong>mental Engineering<br />

<strong>Nimitz</strong> class aircraft carriers possess an inherent list <str<strong>on</strong>g>to</str<strong>on</strong>g> starboard that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir list c<strong>on</strong>trol<br />

systems (LCS) are typically unable <str<strong>on</strong>g>to</str<strong>on</strong>g> correct while under Combat Load C<strong>on</strong>diti<strong>on</strong>s. As a result,<br />

it has become necessary <str<strong>on</strong>g>to</str<strong>on</strong>g> use fresh water ballast in a number of inner bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m voids and damage<br />

c<strong>on</strong>trol voids <str<strong>on</strong>g>to</str<strong>on</strong>g> augment <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS. Maintaining liquid ballast in damage c<strong>on</strong>trol voids is<br />

unacceptable, as it reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> design counter flooding capability of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship, and thus reduces<br />

ship survivability. In order <str<strong>on</strong>g>to</str<strong>on</strong>g> res<str<strong>on</strong>g>to</str<strong>on</strong>g>re <str<strong>on</strong>g>the</str<strong>on</strong>g> ships operati<strong>on</strong>al flexibility and achieve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

necessary/desired list correcti<strong>on</strong>, this study determines <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of adding solid ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> a<br />

series of voids/tanks identified <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2""^, 4*, and 8* decks.<br />

Based <strong>on</strong> ballast density, tank locati<strong>on</strong> and capacity, ease of ballast installati<strong>on</strong>, minor<br />

tank structural modificati<strong>on</strong>s, and a decisi<strong>on</strong> making cost analysis, solid ballast was determined<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> be <str<strong>on</strong>g>the</str<strong>on</strong>g> most advantageous for use in correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft<br />

carriers. Fresh water ballast was also examined as a possible alternative, but not as extensively<br />

due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large quantity of water required and its limited ability <str<strong>on</strong>g>to</str<strong>on</strong>g> achieve a list correcti<strong>on</strong>.<br />

<strong>Nimitz</strong> class aircraft carriers currently have an average list of L5 degrees and a KG of 47<br />

feet. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>ir allowable KG cannot exceed 48.5 feet, <str<strong>on</strong>g>the</str<strong>on</strong>g> average service life allowance (SLA)<br />

for KG is approximately 1.5 feet. This study shows that by adding approximately 400 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n of<br />

solid ballast, list can be corrected by 1.5 degrees with <strong>on</strong>ly a 0.1 percent increase in KG. Thus,<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> permanently fix <str<strong>on</strong>g>the</str<strong>on</strong>g> average <strong>Nimitz</strong> class aircraft carrier starboard list, <str<strong>on</strong>g>the</str<strong>on</strong>g>re would be a 0.05<br />

foot increase in KG, which in all cases is within <str<strong>on</strong>g>the</str<strong>on</strong>g> SLA. Additi<strong>on</strong>ally, this study shows that<br />

this L5 degree list correcti<strong>on</strong> can be accomplished at a low cost of approximately $1,200 per<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> in operati<strong>on</strong>al c<strong>on</strong>straints and <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits <str<strong>on</strong>g>to</str<strong>on</strong>g> ship survivability,<br />

this is truly an inexpensive propositi<strong>on</strong>.<br />

Thesis Supervisor: David V. Burke<br />

Title: Senior Lecturer<br />

Thesis Reader: Eduardo Kausel<br />

Title: Professor of Civil and Envir<strong>on</strong>mental Engineering


Acknowledgements<br />

I would like <str<strong>on</strong>g>to</str<strong>on</strong>g> thank CDR Kevin Terry who c<strong>on</strong>tacted MIT with a project proposal <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

find an advantageous and cost effective soluti<strong>on</strong> for fixing <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class<br />

aircraft carriers. Without his support, this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis would not have been possible.<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> course of this project, many individuals from various organizati<strong>on</strong>s<br />

provided invaluable operati<strong>on</strong>al and technical assistance. I would like <str<strong>on</strong>g>to</str<strong>on</strong>g> take this opportunity <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

thank every<strong>on</strong>e for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tributi<strong>on</strong>s and advice. I would also like <str<strong>on</strong>g>to</str<strong>on</strong>g> thank my husband for his<br />

friendship, love, and encouragement over <str<strong>on</strong>g>the</str<strong>on</strong>g> past three years and always.<br />

NAVSEA<br />

CDR Kevin Terry<br />

CAPT (ret.) Chuck Bush<br />

CAPT T. Moore<br />

CAPT James Murdoch<br />

Dominick Cimino<br />

Roger M. Nutting<br />

Evelisse Marti r<br />

Wei d<strong>on</strong> Gimbel<br />

LCDR Brian Lawerence<br />

LCDR Rick Thiel<br />

Bath Ir<strong>on</strong> Works<br />

John Grostick<br />

Lew Pratt<br />

Allen Pac<br />

Ray Lacour<br />

LCDR Michael Taylor<br />

CVN Ships<br />

LCDR Chariie Strassle (DCA, CVN 69)<br />

CDR Robert Finely (Cheng, CVN 71)<br />

LCDR Peter Pasquale (DCA, CVN 71)<br />

LCDR John Rickards (DCA, CVN 72)<br />

LCDR Scott Noe (DCA, CVN 76)<br />

CDR Glenn Hofert (Cheng, CVN 76)<br />

Massachusetts Institute of Technology<br />

Dr. David V. Burke<br />

CDR (ret.) John Amy<br />

CDR Timothy McCoy<br />

NGC - Newport News Shipbuilding<br />

Jerry Dudley<br />

Hal McCaskill<br />

NSWC Carderock<br />

John M. Rosborough<br />

Carlos R. Corretjer<br />

Charlie Snelling<br />

Bruce Winterstein<br />

Todd Heidenreich<br />

PCCI. Inc.<br />

John A. 'T<strong>on</strong>y" Kupersmith<br />

Jessica R. Coles<br />

Herbert Engineering Corporati<strong>on</strong><br />

Colin Moore<br />

Norfolk Naval Shipvard<br />

Walt Del<strong>on</strong>g<br />

Larry Back<br />

Ballast Technologies. Inc.<br />

Mark Ensio<br />

N.S. NAPPI Associates<br />

Nat Nappi, Sr.<br />

#<br />

Please accept my apologies if I have left some<strong>on</strong>e off this list.


Table of C<strong>on</strong>tents<br />

Abstract 3<br />

Acknowledgements 4<br />

Table of C<strong>on</strong>tents 5<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Figures 6<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Tables 6<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Appendices 6<br />

1.0 Introducti<strong>on</strong> 7<br />

1.0 Introducti<strong>on</strong> 7<br />

1.1 Motivati<strong>on</strong> 7<br />

1.2 Background 7<br />

1.2.1 Past Research 10<br />

1.2.2 Stability 10<br />

1.2.3 Survivability 13<br />

1.2.4 Displacement Limits 14<br />

1.2.5 KG Limits 14<br />

1.3 Present Opti<strong>on</strong>s 15<br />

1.3.1 C<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> operate using inner bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m and DC voids 15<br />

1.3.2 Add a list c<strong>on</strong>trol tank <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> port side 17<br />

1.3.3 Move or exchange compartment spaces 18<br />

1.3.4 C<strong>on</strong>vert a current DC void(s) <str<strong>on</strong>g>to</str<strong>on</strong>g> a JP-5 tank(s) and pump last 18<br />

1.3.5 Future ship alterati<strong>on</strong>s and modificati<strong>on</strong>s 18<br />

1.3.6 Re-examine current <str<strong>on</strong>g>List</str<strong>on</strong>g> C<strong>on</strong>trol System 19<br />

1.3.7 Ballast Additi<strong>on</strong> 21<br />

1.3.7.1 Water Ballast 21<br />

1.3.7.2 Solid Ballast 21<br />

1.4 Opti<strong>on</strong> Selecti<strong>on</strong> 23<br />

2.0 Preliminary Analysis and Results 23<br />

2.1 Tank Selecti<strong>on</strong> 24<br />

2.2 Modeling Analysis Performed 25<br />

2.3 Preliminary Decisi<strong>on</strong>-Making Cost Estimati<strong>on</strong> 31<br />

2.4 Structural Analysis 35<br />

2.4.1 Structural Modificati<strong>on</strong>s 39<br />

2.4.1.1 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'* Deck 39<br />

2.4.1.2 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"" Deck 41<br />

2.4.1.3 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* Deck 43<br />

3.0 Final Analysis and Results 44<br />

3.1 Final POSSE Results 45<br />

3.2 Final Cost Estimati<strong>on</strong> 46<br />

3.2.1 Ease of Removal 48<br />

3.2.2 Evidence Perma Ballast® is n<strong>on</strong>-corrosive 48<br />

4.0 C<strong>on</strong>clusi<strong>on</strong> 50<br />

5.0 Recommendati<strong>on</strong>s 51<br />

References 53


<str<strong>on</strong>g>List</str<strong>on</strong>g> of Figures<br />

Figure 1: Stresses in rectangular plates under uniform lateral pressure [2] 38<br />

Figure 2: 2"^* Deck Compartment 2-165-8-V 39<br />

Figure 3: 2"'' Deck Compartment 2-165-8-V, transverse secti<strong>on</strong> 41<br />

Figure 4: 4"" Deck Compartment 4-165-4-V 42<br />

Figure 5: S'*" Deck Compartment 8-225-6-V 43<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Tables<br />

Table 1: CVN 68 <strong>Class</strong> Delivery Data and <strong>Class</strong> Predicti<strong>on</strong>s as of 11/17/03 8<br />

Table 2: Deck Locati<strong>on</strong> Cost Comparis<strong>on</strong> 32<br />

Table 3: Required Structural Modificati<strong>on</strong>s for 2-165-8-V 40<br />

Table 4: Required Structural Modificati<strong>on</strong>s for 4-165-4-V 42<br />

Table 5: Required Structural Modificati<strong>on</strong>s for 8-225-6-V 44<br />

Table 6: Final Cost, Weight Additi<strong>on</strong>, and Change in KG Comparis<strong>on</strong> 47<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Appendices<br />

Appendix A: Tank Locati<strong>on</strong> Study 54<br />

Appendix B: Preliminary POSSE Modeling Results 58<br />

Appendix C: Preliminary Cost Estimati<strong>on</strong> Data and Worksheets 62<br />

Appendix D: Preliminary Cost Comparis<strong>on</strong> 86<br />

Appendix E: Complete Structural Analysis 88<br />

Appendix F: Final POSSE Modeling Results 148<br />

Appendix G: Final Cost Estimati<strong>on</strong> Data and Worksheets 150


1.0 Introducti<strong>on</strong><br />

1.1 Motivati<strong>on</strong><br />

<strong>Aircraft</strong> carriers are <str<strong>on</strong>g>the</str<strong>on</strong>g> largest combatant ships in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. They are huge floating<br />

cities, carrying thousands of sailors and aircraft, each vessel with more military power than many<br />

nati<strong>on</strong>s. But with such might comes mighty operati<strong>on</strong>al requirements.<br />

In order <str<strong>on</strong>g>to</str<strong>on</strong>g> launch and recover aircraft <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight deck, most ships will report any<br />

change in list in excess of V4 degree <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Engineering Officer of <str<strong>on</strong>g>the</str<strong>on</strong>g> Watch (EOOW) for<br />

correcti<strong>on</strong>. The <strong>Nimitz</strong> class aircraft carrier was designed <str<strong>on</strong>g>to</str<strong>on</strong>g> maintain a level deck during flight<br />

operati<strong>on</strong>s through <str<strong>on</strong>g>the</str<strong>on</strong>g> utilizati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS. The LCS is designed <str<strong>on</strong>g>to</str<strong>on</strong>g> compensate for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

operati<strong>on</strong>al effects of aircraft movement <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight deck and in <str<strong>on</strong>g>the</str<strong>on</strong>g> hangar bays and not<br />

intended <str<strong>on</strong>g>to</str<strong>on</strong>g> compensate for an inherent list. Any inherent list imposes operati<strong>on</strong>al c<strong>on</strong>straints <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ship, particularly when <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier has embarked a full air-wing and full fuel loading (Combat<br />

Load C<strong>on</strong>diti<strong>on</strong>). <strong>Nimitz</strong> class carriers have a his<str<strong>on</strong>g>to</str<strong>on</strong>g>ry of inherent starboard list, due primarily <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ship's c<strong>on</strong>figurati<strong>on</strong>. His<str<strong>on</strong>g>to</str<strong>on</strong>g>ry shows that modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class are have increased<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inherent starboard list of each carrier. This <str<strong>on</strong>g>the</str<strong>on</strong>g>sis will explore various opti<strong>on</strong>s for finding a<br />

permanent soluti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class list c<strong>on</strong>trol issues, particularly, <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> of solid<br />

ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> counter list.<br />

1.2 Background<br />

There are a number of obstacles in finding a permanent soluti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list<br />

associated with most <strong>Nimitz</strong> class carriers, as each carrier has a different inherent list associated<br />

with it. This may sound strange, but every ship is slightly different. The ships are so large and<br />

have such a high procurement cost that <strong>on</strong>ly <strong>on</strong>e is built at a time. It takes an average of five<br />

years <str<strong>on</strong>g>to</str<strong>on</strong>g> build <strong>on</strong>e carrier, and in that time, modernizati<strong>on</strong>s, upgrades, and improvements are


introduced in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> design. As such, <str<strong>on</strong>g>the</str<strong>on</strong>g> ships are c<strong>on</strong>stantly changing and evolving, all within<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same skin designed in <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1960's. A comparative analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> commissi<strong>on</strong>ed and<br />

predicted current displacement, vertical center of gravity (KG), and list with <str<strong>on</strong>g>the</str<strong>on</strong>g> latest unknown<br />

growth correcti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft carriers are shown in Table 1.<br />

Table 1: CVN 68 <strong>Class</strong> Delivery Data and <strong>Class</strong> Predicti<strong>on</strong>s as of 11/17/03<br />

Delivery<br />

Displacement<br />

(I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns)<br />

Predicted<br />

Current<br />

Displacement<br />

(I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns)<br />

Predicted<br />

Current<br />

KG (ft)<br />

Delivery<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g><br />

(degrees)<br />

Predicted<br />

Current<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g><br />

(degrees)<br />

Delivery<br />

Ship<br />

KG (ft)<br />

68 93,283 100,064 45.73 47.22 l.Ol(S) 0.10 (S)<br />

69 93,832 100,588 45.94 47.1 0.82 (S) 0.25 (S)<br />

70 94,069 100,599 46.29 47.28 1.22 (S) 0.11 (P)<br />

71 96,865 103,700 46.4 47.27 0.27 (S) 0.41 (S)<br />

72 97,497 103,912 46.61 47.2 0.77 (S) 1.81 (S)<br />

73 97,816 104,095 46.54 47.03 0.85 (S) 1.55 (S)<br />

74 97,490 103,419 46.63 47.23 1.63 (S) 2.54 (S)<br />

75 97,944 103,863 46.4 46.93 0.43 (S) 1.61 (S)<br />

76 97,953 101,187 46.66 46.77 0.08 (S) 0.99 (S)<br />

#<br />

<strong>Nimitz</strong> class carrier c<strong>on</strong>tracts require that an Accepted Weight Estimate (AWE) be<br />

negotiated between <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>trac<str<strong>on</strong>g>to</str<strong>on</strong>g>r and <str<strong>on</strong>g>the</str<strong>on</strong>g> Government. A starboard inherent list was seen<br />

creeping upwards through CVN 73, such that for <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 74/75 c<strong>on</strong>tract, <str<strong>on</strong>g>the</str<strong>on</strong>g> program office<br />

invoked a list <str<strong>on</strong>g>to</str<strong>on</strong>g>lerance of 0.50 degree (P/S) for <str<strong>on</strong>g>the</str<strong>on</strong>g> combat load c<strong>on</strong>diti<strong>on</strong>. As a result of this<br />

new requirement, and beginning with <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 74/75 c<strong>on</strong>tract, <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trac<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

agreed <str<strong>on</strong>g>to</str<strong>on</strong>g> include 850 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns of c<strong>on</strong>trac<str<strong>on</strong>g>to</str<strong>on</strong>g>r-c<strong>on</strong>trolled ballast in <str<strong>on</strong>g>the</str<strong>on</strong>g> AWE <str<strong>on</strong>g>to</str<strong>on</strong>g> offset <str<strong>on</strong>g>the</str<strong>on</strong>g> already<br />

projected design inherent starboard list. Before any real ballast was <str<strong>on</strong>g>to</str<strong>on</strong>g> be added <strong>on</strong> CVN 74,<br />

however, <str<strong>on</strong>g>the</str<strong>on</strong>g> program office wanted <str<strong>on</strong>g>to</str<strong>on</strong>g> see if <str<strong>on</strong>g>the</str<strong>on</strong>g>re was indeed a list problem after <str<strong>on</strong>g>the</str<strong>on</strong>g> ship was<br />

delivered and fully loaded. It is at this time that CVN 74 was found <str<strong>on</strong>g>to</str<strong>on</strong>g> a have real inherent<br />

starboard list problem. The identified list problem was resolved by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of fresh water (FW)<br />

ballast. To date, permanent ballast has not been installed <strong>on</strong> any aircraft carrier of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong>


class. Changes <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 76 design resulted in a reduced starboard list and c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>trac<str<strong>on</strong>g>to</str<strong>on</strong>g>r-c<strong>on</strong>trolled ballast included in <str<strong>on</strong>g>the</str<strong>on</strong>g> AWE was reduced <str<strong>on</strong>g>to</str<strong>on</strong>g> 650 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns.<br />

From operati<strong>on</strong>al experience, it would be safe <str<strong>on</strong>g>to</str<strong>on</strong>g> say that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an inherent starboard<br />

list under full fuel load (or virtually full) with <str<strong>on</strong>g>the</str<strong>on</strong>g> airwing embarked and no flight operati<strong>on</strong>s<br />

being c<strong>on</strong>ducted <strong>on</strong> most <strong>Nimitz</strong> class carriers. When all <str<strong>on</strong>g>the</str<strong>on</strong>g> planes are stacked <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard<br />

side and <str<strong>on</strong>g>the</str<strong>on</strong>g> ship has just been refueled, <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS is unable <str<strong>on</strong>g>to</str<strong>on</strong>g> level <str<strong>on</strong>g>the</str<strong>on</strong>g> deck. This is when it has<br />

become necessary for some carriers <str<strong>on</strong>g>to</str<strong>on</strong>g> use fresh water ballast in a number of inner bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m voids<br />

and damage c<strong>on</strong>trol (DC) voids <str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g> adverse list c<strong>on</strong>diti<strong>on</strong>. But from a ship<br />

survivability standpoint, and as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir name implies, DC voids are not an acceptable list c<strong>on</strong>trol<br />

measure under normal operating c<strong>on</strong>diti<strong>on</strong>s. Maintaining liquid ballast in DC voids reduces <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

design counter flooding capability of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship. N<strong>on</strong>e <str<strong>on</strong>g>the</str<strong>on</strong>g> less, this is how some ships operate in<br />

order <str<strong>on</strong>g>to</str<strong>on</strong>g> keep <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class ships at sea.<br />

In February 1999, PEO <strong>Carriers</strong> issued a Message <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 68 <strong>Class</strong> identifying<br />

several voids (i.e., n<strong>on</strong> DC voids) that could be used for FW ballasting for ships experiencing list<br />

c<strong>on</strong>trol problems. Prior <str<strong>on</strong>g>to</str<strong>on</strong>g> using those voids, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> message requested <str<strong>on</strong>g>the</str<strong>on</strong>g> ships <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

c<strong>on</strong>firm that <str<strong>on</strong>g>the</str<strong>on</strong>g> list c<strong>on</strong>trol difficulties were not <str<strong>on</strong>g>the</str<strong>on</strong>g> result of abnormal LCS operati<strong>on</strong>s or<br />

adverse liquid loading or s<str<strong>on</strong>g>to</str<strong>on</strong>g>res management. <strong>Carriers</strong> experiencing list c<strong>on</strong>trol difficulties were<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> request approval from <str<strong>on</strong>g>the</str<strong>on</strong>g> Type Commander (TYCOM) <str<strong>on</strong>g>to</str<strong>on</strong>g> fill <str<strong>on</strong>g>the</str<strong>on</strong>g> voids listed in <str<strong>on</strong>g>the</str<strong>on</strong>g> message.<br />

The approval would remain in effect for that ship until a permanent soluti<strong>on</strong> was identified and<br />

implemented.<br />

It is obvious that fixing <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list cannot be solved by leaving aircraft behind or by<br />

limiting <str<strong>on</strong>g>the</str<strong>on</strong>g> load of fuel carried. TYCOM directive states that <str<strong>on</strong>g>the</str<strong>on</strong>g> JP-5 system is required <str<strong>on</strong>g>to</str<strong>on</strong>g>


emain at least 60% full at all times. These ships have a very specific warfighting requirement<br />

that must be achieved, and a reducti<strong>on</strong> in capabilities is unacceptable.<br />

There must be a soluti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list problem bey<strong>on</strong>d limiting ships payload or<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> DC voids outside of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir designed intent. This report evaluates o<str<strong>on</strong>g>the</str<strong>on</strong>g>r alternatives <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

finding a soluti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> fix <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <strong>Nimitz</strong> class aircraft carriers.<br />

1.2.1 Past Research<br />

A <str<strong>on</strong>g>the</str<strong>on</strong>g>sis was performed in 2001 by Michael Mal<strong>on</strong>e, a graduate of MIT. His <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, titled<br />

"An Alternate Method for <str<strong>on</strong>g>the</str<strong>on</strong>g> Determinati<strong>on</strong> of <strong>Aircraft</strong> Carrier Limiting Displacement for<br />

Strength;" determined that although all <strong>Nimitz</strong> class aircraft carriers are approaching <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

limiting displacement for strength, <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al methods of such calculati<strong>on</strong>s are c<strong>on</strong>servative.<br />

In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers can accommodate more weight than previously thought.<br />

Because of this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Navy <strong>Aircraft</strong> Carrier Program Office (PMS 312) later directed<br />

N.S. NAPPI Associates <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>duct a detailed analysis <strong>on</strong> estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting displacement for<br />

strength. Again, it was proven that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class hull is capable of sustaining additi<strong>on</strong>al<br />

weights which would exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> current established limiting displacement for strength.<br />

1.2.2 Stability<br />

The stability status for USN ships is defined in [4] and is supported by [11]. The Chief of<br />

Naval Operati<strong>on</strong>s has directed that <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy's ships will be kept within naval architectural limits<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> ensure that essential survivability features are maintained. For each ship class, <str<strong>on</strong>g>the</str<strong>on</strong>g> Naval Sea<br />

Systems Command's Weights and Stability Divisi<strong>on</strong> is <str<strong>on</strong>g>to</str<strong>on</strong>g> keep track of <str<strong>on</strong>g>the</str<strong>on</strong>g> weight and stability<br />

status, limiting draft and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r limitati<strong>on</strong>s including being an advocate for weight and moment<br />

status and moment compensati<strong>on</strong> necessary <str<strong>on</strong>g>to</str<strong>on</strong>g> adhere <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> established limits. Surface ships are<br />

10


classified in<str<strong>on</strong>g>to</str<strong>on</strong>g> four status c<strong>on</strong>diti<strong>on</strong>s for vertical center of gravity (KG) and limiting drafts. As<br />

specified in [4], <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> status listings are:<br />

• STATUS 1 An increase in weight and a rise of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's center of gravity are<br />

acceptable. Added weight and moment resulting from changes will not require any<br />

compensati<strong>on</strong> unless <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude of <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>s is so large as <str<strong>on</strong>g>to</str<strong>on</strong>g> make <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

approach stability limits.<br />

• STATUS 2<br />

accepted.<br />

Nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an increase in weight nor a rise of a ship's center of gravity can be<br />

• STATUS 3 An increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's weight is acceptable, but a rise of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's center<br />

of gravity must be avoided.<br />

• STATUS 4 A rise of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's center of gravity is acceptable, but increase in weight<br />

must be avoided. Compensati<strong>on</strong> for added weight may be obtained by removal of an<br />

equal or greater weight at any level.<br />

Status 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly acceptable ship status. The goal is for ships in <str<strong>on</strong>g>the</str<strong>on</strong>g> fleet <str<strong>on</strong>g>to</str<strong>on</strong>g> remain in<br />

Status 1. In <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r three status c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement and KG must be closely<br />

m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>red <str<strong>on</strong>g>to</str<strong>on</strong>g> ensure <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> does not worsen and steps must be taken <str<strong>on</strong>g>to</str<strong>on</strong>g> try <str<strong>on</strong>g>to</str<strong>on</strong>g> bring <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ship back within acceptable design limits. Typically, when an in-service carrier requires a<br />

modificati<strong>on</strong> that will add weight <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility of <str<strong>on</strong>g>the</str<strong>on</strong>g> program office and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planning yard <str<strong>on</strong>g>to</str<strong>on</strong>g> put <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r a package that includes maintenance and repair items, as well as<br />

modernizati<strong>on</strong> changes. First, a preliminary weight estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> modernizati<strong>on</strong> changes are<br />

put <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r in <str<strong>on</strong>g>the</str<strong>on</strong>g> package and made ready for installati<strong>on</strong>. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> package is installed, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planning yard or shipyard keeps track of <str<strong>on</strong>g>the</str<strong>on</strong>g> weights being installed. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

availability, an actual weight report for <str<strong>on</strong>g>the</str<strong>on</strong>g> installed changes is generated. This report is passed<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> shipyard <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> program office where it is incorporated in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stability baseline of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pertinent ship.<br />

11


For any c<strong>on</strong>figurati<strong>on</strong> changes, such as adding weight <str<strong>on</strong>g>to</str<strong>on</strong>g> a carrier in Stability Status 2, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interested party fills out a Justificati<strong>on</strong> Cost Form (JCF) with <str<strong>on</strong>g>the</str<strong>on</strong>g> weight and KG impact as well<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's Stability Status. A C<strong>on</strong>figurati<strong>on</strong> C<strong>on</strong>trol Board that includes <str<strong>on</strong>g>the</str<strong>on</strong>g> Program Office,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ship Design Manager, and <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary Technical Authorities <str<strong>on</strong>g>the</str<strong>on</strong>g>n meet <str<strong>on</strong>g>to</str<strong>on</strong>g> approve or<br />

disapprove <str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong>. If approved, an Engineering Change Proposal (ECP) for newly<br />

commissi<strong>on</strong>ed ships or a Ship Alterati<strong>on</strong> Request (SAR) for in-service ships is <str<strong>on</strong>g>the</str<strong>on</strong>g>n generated.<br />

The <strong>Nimitz</strong> class was assigned <str<strong>on</strong>g>to</str<strong>on</strong>g> Stability Status 2 by <str<strong>on</strong>g>the</str<strong>on</strong>g> Weight C<strong>on</strong>trol and Stability<br />

Divisi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Naval Sea Systems Command. This was d<strong>on</strong>e as a result of <str<strong>on</strong>g>the</str<strong>on</strong>g> stability reanalysis<br />

performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers. The re-analysis revealed <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

• The originally calculated Allowable KG of 48.50 feet was no l<strong>on</strong>ger applicable for this<br />

class of ships. While 48.50 feet is no l<strong>on</strong>ger <str<strong>on</strong>g>the</str<strong>on</strong>g> allowable KG value, it c<strong>on</strong>tinues <str<strong>on</strong>g>to</str<strong>on</strong>g> be<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> KG compara<str<strong>on</strong>g>to</str<strong>on</strong>g>r for CVN 68 - 77 for c<strong>on</strong>tractual reas<strong>on</strong>s.<br />

• The actual damage capability of this class of carriers is not as originally calculated.<br />

• The damage capability of this class decreases as displacement increases.<br />

• It is important for <str<strong>on</strong>g>the</str<strong>on</strong>g> holding bulkhead <str<strong>on</strong>g>to</str<strong>on</strong>g> remain intact.<br />

• The 40'-l 1" limiting draft is based <strong>on</strong> ship geometry limitati<strong>on</strong>s.<br />

As a result of <str<strong>on</strong>g>the</str<strong>on</strong>g> above study, it was determined by that a stability status of 2 should<br />

c<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> be assigned <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class in order <str<strong>on</strong>g>to</str<strong>on</strong>g>:<br />

o C<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement growth of <str<strong>on</strong>g>the</str<strong>on</strong>g> class even though some ships are<br />

substantially below <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting draft. This is an<br />

acknowledgement that an increased displacement degrades damage stability<br />

capability.<br />

12


o C<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> KG growth of <str<strong>on</strong>g>the</str<strong>on</strong>g> class even though some ships were substantially<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g> KG compara<str<strong>on</strong>g>to</str<strong>on</strong>g>r of 48.50 feet. This is an acknowledgement that an<br />

increased KG degrades damage stability capability.<br />

1.2.3 Survivability<br />

Survivability is defined in [10] as <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity of a ship <str<strong>on</strong>g>to</str<strong>on</strong>g> absorb damage and maintain<br />

missi<strong>on</strong> integrity. Typically, most decisi<strong>on</strong> making regarding survivability is d<strong>on</strong>e during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

early trade-off stages of ship design. As a result, it is imperative that naval architectural<br />

parameters be c<strong>on</strong>sidered over <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetime of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship in order <str<strong>on</strong>g>to</str<strong>on</strong>g> successfully withstand<br />

designated threat levels. Every attempt must be made <str<strong>on</strong>g>to</str<strong>on</strong>g> prevent any degradati<strong>on</strong> of a warship's<br />

ability <str<strong>on</strong>g>to</str<strong>on</strong>g> perform its offensive missi<strong>on</strong>, sustain battle damage, and survive. <strong>Aircraft</strong> carriers are<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r defined in [10] as 'capital ships' in that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are expected <str<strong>on</strong>g>to</str<strong>on</strong>g> survive more than <strong>on</strong>e<br />

weap<strong>on</strong>s hit and return <str<strong>on</strong>g>to</str<strong>on</strong>g> some level of missi<strong>on</strong> capability. All o<str<strong>on</strong>g>the</str<strong>on</strong>g>r ships are <strong>on</strong>ly expected <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

survive design level damage from a single design level weap<strong>on</strong> or a single peacetime hazard.<br />

Survivability, weap<strong>on</strong>s effects and operati<strong>on</strong>al envir<strong>on</strong>ments are categorized in terms of<br />

three levels of severity. Level I represents <str<strong>on</strong>g>the</str<strong>on</strong>g> least severe envir<strong>on</strong>ment anticipated for a class of<br />

ship, while Level El represents <str<strong>on</strong>g>the</str<strong>on</strong>g> most severe envir<strong>on</strong>ment projected for a combatant battle<br />

group and includes <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ability <str<strong>on</strong>g>to</str<strong>on</strong>g> deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> broad degrading effects of damage from antiship<br />

cruise missiles (ASCM). <strong>Aircraft</strong> carriers and battle force surface combatants are both<br />

c<strong>on</strong>sidered Level III. Therefore, it is imperative that <str<strong>on</strong>g>the</str<strong>on</strong>g>se ships be operated and maintained as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y were designed. Any digressi<strong>on</strong> from operati<strong>on</strong>al restricti<strong>on</strong>s and guidelines makes all<br />

analyses irrelevant.<br />

13


1.2.4 Displacement Limits<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g>se aircraft carriers are so important and because any reducti<strong>on</strong> in freeboard<br />

will inherently reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>rpedo side protecti<strong>on</strong> system (TSPS), <str<strong>on</strong>g>the</str<strong>on</strong>g>se ships<br />

are usually displacement critical. The limit is typically expressed in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> Full Load<br />

C<strong>on</strong>diti<strong>on</strong>. Following is <str<strong>on</strong>g>the</str<strong>on</strong>g> criteria Naval Surface Warfare Center (NSWC) Carderock's Weight<br />

C<strong>on</strong>trol and Stability Divisi<strong>on</strong> uses <str<strong>on</strong>g>to</str<strong>on</strong>g> determine displacement limits for aircraft carriers with a<br />

TSPS:<br />

L2.5 KG Limits<br />

• Strength: The displacement, with an assumed l<strong>on</strong>gitudinal weight distributi<strong>on</strong>, at<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal bending moments caused by a standardized wave will<br />

produce <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum allowable stress in <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's hull girder.<br />

• Speed: The displacement for surface warships at which <str<strong>on</strong>g>the</str<strong>on</strong>g> ships machinery,<br />

operating at a specified percent of maximum available power, will drive <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> original design speed specified by <str<strong>on</strong>g>the</str<strong>on</strong>g> ships characteristics c<strong>on</strong>sidering<br />

power plant, RPM and <str<strong>on</strong>g>to</str<strong>on</strong>g>rque limits.<br />

• TSPS: The maximum draft for a surface warship which prevents <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>p of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

TSPS from being immersed more than a specified amount.<br />

• Subdivisi<strong>on</strong>: The maximum displacement at which a ship with a TSPS will<br />

satisfac<str<strong>on</strong>g>to</str<strong>on</strong>g>rily resist <str<strong>on</strong>g>the</str<strong>on</strong>g> flooding effects of a specified number of <str<strong>on</strong>g>to</str<strong>on</strong>g>rpedo hits or<br />

similar weap<strong>on</strong>s without submerging <str<strong>on</strong>g>the</str<strong>on</strong>g> margin line at <str<strong>on</strong>g>the</str<strong>on</strong>g> bow or <str<strong>on</strong>g>the</str<strong>on</strong>g> stem.<br />

• Damage Stability: The maximum displacement at which a ship with a TSPS will<br />

satisfac<str<strong>on</strong>g>to</str<strong>on</strong>g>rily resist <str<strong>on</strong>g>the</str<strong>on</strong>g> flooding effects of a specified number of <str<strong>on</strong>g>to</str<strong>on</strong>g>rpedo hits or<br />

similar weap<strong>on</strong>s while providing adequate stability <str<strong>on</strong>g>to</str<strong>on</strong>g> resist high static heel<br />

angles, resist capsizing, and return <str<strong>on</strong>g>to</str<strong>on</strong>g> some level of missi<strong>on</strong> capability.<br />

The KG Limit for a warship is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum height of <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical center of gravity of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ship in <str<strong>on</strong>g>the</str<strong>on</strong>g> Full Load c<strong>on</strong>diti<strong>on</strong>. Any Full Load KG below this limit is expected <str<strong>on</strong>g>to</str<strong>on</strong>g> survive <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hazards of wind, high speed maneuvering or damage, assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> ship follows its liquid<br />

loading instructi<strong>on</strong>s. The Limiting KG is <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest limit of ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> damage stability limit or<br />

14


<str<strong>on</strong>g>the</str<strong>on</strong>g> intact stability limit. Following is <str<strong>on</strong>g>the</str<strong>on</strong>g> DDS-079-1 criteria NSWC Carderock's Weight<br />

C<strong>on</strong>trol and Stability Divisi<strong>on</strong> uses <str<strong>on</strong>g>to</str<strong>on</strong>g> determine stability limits for surface warships with a SPS:<br />

• Intact: 100 Knot Beam Wind - The Full Load KG which will permit <str<strong>on</strong>g>the</str<strong>on</strong>g> ship <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

operate in any normal loading c<strong>on</strong>diti<strong>on</strong> and survive <str<strong>on</strong>g>the</str<strong>on</strong>g> heeling force of a fully<br />

developed hurricane (assumed as a nominal 100 knots). The ship will retain<br />

sufficient stability <str<strong>on</strong>g>to</str<strong>on</strong>g> absorb higher gusts without being knocked over, and <str<strong>on</strong>g>to</str<strong>on</strong>g> absorb<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic effects of wave acti<strong>on</strong> without being rolled over.<br />

• Damage: The Full Load KG Limit for large surface combatants, such as battleships<br />

and aircraft carriers which have a side protective system, is associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> worst<br />

possible combinati<strong>on</strong> of a specified number of hazards (<str<strong>on</strong>g>to</str<strong>on</strong>g>rpedoes/missiles) which<br />

will:<br />

1) Cause <str<strong>on</strong>g>the</str<strong>on</strong>g> ship <str<strong>on</strong>g>to</str<strong>on</strong>g> heel <str<strong>on</strong>g>to</str<strong>on</strong>g> a large initial angle of 15 - 20 degrees,<br />

2) Cause <str<strong>on</strong>g>the</str<strong>on</strong>g> ship <str<strong>on</strong>g>to</str<strong>on</strong>g> approach a capsize situati<strong>on</strong>, or<br />

3) Exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> counter flooding capability <str<strong>on</strong>g>to</str<strong>on</strong>g> return <str<strong>on</strong>g>to</str<strong>on</strong>g> limited operati<strong>on</strong>. Limited<br />

operati<strong>on</strong> is defined as a heel of less than 5 degrees <str<strong>on</strong>g>to</str<strong>on</strong>g> operate aircraft (should be<br />

3 degrees for current aircraft) or less than 10 degrees <str<strong>on</strong>g>to</str<strong>on</strong>g> operate <str<strong>on</strong>g>the</str<strong>on</strong>g> main turrets.<br />

In any of <str<strong>on</strong>g>the</str<strong>on</strong>g> above damage c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> ship must still possess sufficient dynamic<br />

stability <str<strong>on</strong>g>to</str<strong>on</strong>g> resist capsizing moments induced by wind and waves.<br />

1.3 Present Opti<strong>on</strong>s<br />

1.3.1 C<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> operate using inner bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m and DC voids<br />

Any departure from proper design and operati<strong>on</strong>al criteria degrades any analysis<br />

performed. For example, most stability analyses performed assumes that DC voids are used<br />

correctly, <str<strong>on</strong>g>the</str<strong>on</strong>g> ship is <strong>on</strong> an even keel, and that <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting displacement is not exceeded. In fact,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is an interrelati<strong>on</strong>ship between increasing displacement and a number of fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs, <str<strong>on</strong>g>to</str<strong>on</strong>g> include<br />

ship strength, survivability, stability and seakeeping. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> weight, or displacement, of<br />

carriers is a serious c<strong>on</strong>cern because any weight increase <strong>on</strong>ly serves <str<strong>on</strong>g>to</str<strong>on</strong>g> reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> service life of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ship. It should be noted again that not all carriers use DC voids <str<strong>on</strong>g>to</str<strong>on</strong>g> augment <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS, but it is<br />

also uncertain as <str<strong>on</strong>g>to</str<strong>on</strong>g> how many actually will use <str<strong>on</strong>g>the</str<strong>on</strong>g>m as a last resort.<br />

DC void usage results in a reducti<strong>on</strong> in TSPS defense. The purpose of <str<strong>on</strong>g>the</str<strong>on</strong>g> TSPS <strong>on</strong> any<br />

capital ship is <str<strong>on</strong>g>to</str<strong>on</strong>g> protect <str<strong>on</strong>g>the</str<strong>on</strong>g> vital spaces of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship against flooding and/or de<str<strong>on</strong>g>to</str<strong>on</strong>g>nati<strong>on</strong> of s<str<strong>on</strong>g>to</str<strong>on</strong>g>wed<br />

15


ordnance. Vital spaces include magazine and propulsi<strong>on</strong> system spaces. The TSPS provides <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desired protecti<strong>on</strong> by being c<strong>on</strong>structed of a series of l<strong>on</strong>gitudinal bulkheads nested transversely.<br />

These l<strong>on</strong>gitudinal spaces are fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r subdivided by transverse fluid-tight bulkheads creating a<br />

'h<strong>on</strong>eycomb' arrangement outboard of <str<strong>on</strong>g>the</str<strong>on</strong>g> vital magazines and machinery spaces. The spaces<br />

thus created between <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkheads are alternately filled with liquids (fuel oil, JP-5, ballast<br />

water, etc.) or are left empty (damage c<strong>on</strong>trol voids). The passive protecti<strong>on</strong> afforded by this<br />

combinati<strong>on</strong> of bulkheads and 'liquid/air layers" serves <str<strong>on</strong>g>to</str<strong>on</strong>g> absorb, deflect and reject <str<strong>on</strong>g>the</str<strong>on</strong>g> explosive<br />

force generated by weap<strong>on</strong>s such as <str<strong>on</strong>g>to</str<strong>on</strong>g>rpedoes or mines. Placing liquid in <str<strong>on</strong>g>the</str<strong>on</strong>g> void layer<br />

combined with an empty liquid layer will be <str<strong>on</strong>g>the</str<strong>on</strong>g> worst-case scenario, while <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r will<br />

result in less of a reducti<strong>on</strong>.<br />

Similarly, DC voids are supposed <str<strong>on</strong>g>to</str<strong>on</strong>g> be used exactly as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir name implies, <str<strong>on</strong>g>to</str<strong>on</strong>g> combat<br />

flooding with <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>to</str<strong>on</strong>g> adjust for list and trim in order <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> fulfill missi<strong>on</strong><br />

objectives after sustained damage by being able <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> launch and recover aircraft. The<br />

specified primary purpose of <str<strong>on</strong>g>the</str<strong>on</strong>g> DC voids is for damage c<strong>on</strong>trol. Sea chests and valves for<br />

flooding underwater side protecti<strong>on</strong> system spaces (DC voids) are required <str<strong>on</strong>g>to</str<strong>on</strong>g> flood within six<br />

minutes <str<strong>on</strong>g>to</str<strong>on</strong>g> fill <str<strong>on</strong>g>the</str<strong>on</strong>g> space <str<strong>on</strong>g>to</str<strong>on</strong>g> within 1 foot of <str<strong>on</strong>g>the</str<strong>on</strong>g> full load waterline per secti<strong>on</strong> 529i of [6]. In fact,<br />

current stability criteria require that <str<strong>on</strong>g>the</str<strong>on</strong>g> ship be able <str<strong>on</strong>g>to</str<strong>on</strong>g> counter flood <str<strong>on</strong>g>to</str<strong>on</strong>g> return <str<strong>on</strong>g>the</str<strong>on</strong>g> flight deck <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

within 5 degrees of upright after damage. When a ship has <str<strong>on</strong>g>to</str<strong>on</strong>g> resort <str<strong>on</strong>g>to</str<strong>on</strong>g> maintaining list by<br />

flooding DC voids, <str<strong>on</strong>g>the</str<strong>on</strong>g> crew becomes encumbered by a task that should be unnecessary. The<br />

Damage C<strong>on</strong>trol Assistant (DCA) and EOOW are drawn away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir normal tasks and in<str<strong>on</strong>g>to</str<strong>on</strong>g><br />

roles as reacti<strong>on</strong>ary problem-solvers, keeping an eye <strong>on</strong> flight deck aircraft placements, fuel tank<br />

levels, and ship list. This is a poor utilizati<strong>on</strong> of manpower, c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> primary duties of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

DCA and EOOW, which are <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinati<strong>on</strong> of damage c<strong>on</strong>trol acti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility<br />

16


for ships propulsi<strong>on</strong>, respectively. Also, a ship's crew is c<strong>on</strong>tinuously rotating. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is a c<strong>on</strong>tinual learning curve that relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> passage of operati<strong>on</strong>al knowledge from generati<strong>on</strong><br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> generati<strong>on</strong>. This is not <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal way <str<strong>on</strong>g>to</str<strong>on</strong>g> operate a multi-billi<strong>on</strong> dollar asset, and it is in our<br />

best interest <str<strong>on</strong>g>to</str<strong>on</strong>g> not put <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>us of correcting an evoluti<strong>on</strong>ary design fault <strong>on</strong> a crew who will<br />

serve at most a three year <str<strong>on</strong>g>to</str<strong>on</strong>g>ur. Additi<strong>on</strong>ally, de-ballasting DC voids is extremely time intensive.<br />

If a real casualty was <str<strong>on</strong>g>to</str<strong>on</strong>g> occur with <str<strong>on</strong>g>the</str<strong>on</strong>g> wr<strong>on</strong>g or <str<strong>on</strong>g>to</str<strong>on</strong>g>o many DC voids flooded, <str<strong>on</strong>g>the</str<strong>on</strong>g>re may not be<br />

sufficient time <str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>. It is not hard <str<strong>on</strong>g>to</str<strong>on</strong>g> imagine <str<strong>on</strong>g>the</str<strong>on</strong>g> disastrous results possible.<br />

1.3.2 Add a list c<strong>on</strong>trol tank <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> port side<br />

The c<strong>on</strong>trol of permanent lists (static heel angles) by adding an additi<strong>on</strong>al list c<strong>on</strong>trol tank<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> port side could also be c<strong>on</strong>sidered an opti<strong>on</strong>. The LCS is designed <str<strong>on</strong>g>to</str<strong>on</strong>g> compensate for<br />

variable lists generated by load items that are moved about <str<strong>on</strong>g>the</str<strong>on</strong>g> ship over short periods of time.<br />

Such loads could be liquids, cargo, s<str<strong>on</strong>g>to</str<strong>on</strong>g>res, vehicles or aircraft. The current <strong>Nimitz</strong> class LCS<br />

c<strong>on</strong>sists often list c<strong>on</strong>trol tanks, two centrifugal pumps each rated at 1800 gpm at 30 psi, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

associated piping and valves required <str<strong>on</strong>g>to</str<strong>on</strong>g> compensate for lists up <str<strong>on</strong>g>to</str<strong>on</strong>g> 1.5 degrees in 20 minutes.<br />

The system is designed <str<strong>on</strong>g>to</str<strong>on</strong>g> be filled with seawater (SW) or firemain <str<strong>on</strong>g>to</str<strong>on</strong>g> 50% of its <str<strong>on</strong>g>to</str<strong>on</strong>g>tal capacity of<br />

278,533 gall<strong>on</strong>s. This allows tanks <str<strong>on</strong>g>to</str<strong>on</strong>g> be filled <str<strong>on</strong>g>to</str<strong>on</strong>g> 100% <strong>on</strong> <strong>on</strong>e side while <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side is left<br />

empty.<br />

The problems encountered with using SW in tanks may be c<strong>on</strong>mi<strong>on</strong> knowledge <str<strong>on</strong>g>to</str<strong>on</strong>g> most<br />

people; however, potential corrosi<strong>on</strong> from using salt water has encouraged some carriers <str<strong>on</strong>g>to</str<strong>on</strong>g> use<br />

potable water (PW) as a means <str<strong>on</strong>g>to</str<strong>on</strong>g> fill <str<strong>on</strong>g>the</str<strong>on</strong>g>ir list c<strong>on</strong>trol tanks. The LCS is designed with PW as a<br />

back-up <str<strong>on</strong>g>to</str<strong>on</strong>g> using SW or firemain. This is advantageous for corrosi<strong>on</strong> issues, but can be a<br />

problem for PW inven<str<strong>on</strong>g>to</str<strong>on</strong>g>ry. Any leaks in <str<strong>on</strong>g>the</str<strong>on</strong>g> system or maintenance requiring system fill and<br />

17


drain could use a large amount of PW. When underway, potable water c<strong>on</strong>servati<strong>on</strong> is of<br />

primary importance.<br />

1.3.3 Move or exchange compartment spaces<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r opti<strong>on</strong> is <str<strong>on</strong>g>to</str<strong>on</strong>g> move or exchange compartment spaces, such as relocating heavy<br />

equipment <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard side <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> port side and vice versa. The reducti<strong>on</strong> of starboard<br />

moment by <str<strong>on</strong>g>the</str<strong>on</strong>g> removal or relocati<strong>on</strong> of items of lightship weight would reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity of<br />

ballast required, but would be very small by comparis<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of permanent ballast<br />

required. In order <str<strong>on</strong>g>to</str<strong>on</strong>g> achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary list correcti<strong>on</strong>s, an enormous amount of weight<br />

would have <str<strong>on</strong>g>to</str<strong>on</strong>g> be relocated. The costs involved with such an undertaking would be extremely<br />

high.<br />

1.3.4 C<strong>on</strong>vert a current DC void(s) <str<strong>on</strong>g>to</str<strong>on</strong>g> a JP-5 tank(s) and pump last<br />

C<strong>on</strong>verting portside DC floodable voids in<str<strong>on</strong>g>to</str<strong>on</strong>g> fuel tanks is also an opti<strong>on</strong>. This opti<strong>on</strong> will<br />

add <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overall weight of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship and again a reducti<strong>on</strong> in TSPS capability becomes a large<br />

c<strong>on</strong>cern as liquid is being placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> air layer and thus opening a window of vulnerability.<br />

1.3.5 Future ship alterati<strong>on</strong>s and modiflcati<strong>on</strong>s<br />

It is also possible that future modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft carrier will serve <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

provide a port list, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent starboard list. Modificati<strong>on</strong>s such as replacing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> existing <strong>Nimitz</strong> class starboard island with <str<strong>on</strong>g>the</str<strong>on</strong>g> new modified CVN 76 island could serve <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard list. In fact, CVN 76 has had so many design changes that its starboard<br />

inherent list is less than <strong>on</strong>e degree, currently based <strong>on</strong> preliminary results of its inclining<br />

experiment. <str<strong>on</strong>g>List</str<strong>on</strong>g> for CVN 76 has not been an issue thus far, however, at <str<strong>on</strong>g>the</str<strong>on</strong>g> time feedback was<br />

gained, <str<strong>on</strong>g>the</str<strong>on</strong>g> ship had not been fully loaded out. CVN 76 is slightly different from <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<strong>Nimitz</strong> class ships. The weap<strong>on</strong>s eleva<str<strong>on</strong>g>to</str<strong>on</strong>g>r is combined in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main structure and <str<strong>on</strong>g>the</str<strong>on</strong>g> aft mast is<br />

18


combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> island which is <strong>on</strong>e level shorter. There is also a more realistic protecti<strong>on</strong><br />

scheme such that a space armor c<strong>on</strong>cept was employed. On <str<strong>on</strong>g>the</str<strong>on</strong>g> older islands, such as CVN 73,<br />

Level III protecti<strong>on</strong> can be seen throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> entire island. This includes 40# (1") plating,<br />

whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> new CVN 76 island has Level II protecti<strong>on</strong> in some areas and is thus lighter.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r opti<strong>on</strong> could be <str<strong>on</strong>g>to</str<strong>on</strong>g> extend <str<strong>on</strong>g>the</str<strong>on</strong>g> port side flight deck <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> old <strong>Nimitz</strong> class, as<br />

was d<strong>on</strong>e <strong>on</strong> CVN 76. This allowed for more operati<strong>on</strong>al flexibility as <str<strong>on</strong>g>the</str<strong>on</strong>g> forward port jet blast<br />

deflec<str<strong>on</strong>g>to</str<strong>on</strong>g>r can now be used <str<strong>on</strong>g>to</str<strong>on</strong>g> its full extent. In any case, it is important <str<strong>on</strong>g>to</str<strong>on</strong>g> note that any number<br />

of ship alterati<strong>on</strong>s could be made when time and m<strong>on</strong>ey become available in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

1.3.6 Re-examine current <str<strong>on</strong>g>List</str<strong>on</strong>g> C<strong>on</strong>trol System<br />

Fleet feedback was taken in<str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>siderati<strong>on</strong> when performing this study. The design of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> current LCS reportedly requires extensive manpower for operati<strong>on</strong>s, possesses obsolete<br />

comp<strong>on</strong>ents, and is not integrated with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r shipboard liquid-movement functi<strong>on</strong>s. The<br />

installed LCS c<strong>on</strong>sists of 10 tanks, 2 pumps and 14 associated valves <str<strong>on</strong>g>to</str<strong>on</strong>g> distribute seawater<br />

ballast as required compensating for lists up <str<strong>on</strong>g>to</str<strong>on</strong>g> 1.5 degrees. The manually c<strong>on</strong>trolled system<br />

uses verbal communicati<strong>on</strong>s and associated sailor acti<strong>on</strong>s for operati<strong>on</strong>.<br />

Much of <str<strong>on</strong>g>the</str<strong>on</strong>g> fleet feedback received noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> current LCS provides sufficient<br />

c<strong>on</strong>trol when <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent starboard list has been corrected. The fleet also noted, however, that if<br />

correcti<strong>on</strong> has not been provided, <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS al<strong>on</strong>e does not provide ample list correcti<strong>on</strong> while at<br />

full combat load (average displacement between 98,000 and 100,000 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns, mean draft<br />

approximately between 38'10" and 39'10", even liquid distributi<strong>on</strong>, and standard spotting of<br />

aircraft for flight operati<strong>on</strong>s). Standard spotting includes F-18s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 and 4 row, hummers<br />

(fleet jarg<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> E-2C Hawkeye) in <str<strong>on</strong>g>the</str<strong>on</strong>g> hummer hole, F-14s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stem of <str<strong>on</strong>g>the</str<strong>on</strong>g> flight deck.<br />

19


helicopters and C-2 Greyhounds inboard of <str<strong>on</strong>g>the</str<strong>on</strong>g> island, cranes aft of <str<strong>on</strong>g>the</str<strong>on</strong>g> island, and <str<strong>on</strong>g>the</str<strong>on</strong>g> rest of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aircraft dispersed between <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

The LCS is currently being au<str<strong>on</strong>g>to</str<strong>on</strong>g>mated via <str<strong>on</strong>g>the</str<strong>on</strong>g> Au<str<strong>on</strong>g>to</str<strong>on</strong>g>mated <str<strong>on</strong>g>List</str<strong>on</strong>g> C<strong>on</strong>trol System alterati<strong>on</strong><br />

(ALCS 9145K). The ALCS provides remote c<strong>on</strong>trol and m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>ring of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft carrier LCS<br />

from Damage C<strong>on</strong>trol Central (DCC) and Shaft Alley via a flat panel display. Four existing loop<br />

valves are upgraded from manual <str<strong>on</strong>g>to</str<strong>on</strong>g> mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r operated and are integrated in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol system.<br />

Existing pump c<strong>on</strong>trollers are replaced and c<strong>on</strong>trol of pumps, valves and tank level m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>ring<br />

are integrated in<str<strong>on</strong>g>to</str<strong>on</strong>g> a single system with redundant capabilities. The ALCS utilizes commercialoff-<str<strong>on</strong>g>the</str<strong>on</strong>g>-shelf<br />

comp<strong>on</strong>ents and Navy-owned software <str<strong>on</strong>g>to</str<strong>on</strong>g> decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> manpower needed for<br />

operati<strong>on</strong> and maintenance, increase au<str<strong>on</strong>g>to</str<strong>on</strong>g>mati<strong>on</strong>, reduce life cycle costs and significantly<br />

improve system reliability. System line-up and tank management is au<str<strong>on</strong>g>to</str<strong>on</strong>g>mated and managed<br />

such that tanks can be filled faster, utilizing fewer watchstanders and increasing system<br />

efficiency. C<strong>on</strong>trol and m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>ring of <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS is performed from two human-machine interface<br />

(HMI) stati<strong>on</strong>s: <strong>on</strong>e in DCC and <strong>on</strong>e in Shaft Alley. The system can also be operated from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Central C<strong>on</strong>trol Stati<strong>on</strong>, and operates in both remote and semi-au<str<strong>on</strong>g>to</str<strong>on</strong>g>matic modes.<br />

Very little feedback has been obtained regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> new ALCS and its improvements <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

overall ship operati<strong>on</strong>s. To date, installati<strong>on</strong> has been completed <strong>on</strong> three of <str<strong>on</strong>g>the</str<strong>on</strong>g> ten planned<br />

carriers. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> system provides <str<strong>on</strong>g>the</str<strong>on</strong>g> means <str<strong>on</strong>g>to</str<strong>on</strong>g> au<str<strong>on</strong>g>to</str<strong>on</strong>g>matically operate pumps and valves,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> capacity of <str<strong>on</strong>g>the</str<strong>on</strong>g> system has not been changed. To really affect <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard inherent list,<br />

more ballasting is going <str<strong>on</strong>g>to</str<strong>on</strong>g> be required. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent starboard list is fixed, <str<strong>on</strong>g>the</str<strong>on</strong>g> ALCS will<br />

be extremely advantageous <str<strong>on</strong>g>to</str<strong>on</strong>g> overall carrier operati<strong>on</strong>s.<br />

20


1.3.7 Ballast Additi<strong>on</strong><br />

1.3.7.1 Water Ballast<br />

Special preparati<strong>on</strong> would be required for all tanks or voids using locked-in water ballast<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard inherent list. The sp<strong>on</strong>s<strong>on</strong> voids, in particular, are coated with epoxy over<br />

an inorganic zinc primer; this is suitable for installati<strong>on</strong> of water ballast, but <strong>on</strong>ly for a period of<br />

up <str<strong>on</strong>g>to</str<strong>on</strong>g> five years if it is intact. Preparati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong> voids for installati<strong>on</strong> of water would<br />

require inspecti<strong>on</strong> and possibly repair of <str<strong>on</strong>g>the</str<strong>on</strong>g> existing coating systems. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r problem with<br />

using water as a source of ballast is that it is difficult <str<strong>on</strong>g>to</str<strong>on</strong>g> provide a sufficient amount of water<br />

ballast in a space judicious manner in order <str<strong>on</strong>g>to</str<strong>on</strong>g> provide enough permanent list correcti<strong>on</strong>.<br />

Although water is an inexpensive material, utilities would have <str<strong>on</strong>g>to</str<strong>on</strong>g> be relocated <str<strong>on</strong>g>to</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r spaces<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves cannot be partially filled.<br />

1.3.7.2 Solid Ballast<br />

For purposes of this project, lead was not c<strong>on</strong>sidered as an opti<strong>on</strong> due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tremendous<br />

handling expenses and associated carcinogenic problems. Instead, a pumpable slurry of ir<strong>on</strong>-ore,<br />

known as Perma Ballast®, was examined as a possible source of solid ballast. Ballast<br />

Technologies Inc. (BTI) has been a provider and installer of Perma Ballast® since 1983. Their<br />

product is widely acknowledged <str<strong>on</strong>g>to</str<strong>on</strong>g> be <str<strong>on</strong>g>the</str<strong>on</strong>g> quickest and most cost-effective method of ballast<br />

installati<strong>on</strong>. All materials, including <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid used <str<strong>on</strong>g>to</str<strong>on</strong>g> install <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast, are naturally occurring,<br />

n<strong>on</strong><str<strong>on</strong>g>to</str<strong>on</strong>g>xic, n<strong>on</strong>-corrosive and envir<strong>on</strong>mentally safe. No gases or vapors are generated and no<br />

special handling is required up<strong>on</strong> installati<strong>on</strong> or removal.<br />

Minimal vessel modificati<strong>on</strong> is required <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby providing savings <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shipyard. Jobs are not generally subc<strong>on</strong>tracted out, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby cutting out <str<strong>on</strong>g>the</str<strong>on</strong>g> middle man and<br />

making this product more competitive. Prior <str<strong>on</strong>g>to</str<strong>on</strong>g> installati<strong>on</strong>, engineers and key pers<strong>on</strong>nel inspect<br />

21


<str<strong>on</strong>g>the</str<strong>on</strong>g> vessel <str<strong>on</strong>g>to</str<strong>on</strong>g> be ballasted and its locati<strong>on</strong>. Requirements such as electrical, water, compressed<br />

air, and equipment locati<strong>on</strong> are assessed. BTI engineers <str<strong>on</strong>g>the</str<strong>on</strong>g>n submit engineered drawings noting<br />

locati<strong>on</strong> of equipment and diagrams of <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> system al<strong>on</strong>g with a written operating plan<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> project. BTI uses its own experienced pers<strong>on</strong>nel and equipment during ballast<br />

installati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> ensure safe, rapid and efficient mobilizati<strong>on</strong>, installati<strong>on</strong>, and demobilizati<strong>on</strong>.<br />

BTI's ballast materials are mixed with water and pumped <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vessel via a combinati<strong>on</strong><br />

of rigid and flexible pipes. The slurry is pumped in at a c<strong>on</strong>trolled velocity in order <str<strong>on</strong>g>to</str<strong>on</strong>g> assure an<br />

even distributi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast around projecti<strong>on</strong>s, pipe, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objects, leaving no voids.<br />

Excess water is removed as <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast is installed and settles. This ensures that <str<strong>on</strong>g>the</str<strong>on</strong>g> in-place,<br />

fixed ballast is a dense mass which will not move or shift. Due <str<strong>on</strong>g>to</str<strong>on</strong>g> BTI's materials and placement<br />

method, no special handling or tank modificati<strong>on</strong>s are required.<br />

BTI pretests materials in its labora<str<strong>on</strong>g>to</str<strong>on</strong>g>ry <str<strong>on</strong>g>to</str<strong>on</strong>g> ensure proper density and uniformity.<br />

C<strong>on</strong>tinuous testing is performed during ballast installati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> verify installed density. Densities<br />

of materials range from 1501b/ft^ <str<strong>on</strong>g>to</str<strong>on</strong>g> 3501b/ftl All processes and materials used by BTI are<br />

approved by ASTM, ABS, MARAD, U.S. Navy, U.S. Coast Guard, Del Norske Veritas, and<br />

Lloyds. In fact, Perma Ballast® has already been installed <strong>on</strong> a number of naval vessels,<br />

particulariy DDG 73,76, and 77. The reas<strong>on</strong> for installati<strong>on</strong> was <str<strong>on</strong>g>to</str<strong>on</strong>g> correct a Flight II starboard<br />

list. Feedback obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g>se installati<strong>on</strong>s described <str<strong>on</strong>g>the</str<strong>on</strong>g> process as being very smooth and<br />

extremely successful.<br />

There are a number of advantages <str<strong>on</strong>g>to</str<strong>on</strong>g> using this Perma Ballast®. It is possible that Perma<br />

Ballast® will absorb shock over a limited area and serve <str<strong>on</strong>g>to</str<strong>on</strong>g> dampen it. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> individual<br />

particles and <str<strong>on</strong>g>the</str<strong>on</strong>g> water are incompressible, <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast® bed is made up of many very<br />

small particles which are not bound <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r by anything except gravity. There is approximately<br />

22


2% entrained air (by volume) in <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry. Some of this air probably remains in <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry after<br />

settling so it would be fair <str<strong>on</strong>g>to</str<strong>on</strong>g> say that Perma Ballast® c<strong>on</strong>tains about 1-2% (by volume)<br />

compressible comp<strong>on</strong>ents. Water is removed as <str<strong>on</strong>g>the</str<strong>on</strong>g> material settles, but even after <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma<br />

Ballast® settles, all of <str<strong>on</strong>g>the</str<strong>on</strong>g> voids between particles are filled by water. In fact, a settled bed of<br />

Perma Ballast® is an extremely effective barrier against permeati<strong>on</strong> of oxygen - ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bed or through it.<br />

1.4 Opti<strong>on</strong> Selecti<strong>on</strong><br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> opti<strong>on</strong>s presented above, <str<strong>on</strong>g>the</str<strong>on</strong>g> choice was made <str<strong>on</strong>g>to</str<strong>on</strong>g> use solid ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

starboard inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers. Based <strong>on</strong> ballast density, tank locati<strong>on</strong> and<br />

capacity, ease of ballast installati<strong>on</strong>, minor tank structural modificati<strong>on</strong>s, and a decisi<strong>on</strong> making<br />

cost analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast® appears <str<strong>on</strong>g>to</str<strong>on</strong>g> be <str<strong>on</strong>g>the</str<strong>on</strong>g> best opti<strong>on</strong> for use in correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent<br />

list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft carriers and is discussed extensively in Chapter 2.<br />

2.0 Preliminary Analysis and Results<br />

Preliminary analysis began with tank selecti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> serve as input <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Program of Ship<br />

Salvage and Engineering (POSSE) computer analysis program, discussed later in secti<strong>on</strong> 2.2.<br />

Once tanks were selected for ballasting, a naval architectural analysis using POSSE was<br />

performed for 36 scenarios <str<strong>on</strong>g>to</str<strong>on</strong>g> determine list correcti<strong>on</strong>s. These scenarios encompassed<br />

ballasting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2°'', 4*, and 8* decks with 200 Ib/ft^ and 325 Ib/ft^ density ballast. Fresh water<br />

was also examined as a possible alternative, but not as extensively as <str<strong>on</strong>g>the</str<strong>on</strong>g> solid ballast opti<strong>on</strong>.<br />

Once a complete set of data was obtained, a decisi<strong>on</strong> making cost analysis was performed. This<br />

cost estimati<strong>on</strong> analysis proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density ballast was <str<strong>on</strong>g>the</str<strong>on</strong>g> best opti<strong>on</strong>. As a result,<br />

all structural analysis was performed using <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density ballast. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> structural<br />

analysis was complete, modeling had <str<strong>on</strong>g>to</str<strong>on</strong>g> be performed again using POSSE. In some cases, a<br />

23


minimum ballast weight was calculated for a particular set of tanks for <str<strong>on</strong>g>the</str<strong>on</strong>g> prescribed design<br />

criteria. Analysis had <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n be performed again in POSSE with <str<strong>on</strong>g>the</str<strong>on</strong>g>se new ballast weights.<br />

Similarly, some of <str<strong>on</strong>g>the</str<strong>on</strong>g> structural analysis revealed that stiffening was required for plating in<br />

some of <str<strong>on</strong>g>the</str<strong>on</strong>g> tank bulkheads. This required ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r cost assessment be performed in order <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

achieve accurate cost estimati<strong>on</strong>s. So, <strong>on</strong>e can see that this project followed a design spiral<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g>wards <str<strong>on</strong>g>to</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> most cost effective and advantageous solid ballasting soluti<strong>on</strong> for<br />

correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers.<br />

2.1 Tank Selecti<strong>on</strong><br />

Tanks selecti<strong>on</strong> was based <strong>on</strong> locati<strong>on</strong> and those that were available for ballasting based<br />

<strong>on</strong> <strong>Nimitz</strong> class carrier drawings. As menti<strong>on</strong>ed previously, ballasting was accomplished <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

relieve up <str<strong>on</strong>g>to</str<strong>on</strong>g> 3 degrees of list in half degree increments. 30 tanks, primarily in <str<strong>on</strong>g>the</str<strong>on</strong>g> aft/port voids,<br />

have been identified <str<strong>on</strong>g>to</str<strong>on</strong>g> accommodate <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> of Perma Ballast® with 200 Ib/ft^ and 325<br />

Ib/ftl There are 3 tanks or sp<strong>on</strong>s<strong>on</strong> voids <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^ deck, 16 tanks <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4*^ deck, and 11 tanks<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8 deck. The methodology utilized was as follows: <str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g> most list possible<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> least weight possible. For example, tanks could have been chosen in <str<strong>on</strong>g>the</str<strong>on</strong>g> order of fill<br />

that were fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r aft <str<strong>on</strong>g>to</str<strong>on</strong>g> assist in trim correcti<strong>on</strong>, but that does not provide <str<strong>on</strong>g>the</str<strong>on</strong>g> best list correcti<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> least weight additi<strong>on</strong>. Trim was, however, taken in<str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>siderati<strong>on</strong> such that any<br />

additi<strong>on</strong> of ballast would not serve <str<strong>on</strong>g>to</str<strong>on</strong>g> increase <str<strong>on</strong>g>the</str<strong>on</strong>g> existing trim c<strong>on</strong>diti<strong>on</strong>. As a result, all<br />

changes in trim are also closely m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>red.<br />

Included in Appendix A is a series of tables providing informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects that<br />

each tank would produce if <str<strong>on</strong>g>the</str<strong>on</strong>g> tank was individually filled <str<strong>on</strong>g>to</str<strong>on</strong>g> capacity in a combat load<br />

c<strong>on</strong>diti<strong>on</strong> with fresh water as well as each of <str<strong>on</strong>g>the</str<strong>on</strong>g> two ballast density types, 200 Ib/ft^ and 325<br />

lb/ft. This informati<strong>on</strong> includes:<br />

24


Tank name<br />

Tank volume<br />

Ballast type density<br />

Tank weight<br />

Initial KG<br />

Initial trim<br />

Initial weight<br />

Final KG<br />

Final trim<br />

Final weight<br />

A KG<br />

A trim<br />

A weight<br />

2.2 Modeling Analysis Performed<br />

POSSE was used <str<strong>on</strong>g>to</str<strong>on</strong>g> analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carrier. POSSE is a<br />

software package of modeling, naval architectural design <str<strong>on</strong>g>to</str<strong>on</strong>g>ols, and intact loading and salvage<br />

analysis <str<strong>on</strong>g>to</str<strong>on</strong>g>ols designed primarily for U.S. Navy salvage resp<strong>on</strong>se. The Modeling and Naval<br />

Architecture modules are Microsoft DOS® applicati<strong>on</strong>s packaged through a Windows interface<br />

called <str<strong>on</strong>g>the</str<strong>on</strong>g> Ship Project Edi<str<strong>on</strong>g>to</str<strong>on</strong>g>r. A plan is <str<strong>on</strong>g>the</str<strong>on</strong>g>n developed so that <str<strong>on</strong>g>the</str<strong>on</strong>g> engineer can evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ship in various c<strong>on</strong>diti<strong>on</strong>s. The collecti<strong>on</strong> of c<strong>on</strong>diti<strong>on</strong>s represents <str<strong>on</strong>g>the</str<strong>on</strong>g> steps in <str<strong>on</strong>g>the</str<strong>on</strong>g> plan <str<strong>on</strong>g>to</str<strong>on</strong>g> assess<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> status of <str<strong>on</strong>g>the</str<strong>on</strong>g> vessel. POSSE provides an efficient means <str<strong>on</strong>g>to</str<strong>on</strong>g> develop plans using a tree<br />

structure <str<strong>on</strong>g>to</str<strong>on</strong>g> allow a hierarchical definiti<strong>on</strong> that permits branching <str<strong>on</strong>g>to</str<strong>on</strong>g> investigate various potential<br />

soluti<strong>on</strong>s. Several branches can be developed and viewed c<strong>on</strong>currently. A c<strong>on</strong>diti<strong>on</strong> represents a<br />

25


particular state of <str<strong>on</strong>g>the</str<strong>on</strong>g> vessel. It includes all load and strength informati<strong>on</strong> associated with that<br />

state. For purposes of this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, <strong>on</strong>ly intact states were analyzed.<br />

<strong>Aircraft</strong> carrier modeling in POSSE was <str<strong>on</strong>g>to</str<strong>on</strong>g>o cumbersome <str<strong>on</strong>g>to</str<strong>on</strong>g> analyze for <str<strong>on</strong>g>the</str<strong>on</strong>g> original DOS<br />

versi<strong>on</strong>. In fact, any analysis prior <str<strong>on</strong>g>to</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis would have <str<strong>on</strong>g>to</str<strong>on</strong>g> been d<strong>on</strong>e in secti<strong>on</strong>s. With<br />

POSSE 4.0, <str<strong>on</strong>g>the</str<strong>on</strong>g> complete Microsoft Windows® versi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong>s were able <str<strong>on</strong>g>to</str<strong>on</strong>g> be combined<br />

in<str<strong>on</strong>g>to</str<strong>on</strong>g> a single ship project (.shp) file using <str<strong>on</strong>g>the</str<strong>on</strong>g> ship project edi<str<strong>on</strong>g>to</str<strong>on</strong>g>r. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 68 <strong>Nimitz</strong> <strong>Class</strong><br />

hull was put <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, a weight ordinate was entered <str<strong>on</strong>g>to</str<strong>on</strong>g> adjust <str<strong>on</strong>g>the</str<strong>on</strong>g> lightship data so that it<br />

coincided with <str<strong>on</strong>g>the</str<strong>on</strong>g> most recent data available. It has been very difficult <str<strong>on</strong>g>to</str<strong>on</strong>g> determine <str<strong>on</strong>g>the</str<strong>on</strong>g> exact<br />

inherent list that each carrier exhibits when under combat load c<strong>on</strong>diti<strong>on</strong>s due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> "unknown<br />

light ship (LS) growth" associated with each carrier and due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lack of in-service inclining<br />

experiments performed <strong>on</strong> <strong>Nimitz</strong> class carriers. Unknown LS growth is used <str<strong>on</strong>g>to</str<strong>on</strong>g> term<br />

unattributable changes in displacement and centers of gravity over <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's service life.<br />

Examples of unknown LS growth include but are not limited <str<strong>on</strong>g>to</str<strong>on</strong>g>: unauthorized alterati<strong>on</strong>s or<br />

installati<strong>on</strong>s of equipment, accumulati<strong>on</strong>s of paint, deck covering, dead cable runs, old<br />

foundati<strong>on</strong>s, undocumented c<strong>on</strong>figurati<strong>on</strong> changes affecting weight and KG, and excess and<br />

obsolete repair parts, technical manuals, and paperwork. Naval Sea Systems Command's<br />

Weights and Stability Divisi<strong>on</strong> has recently revised <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown light ship (LS) weight and KG<br />

growth data for CVN 71 through CVN 75 based <strong>on</strong> re-evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> results of <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 71<br />

Actual Operating C<strong>on</strong>diti<strong>on</strong> (AOC) Weight Survey and Displacement Test and <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 68 Post-<br />

Refueling Complex Overhaul (RCOH) inclining experiment.<br />

The CVN 68 inclining experiment was <str<strong>on</strong>g>the</str<strong>on</strong>g> first in-service inclining experiment of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NIMITZ class in 27 years. The CVN 71 displacement test determined <str<strong>on</strong>g>the</str<strong>on</strong>g> ships displacement<br />

and l<strong>on</strong>gitudinal, transverse but not vertical center of gravity. The CVN 68 post RCOH inclining<br />

26


was successfully performed and <str<strong>on</strong>g>the</str<strong>on</strong>g> results are c<strong>on</strong>sidered <str<strong>on</strong>g>to</str<strong>on</strong>g> be accurate. The results of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inclining show that <str<strong>on</strong>g>the</str<strong>on</strong>g> ship had an unknown lightship weight growth of 1,818 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns and 0.47 feet<br />

of KG increase. The fully loaded c<strong>on</strong>diti<strong>on</strong> was determined <str<strong>on</strong>g>to</str<strong>on</strong>g> have a displacement of 100,019<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns with a KG of 47.21 feet. This provides 3,781 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns (3.78%) and 1.29 feet KG service life<br />

allowance remaining when compared <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting displacement of 103,800 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns and a KG<br />

compara<str<strong>on</strong>g>to</str<strong>on</strong>g>r value of 48.50 feet.<br />

The following changes were made <str<strong>on</strong>g>to</str<strong>on</strong>g> all stability baselines for CVN 71-75:<br />

• CVN 71<br />

o Increase <str<strong>on</strong>g>the</str<strong>on</strong>g> current LS vertical center of gravity by 0.25 feet <str<strong>on</strong>g>to</str<strong>on</strong>g> account for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unknown LS KG growth.<br />

• CVN 72-75<br />

o Revise <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown LS weight growth <str<strong>on</strong>g>to</str<strong>on</strong>g> 2,333 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns.<br />

o Locate <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown LS weight growth at <str<strong>on</strong>g>the</str<strong>on</strong>g> following centers of gravity:<br />

■ VCG = 60.5 ft<br />

■ LCG = 72.47 ft (A)<br />

■ TCG = 5.62 ft (P)<br />

As a result of this unknown growth, an average <strong>Nimitz</strong> class carrier baseline c<strong>on</strong>diti<strong>on</strong><br />

was modeled in POSSE and used for all analyses. Lightship and Combat Load C<strong>on</strong>diti<strong>on</strong> data<br />

was obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 72 Weight and Moment Baseline Report. This report is based <strong>on</strong>:<br />

1) CVN 68 post RCOH inclining experiment load out,<br />

2) CVN 71 Actual Operating C<strong>on</strong>diti<strong>on</strong> (AOC) results,<br />

3) CVN 73 <strong>Aircraft</strong>/JP-5 Revisi<strong>on</strong>s,<br />

4) Scheduled Restricted Availabilities (SRAs) actually accomplished.<br />

27


5) <str<strong>on</strong>g>the</str<strong>on</strong>g> latest estimates for next overhaul,<br />

6) <str<strong>on</strong>g>the</str<strong>on</strong>g> latest Availability FYOl Planned Incremental Availability (PIA), and<br />

7) LCS at 50%.<br />

A Lightship C<strong>on</strong>diti<strong>on</strong> of 81,450.69 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns and a Combat Load C<strong>on</strong>diti<strong>on</strong> of 104,263.10<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns were obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 72 Weight and Moment Baseline report and used for<br />

modeling purposes. These values are from before <str<strong>on</strong>g>the</str<strong>on</strong>g> latest correcti<strong>on</strong> for unknown growth was<br />

applied. Included in Table 1 are <str<strong>on</strong>g>the</str<strong>on</strong>g> current CVN class predicti<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> most recent<br />

unknown growth correcti<strong>on</strong>s applied. This is an extremely important chart because it shows<br />

each carrier's delivery data and class predicti<strong>on</strong>s for displacement, KG, and list.<br />

The VCG, LCG, TCG, and volume of each tank being analyzed was <str<strong>on</strong>g>the</str<strong>on</strong>g>n checked and<br />

modified if necessary <str<strong>on</strong>g>to</str<strong>on</strong>g> ensure accurate stability and analytical results. These naval architecture<br />

parameters were checked against <str<strong>on</strong>g>the</str<strong>on</strong>g> compartment and access database for CVN 70. Normally,<br />

<strong>on</strong>e would use <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's lines drawings and develop <str<strong>on</strong>g>the</str<strong>on</strong>g> hull up <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkhead and freeboard<br />

decks (i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> highest level <str<strong>on</strong>g>to</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be watertight/structural salvage operati<strong>on</strong>s). On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> basis of this modeling, <strong>on</strong>e checks <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrostatics and curves of form against <str<strong>on</strong>g>the</str<strong>on</strong>g> builder's<br />

documents <str<strong>on</strong>g>to</str<strong>on</strong>g> determine if <str<strong>on</strong>g>the</str<strong>on</strong>g> hull has been modeled correctly. Any freely flooding area above<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> freeboard deck will generally be left off <str<strong>on</strong>g>the</str<strong>on</strong>g> hull model unless <str<strong>on</strong>g>the</str<strong>on</strong>g> deck is a strength deck (i.e.<br />

part of hull girder bending). The 2"'' deck sp<strong>on</strong>s<strong>on</strong> voids had <str<strong>on</strong>g>to</str<strong>on</strong>g> be added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y were not included previously and POSSE is normally <strong>on</strong>ly utilized <str<strong>on</strong>g>to</str<strong>on</strong>g> model what is inside<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ship's hull. Builder's lines drawings were not used, however, because salvage and<br />

hydrostatic work was not needed for purposes of this project. Instead, weights and centers were<br />

input <str<strong>on</strong>g>to</str<strong>on</strong>g> model <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 72 data <str<strong>on</strong>g>to</str<strong>on</strong>g> determine and correct <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's list. After careful accounting<br />

28


of each tank's locati<strong>on</strong> was added, verified, or corrected, <str<strong>on</strong>g>the</str<strong>on</strong>g> file was imported in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> POSSE<br />

program so that a combat load could be applied.<br />

The combat load c<strong>on</strong>diti<strong>on</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g>n modified <str<strong>on</strong>g>to</str<strong>on</strong>g> reflect <str<strong>on</strong>g>the</str<strong>on</strong>g> current CVN 72 baseline<br />

combat load data menti<strong>on</strong>ed previously as c<strong>on</strong>stants in <str<strong>on</strong>g>the</str<strong>on</strong>g> POSSE plan that was newly created.<br />

This includes a correcti<strong>on</strong> for:<br />

1) crew and effects,<br />

2) aviati<strong>on</strong> ammuniti<strong>on</strong>,<br />

3) ship ammuniti<strong>on</strong>,<br />

4) provisi<strong>on</strong>s and s<str<strong>on</strong>g>to</str<strong>on</strong>g>res,<br />

5) general s<str<strong>on</strong>g>to</str<strong>on</strong>g>res,<br />

6) lube oil,<br />

7) potable water,<br />

8) reserve and emergency feed water,<br />

9) oxygen and nitrogen producti<strong>on</strong> plant,<br />

10) JP-5 aviati<strong>on</strong> fuel,<br />

ll)gasohne,<br />

12) aircraft,<br />

13) aviati<strong>on</strong> yellow gear,<br />

14) aviati<strong>on</strong> lube oil,<br />

15) <strong>on</strong>board discharge s<str<strong>on</strong>g>to</str<strong>on</strong>g>rage tanks, and<br />

16) bilge and oily water.<br />

Then, <str<strong>on</strong>g>to</str<strong>on</strong>g> reflect CVN 71 AOC results, a miscellaneous weight correcti<strong>on</strong> fac<str<strong>on</strong>g>to</str<strong>on</strong>g>r was<br />

added at <str<strong>on</strong>g>the</str<strong>on</strong>g> combat load c<strong>on</strong>diti<strong>on</strong> TCG, VCG, and LCG. Now, <str<strong>on</strong>g>the</str<strong>on</strong>g> combat load c<strong>on</strong>diti<strong>on</strong> was<br />

29


accurate and ready for <str<strong>on</strong>g>the</str<strong>on</strong>g> creati<strong>on</strong> of several variant c<strong>on</strong>diti<strong>on</strong>s. Specifically, a c<strong>on</strong>diti<strong>on</strong> for<br />

water ballast, high density ballast (325 Ib/ft^), and low density ballast (200 Ib/ft^) was created.<br />

Included in Appendix B is a series of tables providing POSSE modeling results in a<br />

combat load c<strong>on</strong>diti<strong>on</strong> for list correcti<strong>on</strong> in half degree increments up <str<strong>on</strong>g>to</str<strong>on</strong>g> 3 degrees for fresh water<br />

as well as each of <str<strong>on</strong>g>the</str<strong>on</strong>g> two ballast density types, 200 Ib/ft^ and 325 Ib/ftl This informati<strong>on</strong><br />

includes:<br />

• Tank name<br />

• Tank volume<br />

• Ballast type density<br />

• Tank weight<br />

Degree Increment:<br />

• Weight<br />

• Percent change<br />

• A KG<br />

• A Trim<br />

A 95% usable volume fracti<strong>on</strong> was utilized for all calculati<strong>on</strong>s. This value provides for<br />

structural internals as well as for any utilities that may be running through <str<strong>on</strong>g>the</str<strong>on</strong>g> spaces. There are<br />

no losses due <str<strong>on</strong>g>to</str<strong>on</strong>g> compacti<strong>on</strong>. According <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vendor, BTI, because <str<strong>on</strong>g>the</str<strong>on</strong>g> water is removed as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

material settles, all of <str<strong>on</strong>g>the</str<strong>on</strong>g> voids between particles are filled by water and remain filled by water.<br />

It must be noted again, however, that a settled bed of Perma Ballast® is an extremely effective<br />

barrier against permeati<strong>on</strong> of oxygen - ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bed or through it.<br />

30


2.3 Preliminary Decisi<strong>on</strong>-Making Cost Estimati<strong>on</strong><br />

All decisi<strong>on</strong> making costing or "c<strong>on</strong>cept" estimati<strong>on</strong> was performed by Norfolk Naval<br />

Shipyard's Structural Engineering and Planning Office (Code 256). This preliminary costing<br />

was performed prior <str<strong>on</strong>g>to</str<strong>on</strong>g> any structural analysis. It was presumed that <strong>on</strong>e type of ballast or <strong>on</strong>e<br />

locati<strong>on</strong> of ballast could be ruled out solely based <strong>on</strong> cost al<strong>on</strong>e. As a result, a final cost analysis<br />

would still need <str<strong>on</strong>g>to</str<strong>on</strong>g> be performed after <str<strong>on</strong>g>the</str<strong>on</strong>g> structural analysis was completed. Cost estimati<strong>on</strong><br />

was performed for a combinati<strong>on</strong> of 36 scenarios <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'', 4*, and 8* decks. A specific<br />

number of man-hours were allocated under each shop for jobs associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> of<br />

Perma Ballast®. These jobs ranged from <str<strong>on</strong>g>the</str<strong>on</strong>g> opening and closing of voids <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> preparing and<br />

painting of any additi<strong>on</strong>al structures. The cost estimati<strong>on</strong> was broken down by man-hours and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>verted <str<strong>on</strong>g>to</str<strong>on</strong>g> man-days. A <str<strong>on</strong>g>to</str<strong>on</strong>g>tal producti<strong>on</strong> cost was <str<strong>on</strong>g>the</str<strong>on</strong>g>n derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> man-days<br />

required for tank prepping <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast® installati<strong>on</strong>. Similarly, material producti<strong>on</strong> costs<br />

were calculated for prepping a typical void while additi<strong>on</strong>al material costs were additi<strong>on</strong>ally<br />

applied for canning plate installati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^" deck. A canning plate, used <str<strong>on</strong>g>to</str<strong>on</strong>g> enclose <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

required amount of ballast, would <strong>on</strong>ly be utilized in analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2°^ deck because both <str<strong>on</strong>g>the</str<strong>on</strong>g> 4'<br />

and 8* decks are completely filled in all of <str<strong>on</strong>g>the</str<strong>on</strong>g> modeling scenarios. Any additi<strong>on</strong>al weight added<br />

due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of internal structures or stiffening was also tabulated and tracked.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> 4* and 8* decks did not require canning plates, any costing associated with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se decks involved limited material costs and fairly minor producti<strong>on</strong> costs. Much of <str<strong>on</strong>g>the</str<strong>on</strong>g> work<br />

associated with all <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks includes:<br />

• Opening and closing of tanks<br />

• Touch-up painting<br />

• Removal and reinstallati<strong>on</strong> of accesses<br />

31


• Testing of all accesses<br />

• Removal and reinstallati<strong>on</strong> of any interferences<br />

• Patching and repair of deck coverings<br />

It was assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' deck would require structural modificati<strong>on</strong>s due <str<strong>on</strong>g>to</str<strong>on</strong>g> thinner shell<br />

plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong>s (compared <str<strong>on</strong>g>to</str<strong>on</strong>g> thicker hull shell plating found <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8"' deck voids).<br />

Two sp<strong>on</strong>s<strong>on</strong> voids were analyzed in depth for cost estimati<strong>on</strong> purposes, 2-165-8-V and 2-180-6-<br />

V. All producti<strong>on</strong> and material costs were based <strong>on</strong> prepping and work <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> entire tank. As a<br />

result, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'* deck void costs are much higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"* and 8* deck voids due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir size.<br />

Similarly, a thumb rule was applied <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> T"^ deck voids when filled <str<strong>on</strong>g>to</str<strong>on</strong>g> 95% and no canning pate<br />

work was required. The <str<strong>on</strong>g>to</str<strong>on</strong>g>tal structural work, for both producti<strong>on</strong> and material costs, is half <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cost of <str<strong>on</strong>g>the</str<strong>on</strong>g> canning plate work. These cost estimates do not take in<str<strong>on</strong>g>to</str<strong>on</strong>g> account relocati<strong>on</strong> of<br />

existing utilities that may be running through <str<strong>on</strong>g>the</str<strong>on</strong>g> spaces. An analysis was performed, however,<br />

that determined that ballasting <str<strong>on</strong>g>the</str<strong>on</strong>g>se selected tanks would have little, if any impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks,<br />

and that relocati<strong>on</strong> of utilities would probably not be required.<br />

Table 2 is an example cost comparis<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> preliminary cost estimati<strong>on</strong> results found.<br />

Producti<strong>on</strong> and material costs are <str<strong>on</strong>g>the</str<strong>on</strong>g> same regardless of <str<strong>on</strong>g>the</str<strong>on</strong>g> density of <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast being used.<br />

Table 2: Deck Locati<strong>on</strong> Cost Comparis<strong>on</strong><br />

2nd Deck 4th Deck 8th Deck<br />

2-165-8-V 2-180-6-V All Voids All Voids<br />

Volume (ft') 3,969 6,273 approx. 600 approx. 1,000<br />

Producti<strong>on</strong> Costs $328,704 $525,958 $21,186 $21,186<br />

Material Costs $22,126 $35,402 $500 $500<br />

Weight Added<br />

a<str<strong>on</strong>g>to</str<strong>on</strong>g>n) 4.71 7.54 0 0<br />

32


All fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r costing calculati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2°'' deck voids less than 95% filled were <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

performed as a percentage of <str<strong>on</strong>g>the</str<strong>on</strong>g> entire tank. For example, if a 2"'' deck sp<strong>on</strong>s<strong>on</strong> void was <str<strong>on</strong>g>to</str<strong>on</strong>g> be<br />

filled 22%, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding voids producti<strong>on</strong> and material costs were multiplied by 22%.<br />

This was allowable because of <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2°'* deck voids as shown in<br />

Figure 1. Sp<strong>on</strong>s<strong>on</strong> void 2-165-8-V runs 60 feet l<strong>on</strong>g and sp<strong>on</strong>s<strong>on</strong> void 2-180-6-V runs 96 feet<br />

l<strong>on</strong>g. A detailed producti<strong>on</strong> and material cost breakdown for <str<strong>on</strong>g>the</str<strong>on</strong>g> 36 opti<strong>on</strong>s menti<strong>on</strong>ed is located<br />

in Appendix C. The worksheets used <str<strong>on</strong>g>to</str<strong>on</strong>g> perform <str<strong>on</strong>g>the</str<strong>on</strong>g>se cost estimati<strong>on</strong>s are also located in<br />

Appendix C. A complete preliminary cost comparis<strong>on</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g>n performed for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2° , 4', and<br />

8* decks. This comparis<strong>on</strong> provides <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

• Total Cost<br />

o Producti<strong>on</strong> cost<br />

o Material cost<br />

o<br />

Perma Ballast® cost<br />

• Total Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns)<br />

o Material Weight<br />

o<br />

Perma Ballast® Weight<br />

• A KG<br />

This decisi<strong>on</strong> making cost comparis<strong>on</strong> revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density Perma Ballast®<br />

was much more ec<strong>on</strong>omical than <str<strong>on</strong>g>the</str<strong>on</strong>g> 325 Ib/ft^ density Perma Ballast®. It takes nearly <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

amount of ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> affect each incremental degree change <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same deck regardless if using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ or 325 Ib/ft^. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> number of tanks required <str<strong>on</strong>g>to</str<strong>on</strong>g> ballast with 200 Ib/ft^ was<br />

higher, it was still more cost effective <str<strong>on</strong>g>to</str<strong>on</strong>g> use <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density ballast due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> price per I<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> 325 Ib/ft^ ballast. The 325 Ib/ft^ ballast has steel shot added <str<strong>on</strong>g>to</str<strong>on</strong>g> it <str<strong>on</strong>g>to</str<strong>on</strong>g> help achieve its high<br />

33


density. It was also discovered at this early stage of analysis that for correcti<strong>on</strong>s at or bey<strong>on</strong>d 1.5<br />

degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2" deck was a much better locati<strong>on</strong> for this ballast additi<strong>on</strong> due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lesser weight<br />

additi<strong>on</strong> resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> larger moment arm generated by filling <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' deck voids. The costs<br />

associated with adding ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' deck is much higher, but <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of ballast required<br />

is significantly less than that required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"" and 8"' decks. For correcti<strong>on</strong>s less than 1.5<br />

degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2" deck and <str<strong>on</strong>g>the</str<strong>on</strong>g> 8"" decks have a fairly comparable weight additi<strong>on</strong>, however,<br />

ballasting <str<strong>on</strong>g>the</str<strong>on</strong>g> 8' deck tanks costs significantly less. The complete preliminary cost comparis<strong>on</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^ 4*^, and 8'" decks is found in Appendix D.<br />

Adding ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' deck voids does increase KG and thus reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> KG service<br />

life allowance margin; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> increase seen is fairly small. In fact, as shown in Appendix<br />

D, a 1.5 degree list correcti<strong>on</strong> results in approximately a 0.1 percent KG increase. On average,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers currently have a KG of 47 feet, as shown in Table 1. The goal KG<br />

service life allowance is not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed 48.5 feet. Thus, <str<strong>on</strong>g>to</str<strong>on</strong>g> fix an inherent list of 1.5 degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

would be a .05 foot increase in KG.<br />

34


2.4 Structural Analysis<br />

One tank <strong>on</strong> each deck was chosen for structural analysis due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical<br />

similarities between tanks. Analysis was performed <strong>on</strong> any existing shell and/or deck plating, as<br />

well as all l<strong>on</strong>gitudinal and transverse bulkheads for <str<strong>on</strong>g>the</str<strong>on</strong>g> tank chosen from each deck. The<br />

volume of each tank was obtained from POSSE so that <str<strong>on</strong>g>the</str<strong>on</strong>g> weight of Perma Ballast® required <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

fill <str<strong>on</strong>g>the</str<strong>on</strong>g> entire tank could be calculated in I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns. The density used for all <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast®<br />

calculati<strong>on</strong>s was 200 Ib/ft^. All structural calculati<strong>on</strong>s are located in Appendix E.<br />

All surface ships shall be designed <str<strong>on</strong>g>to</str<strong>on</strong>g> withstand a number of loading c<strong>on</strong>diti<strong>on</strong>s including<br />

ship moti<strong>on</strong> loads. Ship moti<strong>on</strong> loads are defined by [6] as <str<strong>on</strong>g>the</str<strong>on</strong>g> inertia forces and gravity<br />

comp<strong>on</strong>ents resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> moti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship in a seaway. The ship moti<strong>on</strong> fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs for this<br />

analysis were obtained from Naval Sea Systems Command's Ship Survivability Divisi<strong>on</strong>.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs will vary slightly depending <strong>on</strong> locati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> be<br />

c<strong>on</strong>stant. They are as follows:<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.25 Vertical<br />

A := 0.75 Athwartship<br />

F := 0.4 Fore/Aft<br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> ship moti<strong>on</strong> fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs were applied <str<strong>on</strong>g>to</str<strong>on</strong>g> each directi<strong>on</strong> respectively, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>tal normal<br />

force could be calculated. The force affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> structural analysis was dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck or bulkhead being analyzed. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>tal force acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"<br />

deck's sp<strong>on</strong>s<strong>on</strong> shell plating had <str<strong>on</strong>g>to</str<strong>on</strong>g> be resolved from both a vertical and athwartship force. The<br />

resulting pressure, or equivalent head, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plating was <str<strong>on</strong>g>the</str<strong>on</strong>g>n found using this resolved normal<br />

force. Each tank was based <strong>on</strong> a 95% usable volume <str<strong>on</strong>g>to</str<strong>on</strong>g> account for structural internals or<br />

utilities running through <str<strong>on</strong>g>the</str<strong>on</strong>g> space.<br />

35


In accordance with [6], panels of plating shall be proporti<strong>on</strong>ed so as not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

breadth-thickness ratios indicated by:<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

_b ^ C C = coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

t ~ K • -V/H locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

panel<br />

H = head of salt water (feet)<br />

The coefficients C and K are provided in Table I of Secti<strong>on</strong> 100, <str<strong>on</strong>g>the</str<strong>on</strong>g> General<br />

Requirements for Hull Structure, in [6]. There are a number of key assumpti<strong>on</strong>s that were made<br />

following <str<strong>on</strong>g>the</str<strong>on</strong>g>se design criteria for plate panels subjected <str<strong>on</strong>g>to</str<strong>on</strong>g> normal loads. The ship plating is<br />

divided up in<str<strong>on</strong>g>to</str<strong>on</strong>g> any number of panels, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of stiffening that exists. The<br />

panel is c<strong>on</strong>sidered <str<strong>on</strong>g>to</str<strong>on</strong>g> have clamped or fixed ends and is subject <str<strong>on</strong>g>to</str<strong>on</strong>g> cylindrical bending, a plate<br />

that is subject <str<strong>on</strong>g>to</str<strong>on</strong>g> bending about <strong>on</strong>e axis <strong>on</strong>ly (as usually occurs for l<strong>on</strong>g plates). The cross-<br />

secti<strong>on</strong> of this panel is c<strong>on</strong>sidered <str<strong>on</strong>g>to</str<strong>on</strong>g> be rectangular in shape with a depth equal <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plating<br />

thickness and a unit width. The K coefficient is important for relatively short panels. The C<br />

coefficient is actually derived from standard beam <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for a fixed-fixed beam, by combining<br />

allowable stress, specific gravity of salt water, and this K coefficient. An example of a C<br />

coefficient derivati<strong>on</strong> starting with beam <str<strong>on</strong>g>the</str<strong>on</strong>g>ory can be seen at <str<strong>on</strong>g>the</str<strong>on</strong>g> end of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^* deck sp<strong>on</strong>s<strong>on</strong><br />

shell plating structural calculati<strong>on</strong>s shown in Appendix E.<br />

Also important <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> structural calculati<strong>on</strong>s, particularly for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'^ deck<br />

sp<strong>on</strong>s<strong>on</strong> shell plating, was <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum shell plating pressure. According <str<strong>on</strong>g>to</str<strong>on</strong>g> CVN 76<br />

specificati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum pressure for sp<strong>on</strong>s<strong>on</strong> shell plating is 1000 psf. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

limiting weight of Perma Ballast® for <str<strong>on</strong>g>the</str<strong>on</strong>g>se tanks had <str<strong>on</strong>g>to</str<strong>on</strong>g> be calculated based <strong>on</strong> not exceeding<br />

36


this pressure. This resulted in a reducti<strong>on</strong> of approximately 55 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast, for this particular<br />

case <strong>on</strong>ly. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly structural analysis performed for <str<strong>on</strong>g>the</str<strong>on</strong>g> 4* deck void was <strong>on</strong> its deck<br />

plating. Once it was determined that deck stiffening would be required, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4* deck tanks were<br />

taken out of c<strong>on</strong>siderati<strong>on</strong> as a possible locati<strong>on</strong> for placing this ballast. Although adding a<br />

stiffener down <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating would alleviate any structural c<strong>on</strong>cerns, welding <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating would have <str<strong>on</strong>g>to</str<strong>on</strong>g> be performed. With welding required <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m deck plating,<br />

a watch would need <str<strong>on</strong>g>to</str<strong>on</strong>g> be stati<strong>on</strong>ed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck. The tanks below <str<strong>on</strong>g>the</str<strong>on</strong>g>se 4 deck<br />

tanks are foam filled and a fire watch cannot be stati<strong>on</strong>ed in <str<strong>on</strong>g>the</str<strong>on</strong>g>se tanks.<br />

Once a maximum pressure in head of water was calculated, <str<strong>on</strong>g>the</str<strong>on</strong>g> breadth-thickness ratio<br />

formula could be used again <str<strong>on</strong>g>to</str<strong>on</strong>g> determine <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffener spacing or limiting short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

panel. If <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated maximum distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners can be located apart fell less than<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> actual stiffener spacing, <str<strong>on</strong>g>the</str<strong>on</strong>g>n no plastic deformati<strong>on</strong> would occur and stiffening of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating<br />

was not required. If stiffening was required, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> panel thickness was usually divided in half<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> accommodate <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated pressure.<br />

The final calculati<strong>on</strong>s involved verifying that <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated maximum allowable stress<br />

was less than <str<strong>on</strong>g>the</str<strong>on</strong>g> design allowable stress for <str<strong>on</strong>g>the</str<strong>on</strong>g> particular type of steel, regardless of whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

any modificati<strong>on</strong>s were made. The basic equati<strong>on</strong> used <str<strong>on</strong>g>to</str<strong>on</strong>g> calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum stress<br />

governing <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior of plating under lateral load, or plate bending, can be seen below.<br />

Using small deflecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> value of <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient k depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary<br />

c<strong>on</strong>diti<strong>on</strong>s. For simply supported edges, k=.75 and for clamped edges, k=.5. Simply supported<br />

and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating zero<br />

stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On<br />

37


oard ship, structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in<br />

fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. This equati<strong>on</strong> is used for all plates whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>y are<br />

l<strong>on</strong>g or not, and <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient k also accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio a/b. Again, b is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel and t is <str<strong>on</strong>g>the</str<strong>on</strong>g> plating thickness. Figure 1 illustrates graphically <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stresses in rectangular plates under uniform lateral pressure.<br />

— 050<br />

-^ 0 225<br />

Of<br />

Stress<br />

k P l-j- )<br />

k Depends <strong>on</strong> : piatt edge c<strong>on</strong>diti<strong>on</strong>s<br />

Plote side ratio —<br />

b<br />

Positi<strong>on</strong> of point c<strong>on</strong>sidered<br />

These k values are calculated from<br />

Elastic Small - Deflecti<strong>on</strong> plote <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

j taking Poiss<strong>on</strong>'s rotio i) « 0-3<br />

12 14 1-6 18 2 0<br />

2 2 2 i<br />

Figure 1: Stresses in rectangular plates under uniform lateral pressure [2]<br />

38


2.4.1 Structural Modificati<strong>on</strong>s<br />

2.4.1.1 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2'"' Deck<br />

There were actually three port sp<strong>on</strong>s<strong>on</strong> voids modeled in POSSE <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2° deck.<br />

Due <str<strong>on</strong>g>to</str<strong>on</strong>g> existing geometrical similarities between <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks, <strong>on</strong>ly compartment 2-165-8-V was<br />

analyzed for possible structural modificati<strong>on</strong>s. Basic dimensi<strong>on</strong>s and tank geometry can be seen<br />

below in Figure 2.<br />

FR 175<br />

FR 180<br />

Main Deck<br />

4^<br />

9.83'<br />

6 3/4"<br />

2nd Deck<br />

S Tees, spaced 25" apart {30#)<br />

Figure 2: 2°" Deck Compartment 2-165-8-V<br />

It was found that <strong>on</strong>ly 281 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast could be added <str<strong>on</strong>g>to</str<strong>on</strong>g> this compartment in order<br />

not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> 1000 psf sp<strong>on</strong>s<strong>on</strong> shell plating maximum pressure criteria. Table 3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

required structural modificati<strong>on</strong>s for compartment 2-165-8-V for a 281 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n ballast additi<strong>on</strong> at<br />

200 Ib/ft^. All calculati<strong>on</strong>s are located in Appendix E.<br />

39


Table 3: Required Structural Modificati<strong>on</strong>s for 2-165-8-V<br />

Ship Structure<br />

Structural Modiflcati<strong>on</strong>s<br />

Sp<strong>on</strong>s<strong>on</strong> Shell<br />

Plating<br />

Add 7 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 13" X 181.56"<br />

Ship Shell Plating<br />

(Inner L<strong>on</strong>gitudinal<br />

Bulkhead)<br />

No modificati<strong>on</strong>s required<br />

Transverse<br />

Bulkheads (Frames<br />

165,170,175, and<br />

180) No modificati<strong>on</strong>s required<br />

The sp<strong>on</strong>s<strong>on</strong> shell plating required <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of 7 vertical stiffeners due <str<strong>on</strong>g>to</str<strong>on</strong>g> its thinner<br />

plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong>s. The sp<strong>on</strong>s<strong>on</strong> shell plating is <strong>on</strong>ly 10.2# (.25") plate. The inner<br />

l<strong>on</strong>gitudinal bulkhead, which is really <str<strong>on</strong>g>the</str<strong>on</strong>g> ship shell plating, is 30.6# (.75") and <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse<br />

bulkheads are 20.4# (.5"). Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse bulkheads are extensively stiffened, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

l<strong>on</strong>gitudinal stiffener has <strong>on</strong>e large horiz<strong>on</strong>tal stiffener running down <str<strong>on</strong>g>the</str<strong>on</strong>g> center of <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkhead.<br />

As a result, modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se bulkheads were not required. A cross-secti<strong>on</strong>al view of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transverse bulkhead at Frame 165 is shown in Figure 3.<br />

40


Main Deck<br />

Shell<br />

FR 165 - FR 180 Transverse Bulkheads<br />

20.4# (.5")<br />

11.5' ><br />

Stringer #6<br />

Girder<br />

13 7/8" X 6 3/4" Tee-<br />

Ship<br />

Shell<br />

Plating<br />

30.6# (.75")<br />

fr Sp<strong>on</strong>s<strong>on</strong><br />

^Plating<br />

10.2 #(.251<br />

2nd Deck<br />

Stringer #1<br />

Shell<br />

Figure 3: 2 Deck Compartment 2-165-8-V, transverse secti<strong>on</strong><br />

4 th<br />

2.4.1.2 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4" Deck<br />

As menti<strong>on</strong>ed previously, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly structural analysis performed for <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"^ deck void was<br />

<strong>on</strong> its deck plating. Once it was determined that deck stiffening would be required, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4 deck<br />

tanks were taken out of c<strong>on</strong>siderati<strong>on</strong> as a possible locati<strong>on</strong> for placing this ballast. The 4' deck<br />

voids do not have any stiffened plating. Although adding a stiffener down <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck<br />

plating would alleviate any structural c<strong>on</strong>cerns, welding <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating could not be<br />

performed due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam filled void below and <str<strong>on</strong>g>the</str<strong>on</strong>g> inability <str<strong>on</strong>g>to</str<strong>on</strong>g> stati<strong>on</strong> a fire watch <str<strong>on</strong>g>the</str<strong>on</strong>g>re. Table<br />

4, however, shows <str<strong>on</strong>g>the</str<strong>on</strong>g> structural modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating that would be necessary for<br />

ith<br />

41


compartment 4-165-4-V for a 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n ballast additi<strong>on</strong> at 200 Ib/ftl All calculati<strong>on</strong>s are located in<br />

Appendix E.<br />

Table 4: Required Structural Modificati<strong>on</strong>s for 4-165-4-V<br />

Ship Structure<br />

Deck Plating<br />

Structural Modificati<strong>on</strong>s<br />

Add 1 l<strong>on</strong>gitudinal stiffener<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 24" X<br />

240"<br />

There were sixteen port voids modeled in POSSE <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"' deck. Due <str<strong>on</strong>g>to</str<strong>on</strong>g> existing<br />

geometrical similarities between <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks, <strong>on</strong>ly compartment 4-165-4-V was analyzed for<br />

possible structural modificati<strong>on</strong>s. Basic dimensi<strong>on</strong>s and tank geometry can be seen below in<br />

Figure 4.<br />

3rd Deck<br />

FR 170 Transverse Bulkhead<br />

20.4# {.5")<br />

4th Deck Plating<br />

20.4# (.5")<br />

4th Deck<br />

FR 165 Transverse Bulkhead<br />

HB#3 4-4' ^BB#2 20.4# (.5")<br />

40.8#(1.0") 25.5#(.625")<br />


2.4.1.3 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* Deck<br />

There were eleven port voids modeled in POSSE <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* deck. Due <str<strong>on</strong>g>to</str<strong>on</strong>g> existing<br />

geometrical similarities between <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks, <strong>on</strong>ly compartment 8-225-6-V was analyzed for<br />

possible structural modificati<strong>on</strong>s. Basic dimensi<strong>on</strong>s and tank geometry can be seen below in<br />

Figure 5.<br />

Innsr L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4)<br />

14.024# (.343")<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

(L<strong>on</strong>gitudinal Bulkhead #3)<br />

17.85# (.437')<br />

FR 230 Trans^/erse Bulkhead<br />

12:75# (.3125")<br />

Shell Plating<br />

30.S# (.75")<br />

FR 225 Transverse Bulkhead<br />

'Q.- ^-1. 15.3#(.375l<br />

, —Stringer #14<br />

^Stringer #11<br />

Figure 5: 8* Deck Compartment 8-225-6-V<br />

There is c<strong>on</strong>siderable stiffening already in all <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* deck voids. It was determined,<br />

however, that <str<strong>on</strong>g>the</str<strong>on</strong>g> plating thickness for <str<strong>on</strong>g>the</str<strong>on</strong>g>se voids is much thinner than initially estimated. As a<br />

result, most of <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkheads require stiffening. Structural analysis was first performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shell plating. A minimum ballast weight of 227 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns was calculated so that structural<br />

modificati<strong>on</strong>s would not be required <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship shell plating. This weight, however, is still <str<strong>on</strong>g>to</str<strong>on</strong>g>o<br />

high for <str<strong>on</strong>g>the</str<strong>on</strong>g> rest of <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkheads, as <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r bulkheads do require stiffening. It is<br />

recommended that a stiffener be placed between each existing stiffener <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal and<br />

transverse bulkheads. Table 5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> required structural modificati<strong>on</strong>s for compartment 8-<br />

225-6-V for a 227 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n ballast additi<strong>on</strong> at 200 Ib/ft^. All calculati<strong>on</strong>s are located in Appendix E.<br />

43


Table 5: Required Structural Modificati<strong>on</strong>s for 8-225-6-V<br />

Ship Structure<br />

Structural Modiflcati<strong>on</strong>s<br />

Shell Plating<br />

Inner L<strong>on</strong>gitudinal<br />

Bulkhead (Shaft Alley<br />

Bulkhead #4)<br />

Outer L<strong>on</strong>gitudinal<br />

Bulkhead (Bulkhead<br />

#3)<br />

Transverse Bulkhead<br />

(Frame 225)<br />

Transverse Bulkhead<br />

(Frame 230)<br />

No modificati<strong>on</strong>s required<br />

Add 5 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 24" X 114"<br />

Add 5 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 24" X 87"<br />

Add 4 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 15" X 114"<br />

*Note-panel height is dependent <strong>on</strong><br />

trapezoidal geometry<br />

Add 4 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 15" X 114"<br />

*Note-panel height is dependent <strong>on</strong><br />

trapezoidal geometry<br />

3.0 Final Analysis and Results<br />

This project design spiraled <str<strong>on</strong>g>to</str<strong>on</strong>g>ward finding <str<strong>on</strong>g>the</str<strong>on</strong>g> most cost effective and advantageous<br />

solid ballasting soluti<strong>on</strong> for correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers. The<br />

preliminary decisi<strong>on</strong>-making cost estimati<strong>on</strong> proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density was <str<strong>on</strong>g>the</str<strong>on</strong>g> most cost<br />

effective for <str<strong>on</strong>g>the</str<strong>on</strong>g> same amount of ballast weight. The 325 Ib/ft^ ballast was so much more<br />

expensive, that although <str<strong>on</strong>g>the</str<strong>on</strong>g> number of tanks required <str<strong>on</strong>g>to</str<strong>on</strong>g> ballast with 200 Ib/ft^ was higher, it was<br />

still more cost effective <str<strong>on</strong>g>to</str<strong>on</strong>g> use <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density ballast. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> structural analysis was<br />

complete, <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum ballasting weights that were found had <str<strong>on</strong>g>to</str<strong>on</strong>g> be analyzed in POSSE again.<br />

For this analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4'*' deck was eliminated completely due <str<strong>on</strong>g>to</str<strong>on</strong>g> its structural limitati<strong>on</strong>s.<br />

Similarly, any required structural modificati<strong>on</strong>s that were not already included in <str<strong>on</strong>g>the</str<strong>on</strong>g> cost<br />

estimati<strong>on</strong>s had <str<strong>on</strong>g>to</str<strong>on</strong>g> be taken in <str<strong>on</strong>g>to</str<strong>on</strong>g> account for both <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' and S"' decks.<br />

44


3.1 Final POSSE Results<br />

The minimum amount of 200 Ib/ft^ ballast that could be added <str<strong>on</strong>g>to</str<strong>on</strong>g> compartment 2-165-8-V<br />

was found <str<strong>on</strong>g>to</str<strong>on</strong>g> be 281 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns which corresp<strong>on</strong>ds <str<strong>on</strong>g>to</str<strong>on</strong>g> 79% of that compartment's <str<strong>on</strong>g>to</str<strong>on</strong>g>tal capacity. Up<br />

until this point, all tanks had been analyzed <str<strong>on</strong>g>to</str<strong>on</strong>g> 95% of <str<strong>on</strong>g>to</str<strong>on</strong>g>tal capacity due <str<strong>on</strong>g>to</str<strong>on</strong>g> structural internals or<br />

possible utilities running through <str<strong>on</strong>g>the</str<strong>on</strong>g> space. Structural analysis was <str<strong>on</strong>g>the</str<strong>on</strong>g>n performed for<br />

compartment 2-180-6-V. A minimum ballast weight of 448 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns was calculated so that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum pressure design criteri<strong>on</strong> of 1000 psf was not violated. Because less ballast could be<br />

added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se tanks, <str<strong>on</strong>g>the</str<strong>on</strong>g> POSSE analysis had <str<strong>on</strong>g>to</str<strong>on</strong>g> be expanded <str<strong>on</strong>g>to</str<strong>on</strong>g> include compartment 2-250-4-V.<br />

These new results for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2""^ deck had little effect <strong>on</strong> KG and <strong>on</strong>ly enhanced <str<strong>on</strong>g>the</str<strong>on</strong>g> aft trim<br />

correcti<strong>on</strong>.<br />

The minimum amount of 200 Ib/ft^ ballast that could be added <str<strong>on</strong>g>to</str<strong>on</strong>g> compartment 8-225-6-V<br />

was 227 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns. This was calculated <str<strong>on</strong>g>to</str<strong>on</strong>g> avoid performing structural modificati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship shell<br />

plating. As a result, <strong>on</strong>ly 90% of that compartment's <str<strong>on</strong>g>to</str<strong>on</strong>g>tal capacity could be utilized which was<br />

5% less than originally analyzed in POSSE. This time, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than perform a structural analysis<br />

<strong>on</strong> all <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* deck voids, a maximum capacity thumb rule of 90% was applied <str<strong>on</strong>g>to</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> 8"' deck<br />

voids. As a result, different tanks were selected and analyzed <str<strong>on</strong>g>to</str<strong>on</strong>g> achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> least I<str<strong>on</strong>g>to</str<strong>on</strong>g>n additi<strong>on</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> same incremental change in degrees. Again, this had little effect <strong>on</strong> KG and change in<br />

trim.<br />

A table providing POSSE modeling results in a combat load c<strong>on</strong>diti<strong>on</strong> for list correcti<strong>on</strong><br />

in half degree increments up <str<strong>on</strong>g>to</str<strong>on</strong>g> 3 degrees for 200 Ib/ft^ is included in Appendix F. This<br />

informati<strong>on</strong> includes:<br />

• Tank name<br />

• Tank volume<br />

45


• Ballast type density<br />

• Tank weight<br />

Degree Increment:<br />

• Weight<br />

• Percent change<br />

• A KG<br />

• A Trim<br />

3.2 Final Cost Estimati<strong>on</strong><br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> POSSE modeling analysis was complete, a final cost assessment was made<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> new results for list correcti<strong>on</strong> in half degree increments up <str<strong>on</strong>g>to</str<strong>on</strong>g> 3 degrees for <str<strong>on</strong>g>the</str<strong>on</strong>g> T^<br />

and 8"" deck tanks. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> 8'*' deck tanks now had <str<strong>on</strong>g>to</str<strong>on</strong>g> be stiffened, <str<strong>on</strong>g>the</str<strong>on</strong>g> material costs and<br />

material weights had <str<strong>on</strong>g>to</str<strong>on</strong>g> be determined. The producti<strong>on</strong> costs were assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> be <str<strong>on</strong>g>the</str<strong>on</strong>g> same. This<br />

informati<strong>on</strong> is included in Appendix G. Also, analysis <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> T^ deck revealed that<br />

compartment 2-250-2-V had <str<strong>on</strong>g>to</str<strong>on</strong>g> be used when trying <str<strong>on</strong>g>to</str<strong>on</strong>g> correct 3 degrees of list. Code 256<br />

provided producti<strong>on</strong> and material costs as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> material weights for tank prepping <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Perma Ballast® installati<strong>on</strong>.<br />

All cost estimati<strong>on</strong>s were calculated and derived as previously discussed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preliminary cost estimati<strong>on</strong> secti<strong>on</strong>. This time, however, 2"^* deck tanks were based <strong>on</strong><br />

approximately 80% fillable capacity and S"" deck tanks were based <strong>on</strong> approximately 90%<br />

finable capacity. When filled <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se capacities, canning plate work was not required.<br />

Similarly, any additi<strong>on</strong>al weight added due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of internal structures or stiffening was<br />

again tabulated and tracked. Table 6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>tal cost, <str<strong>on</strong>g>to</str<strong>on</strong>g>tal weight additi<strong>on</strong>, and change in<br />

KG for each half degree increment <strong>on</strong> both <str<strong>on</strong>g>the</str<strong>on</strong>g> T^ and 8'*' decks.<br />

46


Table 6: Final Cost, Weight Additi<strong>on</strong>, and Change in KG Comparis<strong>on</strong><br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> (Degrees) 0.5 1 1.5<br />

Ballast Density (200 lbs/ft') (200 lbs/ft^) (200 lbs/ft^)<br />

Tank Locati<strong>on</strong><br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

Producti<strong>on</strong> Cost ($) 115,046 42,372 243,240 84,744 280,062 127,116<br />

Material Cost ($) 7,744 8,850 16,373 17,700 18,851 26,550<br />

Perma Cost ($)** 127,900 139,825 158,950 186,400 190,675 227,125<br />

Total Cost ($) 250,690 191,047 418,563 288,844 489,588 380,791<br />

Material Weight<br />

(L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 1.65 0.80 3.49 1.61 4.01 2.41<br />

Perma Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 124 177 262 384 403 565<br />

Total Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 125.65 177.80 265.49 385.61 407.01 567.41<br />

A KG (ft)** +0.02 -0.02 +0.04 -0.05 +0.05 -0.08<br />

**Perma cost estimates 5ased<strong>on</strong> $1 00,000 + $: >25/lt for 200 lbs/ft'^3<br />

**(+) indicates increasing KG which is a negative effect<br />

**(-) indicates decreasing KG which is a positive effect<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> (Degrees) 2 2.5 3<br />

Ballast Density (20011 bs/ft^) (20011 t>s/ft') (2001 bs/ft^)<br />

Tank Locati<strong>on</strong><br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

Producti<strong>on</strong> Cost ($) 411,552 148,302 427,331 211,860 478,840 233,046<br />

Material Cost ($) 27,701 30,975 28,764 44,250 32,231 48,675<br />

Perma Cost ($)** 222,175 295,075 253,675 341,200 288,775 392,050<br />

Total Cost ($) 661,428 474,352 709,770 597,310 799,846 673,771<br />

Material Weight<br />

(L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 5.90 2.81 6.13 4.02 6.86 4.42<br />

Perma Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 543 867 683 1,072 839 1,298<br />

Total Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 548.90 869.81 689.13 1,076.02 845.86 1302.42<br />

A KG (ft)** +0.07 -0.13 +0.09 -0.14 +0.11 -0.17<br />

**Perma cost estimates jased <strong>on</strong> $1 00,000 + $: I25l\i for 20 0 lbs/ft'^3<br />

**(+) indicates increasing KG which is a negative effect<br />

**(-) indicates decreasing KG which is a positive effect<br />

47


3.2.1 Ease of Removal<br />

As menti<strong>on</strong>ed previously, Perma Ballast® is removable. In fact, removal costs were ^<br />

assessed as well for this project <strong>on</strong> a per tank basis. For <str<strong>on</strong>g>the</str<strong>on</strong>g> purposes of this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, all tank<br />

prepping costs for ballast removal by BTI were also calculated by Norfolk Naval Shipyard (Code<br />

256). It was estimated that it would cost approximately $78,652 for labor and material <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

remove/reinstall accesses and interferences for <strong>on</strong>e 8"" deck tank, and approximately $63,412 for<br />

labor and material <str<strong>on</strong>g>to</str<strong>on</strong>g> remove/reinstall accesses for <strong>on</strong>e 2"^* deck tank.<br />

Ballast removal costs were also obtained from BTI. It was determined that it would be<br />

best for BTI <str<strong>on</strong>g>to</str<strong>on</strong>g> actually remove <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast and dispose of it due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high costs involved should<br />

a naval shipyard need <str<strong>on</strong>g>to</str<strong>on</strong>g> dispose of <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast. For ballast removal, BTI will charge a fixed fee •<br />

of $100,000 for locating and utilizing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir equipment and approximately $395 <str<strong>on</strong>g>to</str<strong>on</strong>g> remove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ballast per I<str<strong>on</strong>g>to</str<strong>on</strong>g>n. They also estimated approximately $65 per I<str<strong>on</strong>g>to</str<strong>on</strong>g>n <str<strong>on</strong>g>to</str<strong>on</strong>g> dispose of it. All pricing is<br />

based <strong>on</strong> disposal of 100% of <str<strong>on</strong>g>the</str<strong>on</strong>g> water used <str<strong>on</strong>g>to</str<strong>on</strong>g> re-slurry <str<strong>on</strong>g>the</str<strong>on</strong>g> material.<br />

I*<br />

For example, a 1.5 degree list correcti<strong>on</strong> would require approximately 400 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n of ballast<br />

and would need <str<strong>on</strong>g>to</str<strong>on</strong>g> be removed from two 2"*^ deck tanks. This would result in a <str<strong>on</strong>g>to</str<strong>on</strong>g>tal removal ^<br />

cost of $347,412 of which $284,000 is for <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast removal and $63,412 is for removing and<br />

reinstalling accesses. It should be noted that this ballast additi<strong>on</strong> is <strong>on</strong>ly as permanent a soluti<strong>on</strong><br />

as it needs <str<strong>on</strong>g>to</str<strong>on</strong>g> be. For example, should future modificati<strong>on</strong>s entail replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> old <strong>Nimitz</strong> island ^<br />

with a new CVN 76 island, it would <str<strong>on</strong>g>the</str<strong>on</strong>g>n be desirable and cost effective <str<strong>on</strong>g>to</str<strong>on</strong>g> remove this ballast.<br />

3.2.2 Evidence Perma Ballast® is n<strong>on</strong>-corrosive<br />

Recently, <str<strong>on</strong>g>the</str<strong>on</strong>g> American Bureau of Shipping (ABS) required a sealift c<strong>on</strong>versi<strong>on</strong> vessel<br />

that installed this Perma Ballast® in 1984 <str<strong>on</strong>g>to</str<strong>on</strong>g> remove its ballast. C<strong>on</strong>cern had arisen because a<br />

tank inspecti<strong>on</strong> revealed that corrosi<strong>on</strong> coup<strong>on</strong>s had underg<strong>on</strong>e significant weight loss. ti<br />

48


Corrosi<strong>on</strong> coup<strong>on</strong>s are placed in all tanks that have Perma Ballast® installed so that periodic<br />

tank inspecti<strong>on</strong>s can be made <str<strong>on</strong>g>to</str<strong>on</strong>g> determine if corrosi<strong>on</strong> exists. It turned out that <str<strong>on</strong>g>the</str<strong>on</strong>g> corrosi<strong>on</strong><br />

coup<strong>on</strong>s were improperly attached <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> manhole covers and <strong>on</strong>ly rested in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>ps of <str<strong>on</strong>g>the</str<strong>on</strong>g> beds<br />

of Perma Ballast®. The corrosi<strong>on</strong> coup<strong>on</strong>s should be hung <strong>on</strong> chains and buried within <str<strong>on</strong>g>the</str<strong>on</strong>g> bed<br />

of ballast. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> years, <str<strong>on</strong>g>the</str<strong>on</strong>g> coup<strong>on</strong>s were repeatedly exposed <str<strong>on</strong>g>to</str<strong>on</strong>g> air and water during<br />

inspecti<strong>on</strong>s, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than being properly re-installed in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast®. ABS did report,<br />

however, that all 4 of <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks were in perfect c<strong>on</strong>diti<strong>on</strong> after <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast® removal,<br />

almost 20 years after initial installati<strong>on</strong>. Actual cost data was also obtained from this vessel.<br />

The cost <str<strong>on</strong>g>to</str<strong>on</strong>g> cut in<str<strong>on</strong>g>to</str<strong>on</strong>g> 8 compartments and remove <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast was approximately $250,000. The<br />

cost <str<strong>on</strong>g>to</str<strong>on</strong>g> replace <str<strong>on</strong>g>the</str<strong>on</strong>g> steel and reweld <str<strong>on</strong>g>the</str<strong>on</strong>g> hull after <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast was reinstalled was approximately<br />

$100,000. As <strong>on</strong>e can see, <str<strong>on</strong>g>the</str<strong>on</strong>g> removal costs are relatively low and experience proves that<br />

corrosi<strong>on</strong> will not be a c<strong>on</strong>cern.<br />

49


4.0 C<strong>on</strong>clusi<strong>on</strong><br />

Solid ballast is <str<strong>on</strong>g>the</str<strong>on</strong>g> most advantageous soluti<strong>on</strong> for correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Nimitz</strong> class aircraft carriers. Table 6 illustrates that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a number of advantages and<br />

disadvantages that must be c<strong>on</strong>sidered when determining <str<strong>on</strong>g>the</str<strong>on</strong>g> proper locati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma<br />

Ballast®.<br />

• The 2" deck is <str<strong>on</strong>g>the</str<strong>on</strong>g> choice locati<strong>on</strong> for list correcti<strong>on</strong>s at or bey<strong>on</strong>d 1.5 degrees.<br />

The costs associated with adding ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^^ deck is much higher, but <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount of ballast required is significantly less than that required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 4'^ and 8<br />

decks.<br />

o Advantages:<br />

■ significantly less weight added<br />

o Disadvantages:<br />

■ more costly<br />

■ increased KG*<br />

• For list correcti<strong>on</strong>s less than 1.5 degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g> choice locati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> S'*' deck. Less<br />

than 1.5 degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' and 8"" decks have a fairly comparable weight additi<strong>on</strong>,<br />

however, ballasting <str<strong>on</strong>g>the</str<strong>on</strong>g> 8'*' deck tanks costs significantly less.<br />

o Advantages:<br />

■ significantly less costly<br />

■ decreased KG*<br />

o Disadvantages:<br />

■ increased weight additi<strong>on</strong><br />

th<br />

*Any positive change in KG serves <str<strong>on</strong>g>to</str<strong>on</strong>g> reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining KG service life allowance. The<br />

average KG service life allowance remaining for most carriers is approximately 1.5 feet. Even<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> greatest list correcti<strong>on</strong> of 3 degrees is <strong>on</strong>ly a 7% reducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining KG service life<br />

allowance for <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft carriers.<br />

50


5.0 Recommendati<strong>on</strong>s<br />

1. As can be seen in Table 1, most of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft carriers currently have an<br />

average list of approximately 1.5 degrees. It is recommended that <str<strong>on</strong>g>the</str<strong>on</strong>g> ships be ballasted <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

T^ deck at this point <str<strong>on</strong>g>to</str<strong>on</strong>g> avoid adding excess ballast as menti<strong>on</strong>ed previously. The cost is<br />

approximately 22% higher, but <str<strong>on</strong>g>the</str<strong>on</strong>g> weight additi<strong>on</strong> is approximately 28% less. This is a<br />

c<strong>on</strong>siderable amount of weight reducti<strong>on</strong>. The displacement service life allowance must also be<br />

analyzed. If you assume a c<strong>on</strong>tract displacement of 100,000 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns with a 5% service life<br />

displacement allowance for an in-service carrier, <str<strong>on</strong>g>the</str<strong>on</strong>g>n 400 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns <str<strong>on</strong>g>to</str<strong>on</strong>g> correct 1.5 degrees of<br />

inherent list would be less than 1/10 of <str<strong>on</strong>g>the</str<strong>on</strong>g> service life (100,000 * .05 = 5,000 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns and 400 /<br />

5000 is approx. 8%). This can be viewed as a significant change in displacement or a relatively<br />

small change in displacement when looking at all <str<strong>on</strong>g>the</str<strong>on</strong>g> advantages that come with correcting <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> cost per I<str<strong>on</strong>g>to</str<strong>on</strong>g>n for a 1.5 degree list correcti<strong>on</strong> is<br />

approximately $1,200. This is truly inexpensive from a survivability standpoint and also reduces<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong>al c<strong>on</strong>straints placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship.<br />

2. The prudent manner in which <str<strong>on</strong>g>to</str<strong>on</strong>g> handle <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list associated with each aircraft<br />

carrier is <str<strong>on</strong>g>to</str<strong>on</strong>g> perform an inclining experiment <strong>on</strong> each carrier. The inclining experiment data can<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n be used <str<strong>on</strong>g>to</str<strong>on</strong>g> assess <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of ballast necessary for installati<strong>on</strong> and can be c<strong>on</strong>ducted when<br />

each ship's operati<strong>on</strong>al schedule will permit it. As menti<strong>on</strong>ed previously, much of <str<strong>on</strong>g>the</str<strong>on</strong>g> data for<br />

each carrier has been extrapolated from re-evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> results of <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 71 Displacement<br />

Test and <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 68 Post-RCOH inclining experiment. Knowing that <str<strong>on</strong>g>the</str<strong>on</strong>g>se tests are extremely<br />

expensive and that CVN 71-75 are <str<strong>on</strong>g>the</str<strong>on</strong>g> carriers in need of list correcti<strong>on</strong>, perhaps an inclining<br />

experiment could be performed <strong>on</strong> <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g>se carriers so that data could <str<strong>on</strong>g>the</str<strong>on</strong>g>n be extrapolated<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

51


3. Until this point, <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been Httle menti<strong>on</strong> of what reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list could<br />

do for manpower reducti<strong>on</strong>. The number of man-hours that could be saved due <str<strong>on</strong>g>to</str<strong>on</strong>g> fixing this<br />

problem could far outweigh anything discussed in this project so far. This is certainly something<br />

that should be studied and investigated as well.<br />

^<br />

52


References<br />

[I] Design Data Sheet 079-1, "Stability and buoyancy of U. S. Naval Surface Ships,"<br />

Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Ship Engineering Center.<br />

[2] Hughes, Owen F., "Ship Structural Design: A Rati<strong>on</strong>ally-Based, Computer-Aided<br />

Optimizati<strong>on</strong> Approach," The Society of Naval Architects and Marine Engineers, 1988.<br />

[3] NAVSEA 0900-LP-097-4010, "Structural Design Manual For Naval Surface Ships,"<br />

Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Sea System Command, 15 December 1976.<br />

[4] NAVSEAINST 9096.3D, "Weight and Moment Compensati<strong>on</strong> and Limiting Drafts for<br />

Naval Surface Ships," Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Sea Systems Command, 16<br />

August 2001.<br />

[5] NAVSEAINST 9096.6B, "Policy for Weight and Vertical Center of Gravity Above<br />

Bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m of Keel (KG) Margins for Surface Ships," Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Sea<br />

Systems Command, 16 August 2001.<br />

[6] NAVSEA S9AA0-AA-SPN-010, "General Specificati<strong>on</strong> for Ships of <str<strong>on</strong>g>the</str<strong>on</strong>g> United States<br />

Navy," Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Sea Systems Command, 1991.<br />

[7] <strong>Nimitz</strong> <strong>Class</strong> Ship Specificati<strong>on</strong>s<br />

[8] <strong>Nimitz</strong> <strong>Class</strong> Ship Characteristics and Drawings<br />

[9] N.S. NAPPI ASSOCIATES, INC, "Investigati<strong>on</strong> of an Alternative Method for<br />

Determining <str<strong>on</strong>g>the</str<strong>on</strong>g> Limiting Displacement for Strength for CVN 68-CVN 70 Ships,"<br />

Rockville, Maryland, January 2003.<br />

[10] OPNAVINST 9070.1, "Survivability Policy for Surface Ships of <str<strong>on</strong>g>the</str<strong>on</strong>g> U. S. Navy,"<br />

Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Office of <str<strong>on</strong>g>the</str<strong>on</strong>g> Chief of Naval Operati<strong>on</strong>s, 23 September 1988.<br />

[II] OPNAVINST 9096.1, "Weight and Stability Limits for Naval Surface Ships,"<br />

Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Office of <str<strong>on</strong>g>the</str<strong>on</strong>g> Chief of Naval Operati<strong>on</strong>s, 12 November 1985.<br />

[12] Mal<strong>on</strong>e, Michael L., "An Alternate Method for <str<strong>on</strong>g>the</str<strong>on</strong>g> Determinati<strong>on</strong> of <strong>Aircraft</strong> <strong>Carriers</strong><br />

Limiting Displacement for Strength," Master's Thesis, Massachusetts Institute of<br />

Technology, June 2001.<br />

[13] Roark, Raym<strong>on</strong>d J., "Formulas for Stress and Strain," McGraw-Hill Book Company,<br />

1975.<br />

[14] USS Dwight D. Eisenhower (CVN 69) Engineering Department Standing Order 05, "<str<strong>on</strong>g>List</str<strong>on</strong>g><br />

C<strong>on</strong>trol System Management," Engineering Department, USS Dwight D. Eisenhower<br />

(CVN 69), 30 December 1999.<br />

53


Appendix A: Tank Locati<strong>on</strong> Study<br />

54


O<br />

CO<br />

■*.<br />

CM<br />

d CVI<br />

d CVI<br />

d CO<br />

d CO<br />

d CO<br />

d CO<br />

d CVI<br />

d CVI<br />

d CVI<br />

d CO<br />

d d CO CO<br />

d d CO CO<br />

d CO<br />

d<br />

d d in d d CO<br />

d 00<br />

d d CD<br />

d cvi<br />

d d d<br />

CO<br />

LI<br />

«<br />

q<br />

5<br />

CO 00<br />

cvj<br />

00<br />

cvi<br />

00<br />

cvi cvi cvi cvi cvi CO<br />

cvi<br />

00<br />

cvi<br />

oo<br />

cvi<br />

1^<br />

cvi<br />

1^<br />

cvj cvi cvi 1^<br />

cvi cvi<br />

CO<br />

cvj<br />

CD<br />

cvj<br />

in<br />

cvi<br />

CO<br />

cvi cvi CVI<br />

cvi<br />

CO<br />

cvi cvi 00<br />

cvj<br />

CO<br />

cvi<br />

CO<br />

cvi<br />

LL<br />

E<br />

k.<br />

H<br />

<br />

•a<br />

c<br />

(B<br />

E<br />

H<br />

iS<br />

c<br />


!D<br />

2<br />

(0<br />

"O<br />

c<br />

a<br />

E<br />

k.<br />

1-<br />

o<br />

m<br />

c<br />

OJ a> d<br />

d d d CVI<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d<br />

d CO<br />

d CO<br />

d CM<br />

d CVI<br />

d in<br />

d CO<br />

d d CM<br />

d CO<br />

d d<br />

w<br />

LI<br />

la<br />

c<br />

ii.<br />

CO ^<br />

CM<br />

en<br />

cvi CM<br />

en<br />

CM<br />

oo<br />

cvi<br />

00<br />

CM<br />

oo<br />

CM<br />

00<br />

CM<br />

CO<br />

cvi<br />

oo<br />

cvi<br />

CO<br />

cvi<br />

OO<br />

cvi<br />

00<br />

c\i<br />

00<br />

cvi<br />

00<br />

cvi<br />

oo<br />

cvi<br />

00<br />

CM<br />

CO<br />

CM<br />

cvi cvi<br />

oo<br />

cvi<br />

00<br />

cvi<br />

in<br />

cvi cvi<br />

CD<br />

cvi<br />

00<br />

cvi cvi<br />

CO<br />

cvi<br />

T—<br />

d<br />

CM<br />

in<br />

d<br />

in<br />

CD<br />

d<br />

in<br />

o<br />

d<br />

■<br />

in<br />

o<br />

CD<br />

§<br />

d<br />

1<br />

in<br />

o<br />

d<br />

1<br />

O<br />

d<br />

1<br />

CO<br />

o<br />

d<br />

1<br />

CO<br />

o<br />

d<br />

1<br />

o<br />

o<br />

d<br />

o<br />

o<br />

d<br />

o<br />

d d<br />

CM<br />

o<br />

d<br />

CO<br />

o<br />

d o<br />

d d<br />

in<br />

o<br />

d<br />

d<br />

in<br />

d<br />

in<br />

d d<br />

o<br />

d<br />

5<br />

d<br />

CD<br />

d<br />

CM<br />

CO<br />

d<br />

o<br />

d<br />

■5t<br />

CM<br />

d d<br />

E<br />

H<br />

LL<br />

c\i<br />

CO<br />

CM<br />

CM<br />

CM<br />

cvi CM<br />

o<br />

cvi CM<br />

o<br />

cvi<br />

00<br />

cvi<br />

05<br />

CO<br />

cvi<br />

CD<br />

00<br />

cvi<br />

CD<br />

00<br />

cvi<br />

in<br />

00<br />

cvi<br />

s<br />

CM<br />

00<br />

cvi<br />

CO<br />

oo<br />

cvi<br />

CM<br />

00<br />

cvi<br />

00<br />

cvi<br />

00<br />

Cvi<br />

CD<br />

CD<br />

cvi cvi<br />

r>3<br />

cvi<br />

CM<br />

CM<br />

CD<br />

cvi<br />

in<br />

cvi CM<br />

in<br />

Cvi<br />

CD<br />

cvi<br />

CM<br />

CD<br />

cvi<br />

CM<br />

in<br />

cvi<br />

<br />

00<br />

o<br />

d<br />

§<br />

d<br />

00<br />

q<br />

o<br />

00<br />

O<br />

d<br />

Oi<br />

00<br />

o<br />

d §<br />

d<br />

00<br />

o<br />

d<br />

•<br />

1<br />

CO<br />

1<br />

o<br />

00<br />

1<br />

CM<br />

><br />

1<br />

o<br />

in<br />

CM<br />

9<br />

><br />

CD<br />

o><br />

1<br />

><br />

1<br />

1<br />

o<br />

o<br />

1<br />

><br />

1<br />

o<br />

1<br />

><br />

1<br />

CM<br />

1<br />

00<br />

o<br />

T—<br />

1<br />

><br />

1<br />

1<br />

CO<br />

1<br />

><br />

C<br />

CD<br />

CO<br />

CM<br />

4<br />

><br />

1<br />

CM<br />

1<br />

00<br />

T—<br />

1<br />

><br />

I<br />

CM<br />

1<br />

CM<br />

in<br />

><br />

1<br />

CM<br />

1<br />

CD<br />

in<br />

1<br />

><br />

1<br />

CO<br />

1<br />

o<br />

CD<br />

1<br />

><br />

1<br />

in<br />

CO<br />

4<br />

><br />

1<br />

CM<br />

1<br />

g<br />

1<br />

><br />

1<br />

CD<br />

1<br />

><br />

CD<br />

1<br />

O<br />

00<br />

T—<br />

1<br />

><br />

1<br />

t<br />

in<br />

oo<br />

4<br />

^<br />

£<br />

s<br />

><br />

1<br />

o<br />

1<br />

o<br />

CM<br />

1<br />

oo<br />

><br />

00<br />

1<br />

in<br />

00<br />

><br />

1<br />

o<br />

in<br />

CM<br />

00<br />

><br />

1<br />

oo<br />

1<br />

o<br />

CM<br />

CM<br />

1<br />

00<br />

><br />

1<br />

o<br />

1<br />

o<br />

CM<br />

CM<br />

1<br />

00<br />

><br />

CD<br />

1<br />

in<br />

eg<br />

CM<br />

00<br />

><br />

op<br />

in<br />

CM<br />

CM<br />

00<br />

><br />

1<br />

CD<br />

CO<br />

CM<br />

1<br />

00<br />

><br />

1<br />

CD<br />

1<br />

o<br />

CO<br />

CM<br />

00<br />

><br />

CD<br />

1<br />

in<br />

CO<br />

CM<br />

00<br />

><br />

op<br />

in<br />

CO<br />

cvi<br />

00


1<br />


Appendix B: Preliminary POSSE Modeling Results<br />

Provided by Norfolk Naval Shipyard Structural Engineering and Planning Office (Code 256)<br />

58


■<br />

•<br />

s*;<br />

eo<br />

1<br />

CM<br />


1<br />

|2<br />

«o<br />

CM<br />

cC<br />

5^<br />

"OJ cc<br />

5<br />

^<br />

^<br />

^<br />

S<br />

t—<br />

g.<br />

j<br />

1<br />

><br />

&<br />

1<br />

»3 s '^<br />

_ _<br />

S3 3! S3 33 33 33 S3 « 33 33 33 s;<br />

S S i<br />

1<br />

f ° 5 S s 8 &> CO ir><br />

s CO<br />

§<br />

8<br />

1<br />

S <str<strong>on</strong>g>to</str<strong>on</strong>g> g<br />

^ 5<br />

5<br />

CO<br />

S3 s s? S3 s S3 S3 S! S3 S3 S3 « S3 S3 33 8! S3 ffi S3 S3 S3 S3 S3 33 33 S3 s jj;<br />

. CM g 1 ig Sg <str<strong>on</strong>g>to</str<strong>on</strong>g> lO te K ft ^ sg ^ s CT> <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

S S S Ci<br />

S 5 g S g & " !8 g<br />

<<br />

i s<br />

s<br />

1<br />

CM<br />

5<br />

» 85 5 i$3 S3 « S3 S3 S3 S3 S3 S? S3 % S! S3 R s; 5! s; 3! 33 S! 3!<br />

10<br />

s<br />

g « i<br />

1<br />

lO tjfj LfJ S Sg ^ <str<strong>on</strong>g>to</str<strong>on</strong>g> > >-<br />

s<br />

-3- 5<br />

><br />

3!<br />

5<br />

^<br />

1<br />

5<br />

s 5 > ><br />

1 1<br />

cvj<br />

5 -5-<br />

1 ><br />

i 5 >• =><br />

5 5 5 1<br />

1 5 1 S ><br />

c6<br />

S i c6<br />

> >•<br />

cf><br />

> > ><br />

t&<br />

i ci<br />

•TT^<br />

10<br />

5<br />

C7><br />

i2<br />

^^<br />

o<br />


■<br />

E<br />

1-<br />

<<br />

O<br />

Y<br />

<<br />

^^<br />

i<br />

SS!<br />

m<br />

c<br />

in in in in<br />

^ o> t» a> 0)<br />

<br />

Q.<br />

i<br />

H<br />

iw<br />

_I<br />

in (D o S<br />

o (0<br />

s:<br />

CO<br />

a<br />

m<br />

o<br />

rf<br />

§ R<br />

1<br />

<<br />

M<br />

(T<br />

^<br />

< P<br />

H! ss<br />

1 o> g<br />

"■'<br />

in<br />

k<br />

H i%<br />

_l<br />

t:<br />

o<br />

o<br />

in o> ts CJ> a> O) o> CJ> O) (j> 0) (3) en OJ at o> c»<br />

p £J<br />

n> o<br />

Q. Q.<br />

~ ~ ^ $M<br />

l^<br />

P ^ P<br />

-J,<br />

■* ■* ^ 00 CO CO CO ■* ■* m 0) a> 00 oo oo CO in<br />

^ f<br />

CO<br />

E<br />

CO m o in<br />

CM CM g s t-- § in<br />

in<br />

S<br />

•* m<br />

10<br />

5 1 1 5 i<br />

O)<br />

E<br />

E<br />

^<br />

1- 1-<br />

< b <<br />

1<br />

? o s i<br />

< °<br />

0) a> O) a> O) o> at ()> O) o><br />

p<br />

[^<br />

y<br />

O<br />

Q. Q.<br />

^ ■" '" ^j w<br />

P fe'<br />

1<br />

p n<br />

-* ■* in 0) 05 CO oo 00 1^ a<br />

in CO in<br />

CO CO CM<br />

2<br />

5 ^ ^<br />

P<br />

P<br />

Hi<br />

*- in in in n> CD m O) in in in o o m O) O) m E<br />

o><br />

c»<br />

1 '(1)<br />

S^<br />

eo in CO 00 1— at CM CO 00 CM 00<br />

T- CM CM T- ■* CO CO OJ CM N<br />

■^<br />

n> m at m CD m o> oi 2-<br />

at 05<br />

i<br />

o> a> 0) at at 01 0) 0)<br />

1^ h- h. r^ h- [^ rs. l~. N t^ 1^ f~ r^ h- (> r^ r^ t^ h- 1^ t^ r-- N N<br />

ffl (M (M Al N IM Kr Ki Ki KI (M ><br />

fi ■<br />

1-^<br />

lit ff (0 >. ^ ~> *<br />

c<br />

a > :> > > > ><br />

J£ CM CM CM 5 > > > > ><br />

CM CM CM 4 > ><br />

CM (6 ^ 5 P fe c ><br />

ra je O o > o ><br />

CO 00 <br />

4 5 1 ; P H o n<br />

1<br />

Tt no CO oo


Appendix C: Preliminary Cost Estimati<strong>on</strong> Data and Worksheets<br />

62


ON OC)<br />

00<br />

00<br />

o<br />

o<br />

o<br />

^ <<br />

^ <<br />

o<br />

00<br />

o<br />

IT)<br />

Q<br />

•n W<br />

oo >^<br />

en >H<br />

H<br />

fs<br />

o<br />

o<br />

H<br />

H<br />

T-H in<br />

^ C/5<br />

«o<br />

QO<br />

C/3<br />

o<br />

r*^<br />

^ CO<br />

T-( CO<br />

e<br />

«<br />

n<br />

oo<br />

b* o<br />

><br />

o<br />

1-1 01<br />

H O<br />

-si H4<br />

> U<br />

■<br />

00 =a<br />

■o z<br />

ve w<br />

r-^ CL,<br />

f^ o<br />

OS<br />

00<br />

O<br />

U<br />

o<br />

o<br />

00<br />

fe '^<br />

ON<br />

IT)<br />

en 'z<br />

f-' o<br />

B §<br />


MATERIAL WORK SHEET<br />

PERMA BALLAST® INSTALLATION<br />

SHOP PC# MATERIAL STOCK NO. QTY SS/PUR COST<br />

CANNING PLATES:<br />

600 SF AREA FOR 2-165-8-V<br />

AT 100% COVERAGE<br />

llSl 001 10.2# OSS PLATE (10.2#/SF) 9515-00-153-3184 600 $4.12/SF $2,472<br />

llSl 002 2-1/2 X 2-1/2" ANGLE (4.1#LF) 9520-00-277-4920 170 $2.12/FT $360<br />

SPONSON STIFFENING:<br />

llSl 003 5" X 4" ANGLE (7.5#LF) 9520-00-277-5978 225 $6.46/FT $1,454<br />

71AA 004 PAINT $1,200<br />

74YY N/A BLAST AND PAINT FACILITY $12,000<br />

ALL N/A CONSUMABLES $4,640<br />

TOTAL MATERIAL COSTS: $22,126<br />

TOTAL MATERIAL WEIGHT:<br />

10,556 #'S<br />

64


«n <<br />

1-H<br />

ON H ^ 0\<br />

1—1 i-(<br />

o<br />

©<br />

iH<br />

■Tf<br />

o<br />

1—(<br />

t/5<br />

S?<br />

as 1—1 o<br />

00<br />

H<br />

\0 '—'<br />

m OH<br />

in W<br />

oo >-'<br />

CO ^<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> <<br />

en O<br />

1—1 1—1<br />

1—(<br />

1—1<br />

o<br />

ON<br />

1-H<br />

^ CO<br />

^;:::<br />

Tt<br />

■«*<br />

^ C/3<br />

o<br />

1—( s<br />

^<br />

1-^<br />

-—I C/3<br />

oo 00<br />

r-H (N<br />

^ CO ^ ^<br />

1-H r-H<br />

'—• CO 1-H<br />

^<br />

^<br />

1—1<br />

WORK TO BE<br />

ACCOMPLISHED<br />

960 SF ■ CANNING<br />

PLATES FOR<br />

2-180-6-V AT 100%<br />

9<br />

o<br />

><br />

w<br />

00<br />

§<br />

00 ^<br />

§ U<br />

o<br />

U<br />

o<br />

00<br />

OH<br />

g (Si<br />

Is<br />

00<br />

ii<br />

00 00<br />

CUT/INST ACCESSES<br />

(6) 12" FOR FILLING<br />

00<br />

O<br />

Is<br />

z ^<br />

|w<br />

H U<br />

c/2


MATERIAL WORK SHEET<br />

PERAAA BALLAST® INSTALLATION<br />

SHOP PC# MATERIAL STOCK NO. Qjy SS/PUR COST<br />

CANNING PLATES:<br />

960 SF AREA FOR 2-180-6-V<br />

AT 100% COVERAGE<br />

llSl 001 10.2# OSS PLATE (10.2#/SF) 9515-00-153-3184 960 $4.12/SF $3,955<br />

llSl 002 2-1/2 X 2-1/2" ANGLE (4.1#LF) 9520-00-277-4920 275 $2.12/FT $583<br />

SPONSON STIFFENING:<br />

llSl 003 5" X 4" ANGLE (7.5#LF) 9520-00-277-5978 360 $6.46/FT $2,326<br />

71AA 004 PAINT $1,920<br />

74YY N/A BLAST AND PAINT FACILITY $19,200<br />

ALL N/A CONSUMABLES $7,418<br />

TOTAL MATERIAL COSTS: $35,402<br />

TOTAL MATERIAL WEIGHT:<br />

16,890 #'S<br />

66


in -^J<br />

r--<br />

OS H<br />

00<br />

■*<br />

ri<br />

o<br />

F^^<br />

^ oo ^<br />

•n <<br />

m O<br />

■* TT<br />

QO<br />

?5<br />

Tt<br />

Tf<br />

^ »n © QO<br />

00<br />

1-^<br />

H<br />

r^ 00<br />

rr<br />

Tt<br />

n<br />

1—1 I—1<br />

WORK TO BE<br />

ACCOMPLISHED<br />

<br />

u<br />

8<br />

1<br />

1<br />

^<br />

CUT/INST ACCESSES<br />

(2) 12" FOR FILLING<br />

00<br />

W<br />

00<br />

00<br />

8<br />

u<br />

<<br />

00<br />

W<br />

H<br />

H 00<br />

=y o<br />

H u<br />

< w<br />

OH P<br />

S<br />

• •<br />

s<br />

TOTAL 264 MH'S<br />

TOTAL 33 MD'S<br />

TOTAL PROD<br />

$21,186<br />

MATERIAL:<br />

$500<br />

NO ADDITIONAL<br />

WEIGHT ADDED


c« 05<br />

*<br />

H * *<br />

< Ss' 0\<br />

S<br />

1/1<br />

*<br />

CO<br />

H * %<br />

^<br />

S<br />

^ rt<br />

5<br />

< rr t^ t--<br />

^<br />

" *^<br />

H<br />

oo<br />

VO<br />

H<br />

Z<br />

H<br />

Z<br />

« r'j<br />

u<br />

BU<br />

« r^<br />

Ed<br />

pL,<br />

H o n o<br />

V) IT) W ID<br />

O O o<br />

H o n o<br />

(/) Ml U1 «n<br />

>-] o © ©<br />

iii<br />

> > > C/)<br />

I<br />

00<br />

< 58 o<br />

H f-t<br />

■<br />

4 NJ<br />

00 ,?<br />

rH fS p<br />

M > > CO<br />

■<br />

^ 00 sh _]<br />

O<br />

s ■<br />

00 ©<br />


=» *<br />

o o o o o o o<br />

§ §<br />

<<br />

S<br />

, ,<br />

s s s<br />

g<br />

>n in • > > > > > > > >• > > > > > >■ >■<br />

«J > > > > ;> > > >■<br />

> > S> >- > >- > ><br />

4<br />

2; •? ^ 4<br />

r!| ve r<<br />

•? i M


I/)<br />

o<br />

O<br />

c«<br />

a<br />

o<br />

><br />

u<br />

u<br />

Q<br />

© o ©<br />

1 o<br />

o<br />

r-T<br />

Q<br />

O<br />

00 00<br />

1—1<br />

eu<br />

(/I<br />

pa<br />

i<br />

u<br />

(A ^<br />

^<br />

^<br />

^<br />

!3<br />

0<br />

o<br />

o<br />

2 0<br />

V)<br />

d<br />

0<br />

©<br />

o<br />

in<br />

d<br />

o<br />

©<br />

o<br />

2 o<br />

c5<br />

0<br />

©<br />

o<br />

1/1<br />

d<br />

o<br />

1/1<br />

d<br />

z ><br />

•<br />

o<br />

f-H<br />

•<br />

o<br />

00<br />

><br />

•<br />

I<br />

00<br />

><br />

6<br />

■<br />

n<br />

><br />

■<br />

00<br />

©<br />

2<br />

><br />

6<br />

1-1<br />

©<br />

I<br />

00<br />

><br />

I<br />

00<br />

><br />

1<br />

00<br />

><br />

1<br />

I<br />

00<br />

><br />

1<br />

2<br />

1<br />

I<br />

00<br />

><br />

1<br />

00<br />

2<br />

1<br />

H<br />

1/3<br />

©<br />

o9<br />

u<br />

00<br />

*<br />

© o<br />

o<br />

©<br />

O<br />

00<br />

1-H<br />

00<br />

1-H<br />

1-H<br />

eu<br />

H<br />

IT)<br />

Z<br />

a<br />

u<br />

eu<br />

^<br />

S<br />

2<br />

0<br />

©<br />

o<br />

©<br />

o<br />

VI<br />

©<br />

o<br />

V)<br />

©<br />

o<br />

©<br />

o<br />

in<br />

©<br />

o<br />

©<br />

o<br />

©<br />

0<br />

V)<br />

©<br />

o<br />

v><br />

©<br />

o<br />

V)<br />

©<br />

z ><br />

o<br />

1<br />

00<br />

><br />

■<br />

00<br />

1<br />

r«<br />

o&<br />

><br />

•<br />

©<br />

1-H<br />

1<br />

tn<br />

I-H<br />

■<br />

00<br />

><br />

■<br />

©<br />

M<br />

I<br />

00<br />

><br />

©<br />

1-H<br />

■<br />

©<br />

•<br />

00<br />

><br />

■<br />

'^<br />

00<br />

><br />

•<br />

00<br />

1<br />

V)<br />

00<br />

><br />

•<br />

I<br />

00<br />

><br />

t<br />

©<br />

I<br />

00<br />

><br />

■<br />

V)<br />

1<br />

00<br />

><br />

■<br />

00<br />

■<br />

1<br />

00<br />

H<br />

O<br />

H<br />

o


i V)<br />

H % *<br />

l-H<br />


S<br />

e e o © o o<br />

o<br />

*<br />

H<br />

S<br />

o o o O<br />

o<br />

S<br />

e<br />

o<br />

•0 1/1 V) IT) in<br />

•!/3-


%<br />

H o o o ©<br />

s<br />

*<br />

< © © o<br />

i^ ©<br />

H o o o<br />

o<br />

© ©<br />

■n<br />

^^ V) >r> VI<br />

^<br />


00<br />

W3<br />

SO<br />

4t c« c«<br />

H ^ ^<br />

n<br />

■< 00 00<br />

S f^<br />

r- t^<br />

00<br />


* *<br />

H<br />

o o o o o o o o o e o o O o o o o o<br />

§<br />

^<br />

^ o o<br />

^■ ^•<br />

n w<br />

^ "^' *(*<br />

m ^ iA «» i«- > > sr > >■ ><br />

>■<br />

;> > > >• >• > > >■<br />

> > > > S> > >■ >■<br />

>■ > > > > > > ><br />

r-1 ^ •? ^ 4 N VO c!|


o o o © o o o<br />

4):<br />

H<br />


M t» c«<br />

*<br />

ft ft<br />

H ft<br />

00 O 00<br />

r- O r--<br />

5 n 00 ©<br />

•n tn ON<br />

ft CO<br />

ft<br />

00<br />

CO<br />

ft<br />

00<br />

§<br />

in<br />

-F/V ro V) 00<br />

vo rr ©<br />

H © r- 00<br />

^ rt «s fo<br />

TH 1—1 «N<br />

^ ^ ^<br />

S<br />

^ so so<br />

H © ©<br />

«N<br />

a (^ © TT<br />

o •rr ^ 00<br />

so 00<br />

l-H TT<br />

1-1 ro<br />

«» i^ ^<br />

g<br />

«5<br />

««■<br />

U C1 f^<br />

o Tf TT<br />

Pd SO 1-H 1-^<br />

IX, ■e«- <br />

u<br />

m<br />

^<br />

ti ii! 1$<br />

fV C/3 ^<br />

^ 09 n<br />

.4 I-)<br />

o<br />

o ©<br />

r« i ^<br />

H 1-1<br />

^<br />

2<br />

pj ON<br />

u<br />

OH<br />

r-<br />

H o o o<br />

t/i O © ©<br />

rl «S M<br />

3<br />

H o o o<br />

(/) © © ©<br />

r» r< r<<br />

3<br />

z<br />

H<br />

> > > ■^<br />

00 ve<br />

I<br />

1<br />

iH i^ r»<br />

M M r< H<br />

Z<br />

H<br />

> > > Crt<br />

00 so<br />

i f<br />

i H<br />

o<br />

i-i 1-1<br />

'V<br />

M r» f^ H


S<br />

e o e o o o e o © © © o © ©<br />

*<br />

H<br />

-*•<br />

S<br />

© © © © o © © © ©<br />

i/i<br />

H<br />

^<br />

s s s g § o<br />

o § § g § © § s<br />

"n in m in •n m m "I<br />

*» H pa pa pa sa aa pa sa a<br />

H ^ i-i u u u i-j u ^<br />

m m m in m in in in<br />

»s «s r< fS > > > > > > > > > > > c«<br />

1* «s 't ^ '^ ^ N VO N ♦^ •? -f «S «s 4 \o >-l<br />

<<br />

< ^ 00 fl SO f^ 00 «s ve © in e in A<br />

e s o »-( ^H «s TT in m \o ve r~ t~- <strong>on</strong> 00<br />

TM<br />

H<br />

1^ iH 1—) t-H *-H f>H i-H w^ ^H »-4 O<br />

^ 4 4 4 4 4 Tf ^ 4 4 4 t ■9 " > > > > > > > > > > > > > > ><br />

tj; A M M<br />

i ^ ^ r


1^ r-( 1-H M n


* 1/) C/3<br />

5»- *<br />

H 00 *s ©<br />

■< © 00<br />

S<br />

1—1<br />

©<br />

*<br />

n 00<br />

V)


Vi<br />

^■ ««■ -^<br />

^^<br />

* *<br />

o o o o o o O o o o o o o o o o ®<br />

o © O o o © © © © o ©<br />

§<br />

H ^-^ r^ (-> (—1 l-> o e O (—1 o 9 ©<br />

,-^ s<br />

o /-»! e o o ^ e (^ o o o o A o O o o ir> Wii v-^ '^ ©<br />

-< ■r ■n ir> in in in in in in in in m >n in in ••al l/J 1/1 u\<br />

■£» Vi ^ ^^ ^ Vi Vi ^^ ^■ Vi «« ^ ■^<br />

§<br />

^<br />

«» vn vo \o ve vo >« vo ^ ve ^ 'O ve ve « \o ^o<br />

as- NO NO \e NO<br />

f "9 f f: NO vo 5?<br />

O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00<br />

00 00 1X3<br />

S<br />

0\ o<br />

1—t 1-H FH 1-1 FH 1H4 *H HH 1—1 »<br />

o<br />

•><br />

FH<br />

-H I-( 1—( 1-H i-H rH FH' 1-H IH ^H 1-1 1-H<br />

^«^ frf r-l r» s • > > ><br />

2<br />

>- > ><br />

1<br />

>■ > > > > > > > > > >■ > ><br />

TJ> r!.


S<br />

o o o © © © © © © ©<br />

< © © © © © © ©<br />

o © o o o © © © o © o §<br />

■< VI *n f) V) trt tt ID VI ■n<br />

^


4t<br />

S<br />

C/l r/i<br />

00<br />

*<br />

s<br />

M<br />

*<br />

o<br />

*<br />

<<br />

ly) C/5 C«<br />

* *<br />

5t<br />

?5<br />

% (N o<br />

in yrt ©<br />

1—1<br />

-F/V f^ rq v><br />

'O «s 00<br />

H o (S «N<br />

y-^ *n vo<br />

I-H l-H n<br />

^ *e «»<br />

^<br />

ff\ r


* *<br />

H<br />

H<br />

■< -if o e o o © o © © o © © © ©<br />

s<br />

s<br />

^ w*<br />

H s 1 s § § s g § s ©<br />

© § §<br />

l/> iri trt V) IT) in IT) IT) W1 in m in<br />


^5-<br />

<br />

Q © © © © © © o o © © ir)<br />

■«»' m in ■n v> m m V) *n in ^<br />

■£«• «^ «e ^«-


Appendix D: Preliminary Cost Comparis<strong>on</strong><br />

86


"~" ~ 00<br />

s ^ SS<br />

o<br />

s<br />

■g<br />

Q ■*<br />

ja<br />

^ .id P-' «;<br />

S 1<br />

^<br />

fi 30<br />

a<br />

i-i in (N<br />

u-i<br />

^ n? 00 ;cs >? s a s n<br />

o ■* r- f*i -^<br />

^ «N<br />

O «n O<br />

CO<br />

Tl<br />

Vi rs<br />

^<br />

VO n y? o \D so oo<br />

w<br />

•C<br />

J^ s *n<br />

m •n o<br />

a R en ICl l*^<br />

-y<br />

00<br />

(1^<br />

X ii<br />

'"'<br />

r-<br />

^ s a s 3,<br />

(TN<br />

S<br />

■3 (N en<br />

Q (TV so<br />

1<br />

(N<br />

■^l<br />

«^<br />

00<br />

>r<br />

m (*1<br />

-c ^ ^ ^ p 2<br />

t_J oo<br />

^.<br />

1 1 s (N r^<br />

tl<br />

^<br />

•^<br />

r^<br />

9<br />

1^ o m<br />

o<br />

r4 s<br />

1^<br />

9<br />

o<br />

S<br />

rj r- o<br />

1<br />

1<br />

oo<br />

£<br />

oe<br />

^ ^<br />

1 U<br />

"<br />

s S SR<br />

s<br />

O<br />

U1<br />

—.<br />

so<br />

1<br />

(Ti o<br />

i<br />

i^ — o o m m<br />

t<br />

s<br />

1 6<br />

■"'<br />

r-i<br />

t<br />

r-i "« m o<br />


Appendix E: Complete Structural Analysis


structural Analysis for Compartment 2-165-8-V; Shell Plating<br />

Perma Ballast® Data<br />

PP: erma :=200A<br />

ft^<br />

/"Perma fill :=.9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

lb<br />

Psw:=64.4—<br />

ft<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Compartment 2-165-8-V<br />

Volume := 3969ft^<br />

Volume of Compartment<br />

^Perma •" 354<str<strong>on</strong>g>to</str<strong>on</strong>g>n Weight of Permanent Ballast<br />

FR 175<br />

FR180<br />

Main Deck<br />

9.83*<br />

2nd Deck<br />

6 Tees, spaced 26" apart {7.6#)<br />

89


Main Deck<br />

FR 165 - FR 180 Transverse Bulkheads<br />

20.4# (.5")<br />

11.5* ><br />

Stringer #6<br />

Girder<br />

Ship<br />

Shell<br />

Plating<br />

30.6# (.75<br />

10.2 # (.25")<br />

2nd Deck<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

Shell<br />

V := 1.2f Vertical a := asinf^^<br />

V1513<br />

A := 0.7f Athwartship p<br />

. (^9.83<br />

:= asm •<br />

V 15.13<br />

F := 0.4 Fore/Aft<br />

a = 49.47 Ideg<br />

P =40.519deg<br />

Loading <strong>on</strong> Shell Plating:<br />

Wperma = 7.93x10^ lb<br />

Weight of Perma Ballast®<br />

Fv:=V-Wp,^,<br />

Fy = 9.912X 10 lb Vertical Load (Downward)<br />

F^ := A • Wpg^3<br />

F^ = 5.947X 10 lb Athwartship Load (Port)<br />

Fp :- F • Wpgj.j„3<br />

Fp = 3.172X 10 lb Fore/Aft Load<br />

% := Fy ■ '=os(P) + FA ' cos(a) F^ = 1.14x 10^lb Normal Force<br />

90


Resulting Pressure <strong>on</strong> Sp<strong>on</strong>s<strong>on</strong> Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 60ft Ht := 15.13ft<br />

Area := L ■ Ht<br />

Area = 907.8ft^<br />

P:=<br />

^N<br />

Area<br />

.3 lb<br />

P = 1.256X 10"<br />

ft<br />

P = 8.72—<br />

. 2<br />

m<br />

.3 lb_<br />

^95% '■= %erma_fill' ^ ^95% = ^"^^^^ ^^ —<br />

.2<br />

^^^^^ °" ^^^^ F^"^^^® Volume<br />

ft<br />

H:= ^95%<br />

sw<br />

H = 18.524ft<br />

Equivalent Head<br />

In accordance with CVN 76 Specs, sp<strong>on</strong>s<strong>on</strong> plating aft of Frame 88 shall be designed for 1000 psf. Therefore, less ballast must<br />

be added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se sp<strong>on</strong>s<strong>on</strong> voids.<br />

1193 psf> 1000 psf<br />

91


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

Panels of plating shall be proporti<strong>on</strong>ed so as not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> breadth-thickness ratios<br />

found below:<br />

b := 2fin a := 240in AR := — AR = 0.108<br />

a<br />

^actual :== •25in Thickness of Plate, HTS<br />

H = 18.524ft<br />

Head of Water<br />

K := 1 For AR = 0.108, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C :- 400ft'^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />

c ■<br />

— /H<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

K-VHb ,, rr,, ...<br />

*min ■" "^<br />

Note: The stirfeners are assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> be spaced evenly across<br />

C<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong> shell plating with 6 stiffeners spanning 15.13'.<br />

^min = 0.28in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .28 in. The actual<br />

plate thickness is .25 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck shell plating must ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be stiffened or have less ballast added. It should be<br />

noted,<br />

however, that some structural margin exists within <str<strong>on</strong>g>the</str<strong>on</strong>g>se calculati<strong>on</strong>s and that .28 is close enough <str<strong>on</strong>g>to</str<strong>on</strong>g> .25 in. As a result, it is<br />

possible that stiffening is not required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck shell sp<strong>on</strong>s<strong>on</strong> plating.<br />

t_min > t_actual<br />

92


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Maximum Ballast Weight:<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Resulting Pressure <strong>on</strong> Sp<strong>on</strong>s<strong>on</strong> Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 60ft Ht := 15.13ft<br />

Area := L • Ht<br />

P ■= 1000- •—<br />

ft^<br />

Area = 907.8ft^<br />

Maximum pressure allowed for sp<strong>on</strong>s<strong>on</strong> shell plating lAW CVN 76 Specs<br />

FN_new == ? " Area FN_new = 9.078x 10^ lb<br />

p<br />

H := H = 15.528ft<br />

Psw<br />

New Equivalent Head<br />

Loading <strong>on</strong> Shell Plating:<br />

. f 11.5<br />

a := asm<br />

U5-13<br />

a = 49.47 Ideg<br />

P := asinf-^ I P = 40.519deg<br />

pN_new = Fv_new ' cos(p) + F^jiew " '^os(a)<br />

Py new = ^ ■ Wperma<br />

V^^ical Load (Downward)<br />

FA_new = ^ • Wp^^^ Athwartship Load (Port)<br />

% new = V • Wperma " cos(p) + A • Wp^^^ • cos (a)<br />

N_new<br />

^P^^ ''^ (v.cos(p) + A.cos(a))<br />

^Perma = 281.9041<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Weight of Perma Ballast® that cannot be exceeded<br />

93


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

tjjjjn := .25in<br />

Thickness of Plate, HTS<br />

H = 15.528ft<br />

Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := 1 Assume AR remains less than .5<br />

C:= 400ft'^ For HTS, No Set<br />

b<br />

— <<br />

K-VH<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

C h<br />

''limit '■= ^min T ^ = ^^i" T = 13in<br />

L 2<br />

2<br />

KH<br />

''limit = 25-377in<br />

25.377 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners can be apart and have no plastic deformati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existing .25 in plating.<br />

The current stiffeners are located 26 in apart. It is recommended that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners be placed less than maximum distance apart.<br />

Therefore, adding a vertical stiffener in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing stiffener <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shell sp<strong>on</strong>s<strong>on</strong> plating will put b at 13 in and<br />

meet <str<strong>on</strong>g>the</str<strong>on</strong>g> 25.377 in requirement-<br />

Results<br />

A combinati<strong>on</strong> of Lesser Weight Additi<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> meet <str<strong>on</strong>g>the</str<strong>on</strong>g> lOOOpsf limit al<strong>on</strong>g with adding a stiffener in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing<br />

stiffener will alleviate any structural c<strong>on</strong>cerns.<br />

94


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := k • P •<br />

p = pressure based <strong>on</strong> 1000 psf <strong>on</strong> sp<strong>on</strong>s<strong>on</strong> shell plating<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

''simply_supported •<br />

lc,i fi := -5 ^ values are most c<strong>on</strong>servative<br />

a := 2Qft b := Bin based <strong>on</strong> 13 in separati<strong>on</strong> between stiffeners<br />

Jlb_<br />

P = 6.944-<br />

. 2<br />

in<br />

t := .25in<br />

^max allowable= 40,000 Jb_<br />

. 2<br />

in<br />

I AW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

^simply_supported • Simply_supported<br />

,., lb<br />

^simply_supported<br />

14083<br />

in<br />

"■'7<br />

^clamped • "Clamped<br />

I ^<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding stiffeners at 13 in, <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below that of simply<br />

supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support<br />

illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship,<br />

structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below maximum allowable.<br />

^clamped<br />

^max_allowabl(<br />

95


C coefficient derivati<strong>on</strong> from beam <str<strong>on</strong>g>the</str<strong>on</strong>g>ory:<br />

Panel is c<strong>on</strong>sidered a series of beams having FIXED ends.<br />

1,3 Y-H<br />

I := — • 1 ■ t q := -^<br />

12 ^ 144<br />

12 ^ t<br />

Ox_max-~ ■ ~ P'^'^ bending now equivalent <str<strong>on</strong>g>to</str<strong>on</strong>g> Navy's standard, see Eqn 2<br />

Nx_max'288 j<br />

b_over_t := j y := 64.'^<br />

V Y VH<br />

^x max'" ^^^ without introducing K fac<str<strong>on</strong>g>to</str<strong>on</strong>g>r, used for shorter panels<br />

^ Px max-288<br />

C := —= c = 422.944<br />

353.861<br />

b over t < •<br />

Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

^min ~ ^Sin Thickness of Plate, HTS<br />

H = 15.528ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := 1 Assume AR remains less than .5<br />

C := 422.944Ft'^ For HTS, No Set<br />

b<br />


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := k • P<br />

— p = pressure based <strong>on</strong> 1000 psf <strong>on</strong> sp<strong>on</strong>s<strong>on</strong> shell plating<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

"Simply^upported ■ ■ Clamped :=.5<br />

a := 20ft<br />

b<br />

p = 6.944—<br />

. 2<br />

in<br />

*^max_allowable~<br />

40,000<br />

lb<br />

. 2<br />

m<br />

blimit=26.833ir<br />

AR = 18.462<br />

t := .25in<br />

lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> Gei<br />

'^simply_supported • Simply_supported '<br />

'<br />

^_^limit^<br />

^simply_supported<br />

60000-^<br />

. 2<br />

in<br />

^clamped • Clamped ■P- V t J<br />

clamped<br />

40000^<br />

. 2<br />

m<br />

97


structural Analysis for Compartment 2-165-8-V: Ship Shell Plating<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

Perma Ballast® Data<br />

PPerma ■- 200-!^<br />

ft<br />

^"Perma.fill •= ■^'<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

lb<br />

sw<br />

ft"<br />

Compartment 2-165-8-V<br />

Density of Seawater<br />

Volume := 3969ft<br />

Wperma-=2811<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Volume of Compartment<br />

Maximum Weight of Permanent Ballast that can be added in accordance with shell plating<br />

stress calculati<strong>on</strong>s<br />

FR175<br />

FR180<br />

Main Deck<br />

9.83'<br />

2nd Deck<br />

6 Tees, spaced 26" apart (7.5#)<br />

98


FR 165 - FR 180 Transverse Bulkheads<br />

20-4# (-5")<br />

Main Deck<br />

11.5' ><br />

Stringer #6<br />

Girder<br />

Ship<br />

Shell<br />

Plating<br />

30.6# (.75")<br />

2nd Deck<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

Shell<br />

V:=1.2f Vertical<br />

A := O.li Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Inner L<strong>on</strong>gitudinal Bulkhead Plating:<br />

Wpgj^a = 6.294X 10 lb Weight of Perma Ballast®<br />

Fy := V-Wperma<br />

FA ■= AWpenna<br />

Fp:- FWpgj^jjja<br />

% ■- ^A<br />

FY = 7.868X 10 lb<br />

F^ =4.721x 10^ lb<br />

Fp = 2.518x 10^ lb<br />

Fj^=4.721x 10 lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

Normal Force<br />

99


Resulting Pressure <strong>on</strong> Inner L<strong>on</strong>gitudinal Bulkhead Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 60ft<br />

Area := L-Ht<br />

Area<br />

Psw<br />

Ht := 9.8 Jt<br />

Area = 589.8ft^<br />

P = 800.407—<br />

ft^<br />

H = 12.429ft<br />

P = 5.558-1^<br />

. 2<br />

m<br />

Equivalent Head<br />

100


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

b := —ft a := 24an AR := - AR = 0.246<br />

2 a<br />

Wual •= •'^5'" Thickness of Plate, HTS<br />

H = 12.429ft Head of Water<br />

K := 1 For AR = 0.246, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ff^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

b C ■<br />

— < K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

K-VH<br />

H = Head of salt water (feet)<br />

K-y/Hb<br />

t, min" p<br />

Wn = 0-52in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .52 in. The actual<br />

plate thickness is .75 in. Therefore, stiffening of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck inner l<strong>on</strong>gitudinal bulkhead plating is not required.<br />

t min «t_actual<br />

101


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s<br />

'min '■= •'^^'" Thickness of Plate, HTS<br />

H = 12.429ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := 1 Assume AR remains less than .5<br />

C := 400ft'^ For HTS, No Set<br />

b<br />


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

o := kP- -<br />

p = pressure based <strong>on</strong> 95% of maximum ballast additi<strong>on</strong> I AW sp<strong>on</strong>s<strong>on</strong> stress calculati<strong>on</strong>s<br />

^imply_supported<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

"^clamped •<br />

k values are most c<strong>on</strong>servative<br />

a := 20ft<br />

P = 5.558—<br />

. 2<br />

m<br />

lb<br />

^max_allowable= 40,000—<br />

in<br />

b := 58in<br />

based <strong>on</strong> no stiffener additi<strong>on</strong><br />

t := .75in<br />

lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

■^simply_supported • ^imply_supported<br />

simply_supported 24931—<br />

. 2<br />

m<br />

^clamped • Clamped<br />

'^clamped =16621—<br />

. 2<br />

m<br />

Maximum Allowable Stress for HTS is 40,000 psi. The calcuated stresses fall well below that of simply supported and that of<br />

clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating zero stiffness<br />

and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship, structural systems can be<br />

c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural analysis<br />

is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below maximum allowable.<br />

"'clamped<br />

''max_allowabl(<br />

103


structural Analysis for Compartment 2-165-8-V: Transverse Bulkhead<br />

Frames 165,170,175, and 180<br />

Perma Ballast® Data<br />

lb<br />

P Perma :=200-<br />

ft<br />

% Perma fill ■ .9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

sw :=64.4^<br />

ft^<br />

Density of Seawater<br />

Compartment 2-165-8-V<br />

Volume :=3965ft^<br />

Wperma:=2811<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Volume of Compartment<br />

Maximum Weight of Permanent Ballast that can be added in accordance with shell plating stress<br />

calculati<strong>on</strong>s<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f<br />

A := 0.71<br />

F := 0.4<br />

Vertical<br />

Athwartship<br />

Fore/Aft<br />

Loading <strong>on</strong> Transverse Plating:<br />

Wpg^3 = 6.294x lO^lb Weight of Perma Ballast®<br />

Pv^=V.Wp,rma<br />

FA -■= AWperma<br />

FF^=FWpe3<br />

% •- Pp<br />

Fv = 7.868x 10 lb<br />

FA=4.721X 10^ lb<br />

Fp = 2.518x 10^ lb<br />

FN=2.518X 10 lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

Normal Force<br />

104


Main Deck<br />

Shell<br />

FR 165 - FR 180 Transverse Bulkheads<br />

20.4# (.5"<br />

11.5' ><br />

Stringer #S<br />

Girder<br />

Ship<br />

Shell<br />

Plating<br />

30.6# (.75")<br />

10.2 # {.25")<br />

2nd Deck<br />

Shell<br />

Resulting Pressure - <strong>on</strong> Transverse Plating:<br />

Compartment Dimensi<strong>on</strong>s<br />

L:= 11.5ft<br />

Area := .5LHt<br />

Area<br />

'sw<br />

Ht := 9.&m<br />

Area = 56.523ft^<br />

3 lb<br />

p = 4.454x 10 —<br />

ft^<br />

H = 69.168ft<br />

P = 30.934—<br />

. 2<br />

m<br />

Equivalent Head<br />

105


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)|<br />

The transverse plating at Frames 165, 170, 175, and 180 is stiffened by 3 vertical stiffeners and 3 horiz<strong>on</strong>tal stiffeners <str<strong>on</strong>g>to</str<strong>on</strong>g> include<br />

a vertical girder that runs from <str<strong>on</strong>g>the</str<strong>on</strong>g> Main Deck <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shell plating above stringer #6. The largest secti<strong>on</strong> of transverse plating<br />

that is unstiffened is approximately a 24"X34.5" secti<strong>on</strong> of plate. An assumpti<strong>on</strong> was made that all vertical stiffeners are spaced<br />

equally apart. All structural analysis was performed <strong>on</strong> this secti<strong>on</strong> of plate.<br />

b := 24in a := 34.Sn AR := - AR = 0.696<br />

a<br />

Wual •= •^^" Thickness of Plate, HTS<br />

H = 69.168ft Head of Water<br />

K := .94 For AR = 0.696, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft"^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s<br />

t ■ := .Sttn<br />

Thickness of Plate, HTS<br />

H = 69.168ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := .94 Assume AR remains .696<br />

C := 40Qft'^ For HTS, No Set<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

b C "<br />

— < K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

K-VH<br />

H = Head of salt water (feet)<br />

''limit-<br />

24in<br />

'•mm j<br />

KH^<br />

''limit = = 25.583in<br />

25.583 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that l<strong>on</strong>gitudinal stiffeners can be located apart and have no deformati<strong>on</strong> occur <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .5 in<br />

plating. The transverse plating at Frame 165 has 3 horiz<strong>on</strong>tal stiffeners and 3 vertical stiffeners. The current horiz<strong>on</strong>tal stiffener<br />

spacing is approximately 24" and within <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting width between stiffeners. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse plating at Frame 165<br />

does not need <str<strong>on</strong>g>to</str<strong>on</strong>g> be stiffened. Frames 170,175 and 180 are similar in design.<br />

107


Stress Calculati<strong>on</strong>s:<br />

b^2<br />

a := k-Pl — I<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

p = pressure based <strong>on</strong> 1000 psf <strong>on</strong> sp<strong>on</strong>s<strong>on</strong> shell plating<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

'Siniply_supported '■= ■'^- "^lamped •= -^ ^ ^^'"^^ ^""^ "1°^' c<strong>on</strong>servative<br />

a := 34.Sn b := 24in based <strong>on</strong> no stiffener additi<strong>on</strong><br />

P = 30.934—<br />

. 2<br />

in<br />

t := .SOn<br />

*^max_allowable~ 40,000— I AW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

2<br />

in<br />

^simply_supported ' *Simply_supported '^l<br />

b^2<br />

'^simply_supported ~ "o<br />

in<br />

2<br />

... b<br />

^clamped " '^clamped<br />

^clamped = 35636-^<br />

in<br />

Maximum Allowable Stress for HTS is 40,000 psi. The calcuated stresses falls between that of simply supported and that of<br />

clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating zero stiffness<br />

and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship, structural systems can be<br />

c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural analysis<br />

is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below maximum allowable.<br />

'^clamped*^'^ ^max_allowabl(<br />

108


structural Analysis for Compartment 2-180-6-V: Shell Plating<br />

Perma Ballast® Data<br />

PPerma^=200-^<br />

ft<br />

^"Perma_fill •= •^-<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

'sw<br />

: 64.4 lb<br />

ft<br />

Compartment 2-180-6-V<br />

Volume := 6272ft^<br />

Wperma==56a<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V := 1.2f Vertical a := asin r n.5<br />

15.13<br />

A := 0.7f<br />

F := 0.4<br />

Athwartship<br />

Fore/Aft<br />

P := asin f 9.83<br />

15.13<br />

a = 49.47 Ideg<br />

P =40.519deg<br />

Loading <strong>on</strong> Shell Plating:<br />

Wperma = ^■254x 10^ lb Weight of Perma Ballast®<br />

Fy := V • Wpgrma<br />

F^ :- A • Wpgj.j^g<br />

Fp := F • Wpgj.jjjg<br />

Fv=1.568x 10 lb<br />

F^ =9.408x 10^ lb<br />

Fp = 5.018x 10^ lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

F^ := Fy • cos(p) + F^ ■ cos(a) Fj^ = 1.803x 10^lb<br />

Normal Force<br />

109


Resulting Pressure <strong>on</strong> Sp<strong>on</strong>s<strong>on</strong> Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L:=96ft Ht:= 15.13ft<br />

Area := L • Ht Area = 1.452x 10^ ft^<br />

p<br />

P := P = 1.242x 10^ — P = 8.622—<br />

Area 2 .2<br />

It m<br />

^95% -"^ %erma_fill' ^ ^95% = ^ •179x 10 — Based <strong>on</strong> 95% Fillable Volume<br />

ft^<br />

^95%<br />

H := H = 18.315ft Equivalent Head<br />

Psw<br />

In accordance with CVN 76 Specs, sp<strong>on</strong>s<strong>on</strong> plating aft of Frame 88 shall be designed for 1000 psf. Therefore, less ballast must<br />

be added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se sp<strong>on</strong>s<strong>on</strong> voids.<br />

1179 psf > 1000 psf<br />

110


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

Panels of plating shall be proporti<strong>on</strong>ed so as not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> breadth-thickness ratios<br />

found below:<br />

b := 26in a := lidn AR := - AR =: 0.108<br />

a<br />

^actual '•= -251" Thickness of Plate, HTS<br />

H = 18.315ft Head of Water<br />

K := 1 For AR = 0.108, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft'^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

b C ■<br />

— < K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

t K-VH<br />

H = Head of salt water (feet)<br />

l^.^ ■- —12t—'.— Note: The stiffeners are assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> be spaced evenly across<br />

"^imn Q<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong> shell plating with 6 stiffeners spanning 15.13'.<br />

t^„ = 0.278in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .28 in. The actual<br />

plate thickness is .25 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck shell plating must ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be stiffened or have less ballast added. It should be<br />

noted,<br />

however, that some structural margin exists within <str<strong>on</strong>g>the</str<strong>on</strong>g>se calculati<strong>on</strong>s and that .28 is close enough <str<strong>on</strong>g>to</str<strong>on</strong>g> .25 in. As a result, it is<br />

possible that stiffening is not required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck shell sp<strong>on</strong>s<strong>on</strong> plating.<br />

t min > t actual<br />

111


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Maximum Ballast Weight:<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7; Athwartship<br />

F := O.A Fore/Aft<br />

Resulting Pressure <strong>on</strong> Sp<strong>on</strong>s<strong>on</strong> Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L:=9fft Ht:=15.1Jt<br />

P := 1000- —<br />

ft^<br />

Maximum pressure allowed for sp<strong>on</strong>s<strong>on</strong> shell plating lAW CVN 76 Specs<br />

Area := L • Ht<br />

Area = 1.452x 10^ ft^<br />

%_new ■■= P • Area F^^gw = 1 •452x 10^ lb<br />

P<br />

H := H = 15.528ft New Equivalent Head<br />

Psw<br />

Loading <strong>on</strong> Shell Plating:<br />

f 11.5<br />

a := asin 1 ■ a = 49.47 Ideg<br />

U5.13J<br />

3:=asin^- P=40.519deg<br />

%_new = Fv_new ' cos(p) + F^_„g^ • cos (a)<br />

^V_new = ^ ■ ^Perma Vertical Load (Downward)<br />

'^Ajew - A ■ ^Perma Athwartship Load (Port)<br />

%_new = V • Wperma • cos(3) + A • Wpg^ia " cos (a)<br />

N_new<br />

P^^^^(v.cos(p) + A.cos(a))<br />

^Perma ~ ^^ ^ ■0471<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

Weight of Perma Ballast® that cannot be exceeded<br />

112


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:!<br />

25in<br />

■^min"<br />

H = 15.528ft<br />

K:=l<br />

C := 400ff^<br />

Thickness of Plate, HTS<br />

Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

Assume AR remains less than .5<br />

For HTS, No Set<br />

b<br />

— <<br />

K<br />

yfU<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

limit ■<br />

min'<br />

b = 26in<br />

- = Bin<br />

2<br />

blimit = 25.377in<br />

K • H<br />

25.377 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners can be apart and have no plastic deformati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existing .25 in plating.<br />

The current stiffeners are located 26 in apart. It is recommended that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners be placed less than maximum distance apart.<br />

Therefore, adding a vertical stiffener in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing stiffener <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shell sp<strong>on</strong>s<strong>on</strong> plating will put b at 13 in and<br />

meet <str<strong>on</strong>g>the</str<strong>on</strong>g> 25.377 in requirement.<br />

Results<br />

A combinati<strong>on</strong> of Lesser Weight Additi<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> meet <str<strong>on</strong>g>the</str<strong>on</strong>g> lOOOpsf limit al<strong>on</strong>g with adding a stiffener in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing<br />

stiffener will alleviate any structural c<strong>on</strong>cerns.<br />

113


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := k • P • — p = pressure based <strong>on</strong> 1000 psf <strong>on</strong> sp<strong>on</strong>s<strong>on</strong> shell plating<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

'^imply_supported •= •'^- K;laniped •= -^ ^ ^^'"^^ ^""^ ""o^t c<strong>on</strong>servative<br />

a := 20ft b := 13in based <strong>on</strong> 13 in separati<strong>on</strong> between stiffeners<br />

P = 6.944—<br />

. 2<br />

in<br />

t := .25in<br />

°max_allowable'= 40,000— lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

in<br />

"'simply_supported •" 'Simply_supported ' '^ ' I T I<br />

^simply_supported ~ 14083—<br />

in<br />

'^clamped • "^clamped ' ^ ' '<br />

^clamped =9389-!^<br />

in<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding stiffeners at 13 in, <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below that of simply<br />

supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support<br />

illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship,<br />

structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below maximum allowable.<br />

''clamped^^^max.allowabU<br />

114


structural Analysis for Compartment 4-165-4-V; Deck Plating<br />

Perma Ballast® Data<br />

Pperma<br />

200^<br />

3<br />

ft"<br />

^^Perma fill :=.9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

sw ■ 64.4^<br />

ft^<br />

Compartment 4-165-4-V<br />

Volume :=700ft^<br />

Wpenna==621<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

3rd Deck<br />

FR 170 Transverse Bulkhead<br />

20.M{.5")<br />

8'8"<br />

4th Deck Plating<br />

20.4# (.5")<br />

4th Deck<br />

FR 165 Transverse Bulkhead<br />

HB#3 4-4'- BB#2 20.4#(-5")<br />

40.8#(1.0") 25.5#{.625")<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Deck Plating:<br />

Wperma = 1-389x10'lb Weight of Perma Ballast®<br />

Fv^=V.Wp,^3<br />

FA ■■= AWpenna<br />

Fp := FWp^j^g<br />

Fy=1.736x lo'lb<br />

F^ = 1.042x lo'lb<br />

Fp = 5.555x lo'^lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

% •= Fv Fi>j = 1.736x lo'lb<br />

Normal Force<br />

115


Resulting Pressure <strong>on</strong> Deck Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 20ft W := 4ft<br />

Area := LW<br />

Area = 80ft^<br />

P:=^ P.ZnxlO^i^ P = 15.06^<br />

Area ^2 .2<br />

It m<br />

^^95% '-"^ ^"Perma.fiir^ ^95% = ^^O^x lo'^— Based <strong>on</strong> 95% Fillable Volume<br />

m<br />

^95%<br />

H := H = 32.011ft Equivalent Head<br />

Psw<br />

The actual head for flooding of <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 6" above <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck (DC Deck) will result in a head of 27.7'. This value is<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g> head calculated above of 32'. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating must be stiffened.<br />

32 ft > 27.7 ft<br />

116


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

b := 48in a := 48in AR:=^ AR =1<br />

^actual<br />

H := 27.7ft<br />

K := .78<br />

.5<br />

C := 35Qft<br />

- .5Qiii Thickness of Plate, OS<br />

Maximum Head of Water for 4th Deck (which really implies permanent set and may still not be c<strong>on</strong>servative<br />

enough)<br />

For AR = 1, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

For OS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />

— <<br />

K-VH<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

min"<br />

K-VHb<br />

tmin = 0-563in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .563 in. The actual<br />

plate thickness is .5 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck shell plating must ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be stiffened or have less ballast added.<br />

t_min »t_actual<br />

117


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Maximum Ballast Weight:]<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A :- 0.11 Atiiwartship<br />

F := O.A Fore/Aft<br />

Resulting Pressure <strong>on</strong> Deck Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 20ft W := 4ft<br />

Area := L-W<br />

Area = 80ft^<br />

H = 27.7ft Based <strong>on</strong> Maximum Equivalent Head or Design Load<br />

^new '■' ^'Psw ^new ~ 12.388—<br />

in<br />

%_new ■" ^new'^^^<br />

pN_new = 1-427x10^ lb<br />

Loading <strong>on</strong> Deck Plating:<br />

F — F<br />

N_new ~ ^V_new<br />

^V new ~ ^"^Perma<br />

Vertical Load (Downward)<br />

N_new<br />

^Perma '■-<br />

V<br />

^Perma ~ 50.9681<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

Weight of Perma Ballast® that cannot be exceeded<br />

118


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

tjni„:=.5in Thickness of Plate, OS<br />

H = 27.7ft Head of Water<br />

K - .78 Assume AR remains 1<br />

C := 350ft'^<br />

b<br />

— < •<br />

K-VH<br />

For OS, No Set<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

limit • ^min"<br />

KH<br />

^limit''<br />

■■ 42.629in<br />

42.629" is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners can be apart and have no elastic deformati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .5 in plating. The current<br />

stiffeners are located 40 in apart. Therefore, according <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy Formula, adding a stiffener <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating will not be<br />

required IF 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns or less of ballast is added.<br />

Results<br />

Ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r less ballast must be added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck tanks OR stiffening of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating must occur <str<strong>on</strong>g>to</str<strong>on</strong>g> be less than design load.<br />

The design load is <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated head of water for that deck. Similarly, adding a stiffener down <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating<br />

would alleviate any structural c<strong>on</strong>cerns. Adding a stiffener cannot, however, be d<strong>on</strong>e due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong>ing of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating.<br />

Welding would be required <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m deck plating and a watch would need <str<strong>on</strong>g>to</str<strong>on</strong>g> be stati<strong>on</strong>ed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck. The<br />

tank below this 4th deck tank is foam filled and a fire watch cannot be stati<strong>on</strong>ed. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th Deck is no l<strong>on</strong>ger an opti<strong>on</strong><br />

unless <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast weight <str<strong>on</strong>g>to</str<strong>on</strong>g> be added be decreased <str<strong>on</strong>g>to</str<strong>on</strong>g> less than 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns.<br />

119


Stress Calculati<strong>on</strong>s: No Stiffening<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

CT := kP- -<br />

p = pressure based <strong>on</strong> 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast additi<strong>on</strong><br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

'^imply_supported ■" ■'-<br />

a := 20ft<br />

Pnew = 12-388-!^<br />

in<br />

'^lamped " " ^ values are most c<strong>on</strong>servative<br />

b :- 48in based <strong>on</strong> no stiffener additi<strong>on</strong><br />

t := .5in<br />

"niax_allowable= 28,000—<br />

in<br />

*^simply_supported ' "Simply.supported '^new<br />

U<br />

I AW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

/i<br />

,2<br />

^simply_supported ~ 85626—<br />

in<br />

^clamped • '^clamped'^newi<br />

j<br />

«^clamped= 57084- Jb_<br />

. 2<br />

in<br />

Maximum Allowable Stress for OS is 28,000 psi. If no stiffeners are added, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated stress is much greater than maximum<br />

allowable stress. As a result, stiffeners must still be added <str<strong>on</strong>g>to</str<strong>on</strong>g> be less than <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum allowable stress (even with less ballast<br />

added and based off design load using maximum head of water).<br />

^clamped'^^^max_allowabl<<br />

120


Stress Calculati<strong>on</strong>s: Stiffening<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := kP, new<br />

p = pressure based <strong>on</strong> 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast additi<strong>on</strong><br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

k . , _^ j •= 7' k_i j •= .5 k values are most c<strong>on</strong>servative<br />

Nimply_supported • ■'- "^jlamped<br />

a .- 20ft b :- 24ir based <strong>on</strong> adding a stiffener down <str<strong>on</strong>g>the</str<strong>on</strong>g> nviddle of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck<br />

Pnew = 12.388^ t := .5in<br />

in<br />

lb<br />

a<br />

max_allowable<br />

II ui = 28<br />

-^"'""^<br />

000—<br />

^<br />

lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs<br />

t-<br />

(Secti<strong>on</strong><br />

v<br />

100)<br />

^<br />

in<br />

^simply_supported • 'Simply_supported '^newl ^<br />

^simply_supported = 21407—<br />

. 2<br />

in<br />

^clamped • Clamped newl ^<br />

clamped 14271 lb<br />

m<br />

Maximum Allowable Stress for OS is 28,000 psi. By adding stiffeners at 24 in AND with <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of less ballast, <str<strong>on</strong>g>the</str<strong>on</strong>g> stress<br />

falls below that of simply supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of<br />

structural member support illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural<br />

system. On board ship, structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness<br />

between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below<br />

maximum allowable. As menti<strong>on</strong>ed previously, however, adding ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck is not feasible due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inability <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

stiffen <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck.<br />

^clamped<br />

^max_allowabl(<br />

121


structural Analysis for Compartment 8-225-6-V; Shell Plating<br />

Perma Ballast® Data<br />

PPerma:=2{)0-!^<br />

ft<br />

^''Perma_fill •= ■^~<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

lb<br />

sw 64.4-<br />

ft"<br />

Compartment 8-225-6-V<br />

Volume := 28 l^t^<br />

Wperma '■= 2511<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4)<br />

14.024# (.343")<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

/ (L<strong>on</strong>gitudinal Bulkhead #3)<br />

'^ 17.85# (.437")<br />

FR 230 Transverse Bulkhead<br />

12.75# (.3125")<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7i Athwartship<br />

F := 0.4 Fore/Aft<br />

leading <strong>on</strong> Shell Plating:<br />

FR 225 Transverse Bulkhead<br />

15.3# (.375")<br />

\A^s -^ ^stringer #14<br />

^Stringer #11<br />

^Perma = 5.622x 10^ lb Weight of Perma Ballast®<br />

Plating<br />

(.75")<br />

Pv^=V.Wp,^3<br />

FA==A-Wp,^3<br />

Fv = 7.028x 10 lb<br />

F^ =4.217x 10^ lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fp := FWp^^g<br />

R • ("27<br />

p := asm<br />

U23.<br />

a := 90deg - P<br />

Fi^:=Fvcos(p) + F^-cos(a)<br />

Fp=2.249x 10^ lb<br />

P = 12.68deg<br />

a = 77.32deg<br />

Fore/Aft Load<br />

Fj^j = 7.782x lO^lb Normal Force<br />

122


Resulting Pressure <strong>on</strong> Shell Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 20ft Ht := 12Sn<br />

Area := L-Hl<br />

Area = 205ft^<br />

% 3 lb lb<br />

P :=:: —^ P = 3.796X 10 — P = 26.363—<br />

Area .2 . 2<br />

ft m<br />

^95% ■= ^"Perma.fiir'f' ^95% " ^-^^^^ ^^ — ^^^^^ °" ^^^^ ^^^^^^^^ Volume<br />

ft^<br />

- It-<br />

^9'5%<br />

H := —^ H = 56ft Equivalent Head<br />

Psw<br />

123


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

b:=41in a := 24an AR := - AR =0.171<br />

a<br />

'actual :=-^Sin Thickness of Plate, HTS<br />

H = 56ft Head of Water<br />

K := 1 For AR = 0.171, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft' For HTS, No Se, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)t<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

— ^ = K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

t KVH<br />

H = Head of salt water (feet)<br />

'min •<br />

K-VHb<br />

C<br />

t„i„ = 0.767in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .767 in. The actual<br />

plate thickness is .75 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck shell plating must ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be stiffened or have less ballast added.<br />

t_min »t actual<br />

124


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:!<br />

t ■ -.75in<br />

Thickness of Plate, HTS<br />

H = 56ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := 1 Assume AR remains less than .5<br />

C := 400ft'^ For HTS, No Set<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

b C ■<br />

_ < K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

K-y/H<br />

H = Head of salt water (feet)<br />

"limit • ^min<br />

C<br />

KH<br />

blimit = 40-08911,<br />

40.089 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that l<strong>on</strong>gitudinal stiffeners can be located apart and have no deformati<strong>on</strong> occur <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .75 in<br />

plating. The shell plating has 2 l<strong>on</strong>gitudinal stiffeners or stringers located apporoximately 41 in apart. Therefore, stiffening of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> existing shell plating will be required for 251 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast.<br />

125


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Maximum Ballast Weight without stiffening:<br />

trnin min := .75in<br />

b|jjjjjj := 41in<br />

Thickness of Plate, HTS<br />

Short Dimensi<strong>on</strong> of Panel<br />

K := 1 Assume AR remains less than .5<br />

.5<br />

C := 400ft' For HTS, No Set<br />

b<br />

— <<br />

t<br />

K>/H<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t - thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

Hn^ lew •<br />

f Ct ■ \<br />

min<br />

^^^■''limity<br />

H„e^= 53.54ft<br />

Pnew ■= HnewPsw ^new = 23.944^<br />

in<br />

N new ■•= • Pnp,.,Area<br />

*^new<br />

F, N new =7.068x 10 lb<br />

%_new = Fv_new-'^°s(p) + F^jg^-cosCa)<br />

'^V new ~ ^'^Perma<br />

'^A.new ~ ^'^Perma<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

%_new = VWpern,aCos(p) + A-Wpern,a-cos(a)<br />

W<br />

Perma<br />

N_new<br />

(Vcos(p) + A-cos(a))<br />

Wperma=227.9741<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Weight of Perma Ballast® that cannot be exceeded so that stiffening of <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck shell plating will not be required.<br />

126


Stress Calculati<strong>on</strong>s for 227 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

P ._ y^.p -I — I p = pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

new , j<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

1c . , _ j •= 7' L.1 „ j •= .5 k values are most c<strong>on</strong>servative<br />

•^imply.supported • •'- "xlamped<br />

a := 20ft b := 41in based <strong>on</strong> 41 in separati<strong>on</strong> between stiffeners<br />

Pnew=23.944i^ t := .75ii,<br />

in<br />

^max allowable= ^^' ^^— ^^^ ^'^'^ *^ General Specs (Secti<strong>on</strong> 100)<br />

in<br />

b^^<br />

'^simply_supported • 'Simply_supported '^newl j.<br />

'^simply_supported -53667 ^<br />

in<br />

^clamped ■<br />

,b^2<br />

clamped new"! ^<br />

f^clamped = 35778—<br />

in<br />

Maximum Allowable Stress for HTS is 40,000 psi. Without any stiffener additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated stress falls between that of<br />

simply supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member<br />

support illustrating zero stiffness and infinite stiffhess, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board<br />

ship, structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls below maximum allowable.<br />

^clamped*^ ''max_allowabl<<br />

127


structural Analysis for Compartment 8-225-6-V: Inner L<strong>on</strong>gitudinal<br />

Bulkhead Plating<br />

Perma Ballast® Data<br />

PP, erma<br />

lb<br />

:= 200-<br />

ft"<br />

hernia filb^^-<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

lb<br />

sw 64.4-<br />

ft<br />

Compartment 8-225-6-V<br />

Volume := 281'tft"'<br />

Wperma '■= 2271<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast based off limiting shell calculati<strong>on</strong>s<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4)<br />

14.024# (.343<br />

20<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

A (L<strong>on</strong>gitudinal Bulkhead #3)<br />

^ 17.85# (.437")<br />

FR 230 Transverse Bulkhead<br />

12.75# (.3125")<br />

FR 225 Transverse Bulkhead<br />

15.3# (.375"<br />

-Stringer #14<br />

Z_c Stringer #11<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Inner L<strong>on</strong>gitudinal Bulkhead Plating:<br />

^Perma = 5.085x 10^ lb Weight of Perma Ballast®<br />

Fv^^VWp^^^<br />

FA -■= AWperma<br />

FP ■■= FWpenna<br />

FY=:6.356X 10 lb<br />

F^ =3.814x 10^ lb<br />

Fp = 2.034x 10^ lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

r^j: Fi^=3.814x 10 lb Normal Force<br />

128


Resulting Pressure <strong>on</strong> Inner L<strong>on</strong>gitudinal Bulkhead Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L:=20ft Ht:=114n<br />

Area := L-Ht<br />

Area = 190ft^<br />

% 3 lb lb<br />

P •= —^ P = 2.007X 10 — P = 13.939—<br />

Area ^2 .2<br />

p<br />

H := —— H = 31.167ft Equivalent Head<br />

Psw<br />

129


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

b := 48in a := 114)n AR := — AR = 0.421<br />

a<br />

^actual :=-34311 Thickness of Plate, HTS<br />

H = 31.167ft Head of Water<br />

K := 1 For AR = 0.421,1 AW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft' For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />

— < •<br />

K-VH<br />

K-VH-b<br />

t„:„ := — mm"<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

^min = 0-67in<br />

The 8th deck inner l<strong>on</strong>gitudinal bulkhead (Shaft Alley Bulkhead #4) currently has 4 vertical stiffeners spaced 4 ft apart. The<br />

minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .67 in. The actual plate<br />

thickness is .343 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck inner l<strong>on</strong>gitudinal bulkhead plating must be stiffened.<br />

t_min »t actual<br />

130


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

tj„i„:= .34311<br />

H = 31.167ft<br />

K:= 1<br />

C := 400ft'^<br />

i


Stress Calculati<strong>on</strong>s:<br />

a := kPl -<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

p - pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

Simply_supported '■" •^a<br />

:= 114in b := 24-in<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

''clamped •" -^ ^ values are most c<strong>on</strong>servative<br />

based <strong>on</strong> 24 in separati<strong>on</strong> between stiffeners<br />

P = 13.939^ t := .343in<br />

. 2<br />

in<br />

lb<br />

^max_allowable= 40,000— lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

in<br />

,2<br />

^simply_supported •:= k.;. '^simply_supported .P.i^<br />

lb<br />

*'simply_supported 51182 . 2<br />

m<br />

■'clamped ■ "Clamped'"I<br />

I<br />

clamped<br />

34121-!^<br />

. 2<br />

m<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding vertical stiffeners at 24 in, this stress falls between that of simply<br />

supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support<br />

illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship,<br />

structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below maximum allowable.<br />

1


structural Analysis for Compartment 8-225-6-V; Outer L<strong>on</strong>gitudinal Bulkhead Plating<br />

Perma Ballast® Data<br />

lb<br />

PP, 'erma ■ 200-<br />

ft<br />

% Pema fill • 9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

sw 64.4^^<br />

ft^<br />

Compartment 8-225-6-V<br />

Volume := 2814Ft^<br />

Wperma:=2271<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4}<br />

14.024# (.343")<br />

20<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

(L<strong>on</strong>gitudinal Bulkhead #3)<br />

17.8S# (.437")<br />

FR 230 Transverse Bulkhead<br />

12.7^ (.3125")<br />

Shell Plating<br />

30.6#(.751<br />

FR 225 Transverse Bulkhead<br />

^.. 15.3#{.3751<br />

-Stnnger #14<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Outer L<strong>on</strong>gitudinal Bulkhead Plating:<br />

Wpg,^a = 5.085x lO^lb Weight of Perma Ballast®<br />

Fv:=V.Wp,^3<br />

F^ := AWpg^a<br />

Fp := F-Wpg^a<br />

^N<br />

Fv = 6.356x 10 lb<br />

F^ =3.814x 10^ lb<br />

Fp = 2.034x 10^ lb<br />

F^ = 3.814X 10 lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

Normal Force<br />

133


Compartment Dimensi<strong>on</strong>s:<br />

L := 20ft Ht := 87in<br />

Area := L-Ht<br />

Area = 145ft^<br />

Area<br />

H:= ^<br />

Psw<br />

P-2.63x10^'^<br />

H = 40.84ft<br />

P= 18.264"'<br />

. 2<br />

m<br />

Equivalent Head<br />

134


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)|<br />

b := 48in a := 87in AR := - AR = 0.552<br />

a<br />

^actual :=-43'^n Thickness of Plate, HTS<br />

H = 40.84ft Head of Water<br />

K := .9S For AR = 0.552, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft"^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

^<<br />

t<br />

'min'<br />

K-A/H<br />

K>/Hb<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

Wn = 0-759in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .759 in. The actual<br />

plate thickness is .437 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck outer l<strong>on</strong>gitudinal bulkhead plating must be stiffened.<br />

t min »t actual<br />

135


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

^min '"^ -^^^n<br />

Thickness of Plate, HTS<br />

H = 40.84ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := .9 Assume AR remains less than .552<br />

C:= 400ft-^<br />

For HTS, No Set<br />

b<br />

— <<br />

K-y/H<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

C h<br />

^limit ■= ^min J" b = 48in - = 24in<br />

blimit=30.392in<br />

2<br />

KH<br />

30.392 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that stiffeners can be located apart and have no deformati<strong>on</strong> occur <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .437 in plating. The<br />

outer l<strong>on</strong>gitudinal bulkhead plating currently has 4 vertical stiffeners spaced 4 ft apart. It is recommended that a vertical stiffener<br />

be placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing stiffener <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer l<strong>on</strong>gitudinal bulkhead. Therefore, adding a <str<strong>on</strong>g>to</str<strong>on</strong>g>tal of 5 stiffeners <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> outer l<strong>on</strong>gitudinal bulkhead will put b at approximately 24 in and meet <str<strong>on</strong>g>the</str<strong>on</strong>g> 30.392 in requirement.<br />

136


Stress Calculati<strong>on</strong>s<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

o := kP-<br />

p = pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

'Simply_supported ■<br />

a := 20ft b := 24in<br />

IK<br />

P = 18.264— t := .437in<br />

. 2<br />

in<br />

lb<br />

^max_allowable= 40,000—<br />

in<br />

b = panel width<br />

a = panel length<br />

t := plate thickness<br />

h^<br />

^simply_supported • Simply_supported '^'\ ^<br />

k<br />

Clamped<br />

, j •=<br />

•<br />

5 k values are most c<strong>on</strong>servative<br />

based <strong>on</strong> 24 in separati<strong>on</strong> between stiffeners<br />

lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

O^;<br />

simply_supported<br />

41317—<br />

. 2<br />

in<br />

^clamped • Clamped I .<br />

clamped<br />

:27544- Ib<br />

in<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding vertical stiffeners at 24 in, this stress falls below that of simply<br />

supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support<br />

illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship,<br />

structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below maximum allowable.<br />

'^clamped'^^ ''max_allowabl(<br />

137


structural Analysis for Compartment 8-225-6-V; Transverse Bulkhead Frame 225<br />

Perma Ballast® Data<br />

Pp. erma<br />

200J^<br />

ft^<br />

^"Perma.fill •= ■^-<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

Psw ■■= 64-4-^<br />

ft<br />

Compartment 8-225-6-V<br />

Volume := 2814^1^<br />

Wperma ■= 2271<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Sea water<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

{Shaft Alley Bulkhead #4)<br />

14.024# (.343 .<br />

20<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

/ (L<strong>on</strong>gitudinal Bulkhead #3)<br />

'^ 17.85#(.437")<br />

FR 230 Transverse Bulkhead<br />

12.75# (.3125")<br />

Shell Plating<br />

30.6# (.75")<br />

FR 225 Transverse Bulkhead<br />

15.3# (.375")<br />

-Stringer #14<br />

^Stringer #11<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V := 1.2f Vertical<br />

A := O.lt Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Transverse Bulkhead Plating<br />

Wpg^3 = 5.085x 10^ lb Weight of Perma Ballast®<br />

Fv^=V.Wp,^3 Fv = 6.356x 10^ lb Vertical Load (Downward)<br />

FA ■■= AWpen„3 F^=3.814x 10^ lb Athwartship Load (Port)<br />

FF:=FWP,^3 Fp=2.034x 10^ lb Fore/Aft Load<br />

FN := Fp FN=2.034X 10^ lb Normal Force<br />

138


Resulting Pressure <strong>on</strong> Transverse Bulkhead Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

Ht:=lMn Width := 120in Dimensi<strong>on</strong>s of rectangular secti<strong>on</strong><br />

P := asinf""^"^"^! P = 12.68deg<br />

base := 120in Dimensi<strong>on</strong>s of small triangle<br />

ht := sin(p)-base ht = 26.341in<br />

Area := Ht-Width - (.5-base -ht)<br />

4 2<br />

Area = 1.21x 10 in<br />

P:=<br />

Area<br />

P<br />

H:=<br />

Psw<br />

P = 2.421x 10''—<br />

ft^<br />

H = 37.587ft<br />

P := 16.81 ^^<br />

. 2<br />

m<br />

Equivalent Head<br />

139


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

The transverse bulkhead is trapezoidal in shape with 3 vertical stiffeners at Frames 225 and 230 respectively. The transverse<br />

bulkhead is evenly divided in<str<strong>on</strong>g>to</str<strong>on</strong>g> 4 rectangular panels so that a cylindrical plate bending analysis can be performed<br />

<strong>on</strong> each panel.<br />

base := 30in Dimensi<strong>on</strong>s of small triangle<br />

ht=26.341in ht := sin(p)-base<br />

b := 3{)in a^ := 114in AR^ := — AR^ = 0.263<br />

^A<br />

aB:=114in-ht ag = 107.415iii ARg := — ARg = 0.279<br />

aQ-a^-ht ac = 100.82CHn ARp :=— ARp = 0.298<br />

^D '•'= ^C ~^^ ^D = 94.244in AR^ := — AR^ =0.318<br />

^D<br />

^actual -^ •^^^" Thickness of Plate, HTS<br />

H = 37.587ft Head of Water<br />

K := 1 For AR < 0.5, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft' For HTS, No Set, I AW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />

— /Hb<br />

Vin = 0.46in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .46 in. The actual<br />

plate thickness is .375 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck transverse plating at Frame 225 must be stiffened.<br />

t_min »t actual<br />

140


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

tj^„:= .37511<br />

H = 37.587ft<br />

K:= 1<br />

C := 400ft'^<br />

b<br />

— <<br />

K-VH<br />

Thickness of Plate, HTS<br />

Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

Assume AR remains less than .5<br />

For HTS, No Set<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

*'limit • min<br />

b = 30in<br />

^=15in<br />

2<br />

KH<br />

■'limit'' 24.466in<br />

24.466 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that vertical stiffeners can be located apart and have no deformati<strong>on</strong> occur <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .375 in<br />

plating. The transverse bulkhead plating has 3 vertical stiffeners It is recommended that a stiffener be placed between <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

existing vertical stiffeners. Therefore, adding 4 stiffeners <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse bulkhead plating will put b at approximately 15 in and<br />

meet <str<strong>on</strong>g>the</str<strong>on</strong>g> 24.466 in requirement^ ^<br />

141


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

o := k-P- —<br />

p = pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

•Simply.supported -^ •'^- K;lamped •= -^ ^ ^''''"^^ ^""^ "1°^' c<strong>on</strong>servative<br />

a := 114Jn b := 15-in based <strong>on</strong> 15 in separati<strong>on</strong> between stiffeners<br />

P = 16.81— t := .375n<br />

. 2<br />

m<br />

^max allowable" 40,000— JAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

. 2<br />

m<br />

"'simply.supported • "Simply.supported '^i<br />

bV<br />

*^siniply_supported - 20172<br />

. 2<br />

m<br />

''clamped • "^clamped'" I<br />

I<br />

lb<br />

"clamped = 13448—<br />

. 2<br />

m<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding stiffeners at 15 in, this stress falls below that of simply supported<br />

and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating<br />

zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship, structural systems<br />

can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural<br />

analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below maximum allowable.<br />

"clamped*^*^ "max_allowabl(<br />

142


structural Analysis for Compartment 8-225-6-V: Transverse Bulkhead Frame 230<br />

Perma Ballast® Data<br />

lb<br />

Pp, erma<br />

:= 200-<br />

ft<br />

% Perma fill<br />

:=.9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n :== 224ab<br />

lb<br />

Psw ~ 64.4—<br />

ft<br />

Compartment 8-225-6-V<br />

Volume := 2814Ft^<br />

Wperma-=2271<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4)<br />

14.024# (.343'<br />

20'<br />

— Outer L<strong>on</strong>gitudinal Bulkhead<br />

/ (L<strong>on</strong>gitudinal Bulkhead #3)<br />

^ 17.85# (.437')<br />

FR 230 Transverse Bulkhead<br />

12.75# (.3125")<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=L2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Transverse Bulkhead Plating:<br />

Shell Plating<br />

30.6# (.75")<br />

FR 225 Transverse Bulkhead<br />

15.3#(.375l<br />

Stnnger #14<br />

7 '^stringer #11<br />

Wpgjjjjg = 5.085X 10^ lb Weight of Perma Ballast®<br />

Fy := VWp^^g<br />

PA •= ^•'^Perma<br />

Fp := FWpgrma<br />

^N'<br />

Fv = 6.356x 10 lb<br />

F^ =3.814x 10^ lb<br />

Fp=2.034x 10^ lb<br />

Fjsj = 2.034X 10 lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

Normal Force<br />

143


Resulting Pressure <strong>on</strong> Transverse Bulkhead Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

Ht := 114in Dimensi<strong>on</strong>s of rectangular secti<strong>on</strong><br />

Width := 12an<br />

P := asm<br />

p = 12.68deg<br />

base := 120in Dimensi<strong>on</strong>sof small triangle<br />

ht := sin(p)-base ht = 26.341in<br />

Area := Ht-Width - (.5-base ht)<br />

Area =1.21x 10* in^<br />

P:=— P = 2.421x10^-!^ P = 16.81—<br />

Area 2 .2<br />

It m<br />

P<br />

H := H = 37.587ft Equivalent Head<br />

Psw<br />

144


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

The transverse bulkhead is trapezoidal in shape with 3 vertical stiffeners at Frames 225 and 230 respectively. The transverse<br />

bulkhead is evenly divided in<str<strong>on</strong>g>to</str<strong>on</strong>g> 4 rectangular panels so that a cylindrical plate bending analysis can be performed<br />

<strong>on</strong> each panel.<br />

base := 30in Dimensi<strong>on</strong>s of small triangle<br />

ht = 26.341in ht := sin(p)-base<br />

b := 30in a^ :- 114in<br />

ARA<br />

b<br />

ARA = 0.263<br />

^B = 114in-ht<br />

^<br />

= ag - ht<br />

ag = 107.415in<br />

a^ = 100.829in<br />

ARB<br />

ARQ<br />

b<br />

^B<br />

b<br />

ARB = = 0.279<br />

ARc = = 0.298<br />

^D := ac - ht<br />

aj) = 94.244in<br />

ARD<br />

b<br />

^D<br />

ARD = 0.318<br />

tactual := -31251<br />

H = 37.587ft<br />

K:=l<br />

C:= = 400ft'^<br />

Thickness of Plate, HTS<br />

Head of Water<br />

For AR < 0.5, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

t<br />

c ■<br />

K-VH<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

TTun<br />

K^Hb<br />

C<br />

^min = 0.46in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .46 in. The actual<br />

plate thickness is .3125 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck transverse plating at Frame 230 must be stiffened.<br />

t min »t_actual<br />

145


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

t^jp := .3125n Thickness of Plate, HTS<br />

H = 37.587ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K :- 1 Assume AR remains less than .5<br />

C := 400ft'^ For HTS, No Set<br />

b c •<br />


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := kP- -<br />

p = pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

'^imply_supported •<br />

a := 114in b :- 15-in<br />

lb<br />

P ^ 16.81- t := .3125n<br />

. 2<br />

in<br />

lb<br />

"max allowable= 40,000-<br />

m<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

^simply_supported ■ 'Simply_supported<br />

Ic , j •= 5 k values are most c<strong>on</strong>servative<br />

*t;lamped •<br />

based <strong>on</strong> 15 in separati<strong>on</strong> between stiffeners<br />

I AW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

I ^<br />

>2<br />

Jb_<br />

simply_supported 29048-<br />

. 2<br />

in<br />

'clamped • Clamped<br />

I ^<br />

'clamped<br />

Jb_<br />

19365-<br />

. 2<br />

m<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding stiffeners at 15 in, this stress falls below that of simply supported<br />

and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating<br />

zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship, structural systems<br />

can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural<br />

analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below maximum allowable.<br />

clamped ^«a, "max_allowabl<<br />

147


Appendix F: Final POSSE Modeling Results<br />

148


__ — __ — """ " *c;<br />

1— ai S<br />

s<br />

<br />

CO<br />

s<br />

r-. f-><br />

ai<br />


Appendix G: Final Cost Estimati<strong>on</strong> Data and Worksheets<br />

Provided by Norfolk Naval Shipyard Structural Engineering and Planning Office (Code 256)<br />

150


o<br />

ON H<br />

00<br />

^<br />

^<br />

o<br />

><br />

o<br />

-o<br />

B<br />

u<br />

H<br />

r^ 00<br />

r-H 1—H<br />

ON 1—1<br />

^ s?<br />

u Si<br />

M o<br />


MATERIAL WORK SHEET<br />

PERMA BALLAST® INSTALLATION •<br />

(This work sheet was created for <str<strong>on</strong>g>the</str<strong>on</strong>g> final costing estimati<strong>on</strong> due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lesser<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n additi<strong>on</strong> for each Z"'' deck void, thus requiring compartment 2-250-4-V tO|<br />

be utilized)<br />

SHOP PC# MATERIAL STOCK NO. QTY SS/PUR COST<br />

SPONSON STIFFENING:<br />

2-250-4-V<br />

llSl 003 5" X 4" ANGLE (7.5#LF) 9520-00-277-5978 225 $6.46/FT $1,454<br />

71AA 004 PAINT $1,200<br />

74YY N/A BLAST AND PAINT FACILITY $4,500<br />

ALL N/A CONSUMABLES $2,217<br />

TOTAL MATERIAL COSTS: $9,371<br />

TOTAL MATERIAL WEIGHT:<br />

4,470 #'S<br />

152


MATERIAL WORK SHEET<br />

PERMA BALLAST® INSTALLATION<br />

(This work sheet was created for <str<strong>on</strong>g>the</str<strong>on</strong>g> final costing estimati<strong>on</strong> due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stiffening required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 8^^ deck and is not reflected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous<br />

estimate page)<br />

SHOP PC# MATERIAL STOCK NO. QTY SS/PUR COST<br />

BHD STIFFENING: 8"" DECK<br />

llSl 001 5" X 4" ANGLE (7.5#LF) 9520-00-277-5978 120 $6.46/FT $775<br />

71AA 002 PAINT $1,000<br />

74YY N/A BLAST AND PAINT FACILITY $2,400<br />

ALL N/A CONSUMABLES $250<br />

TOTAL MATERIAL COSTS: $4,425<br />

TOTAL MATERIAL WEIGHT:<br />

900 #'S<br />

153


o<br />

><br />

u<br />

Ed<br />

O<br />

N<br />

*<br />

so<br />

«5<br />

5<br />

1 o<br />

i<br />

i<br />

as o o<br />

0 o<br />

d<br />

z ><br />

I<br />

00 i<br />

I<br />

><br />

o<br />

M<br />

I 1<br />

r» d<br />

oa<br />

u<br />

Q<br />

00<br />

1/1<br />

*<br />

ON<br />

00<br />

VJ «ft ©<br />

Ift<br />

00<br />

00<br />

Q<br />

O<br />

CL,<br />

00<br />

I-l<br />

El<br />

oa<br />

o<br />

oa<br />

o<br />

o<br />

H<br />

Z<br />

a<br />

u<br />

1<br />

© ©<br />

H 0<br />

d<br />

o<br />

in<br />

d<br />

o<br />

d<br />

o<br />

Ift<br />

d<br />

o<br />

Ift<br />

d<br />

0 o<br />

Ift<br />

d<br />

o<br />

Ift<br />

d<br />

0<br />

Ift<br />

d<br />

o<br />

Ift<br />

d<br />

0<br />

Ift<br />

d<br />

z ■<br />

o<br />

•<br />

00 ■<br />

00<br />

><br />

o<br />

i-i<br />

•ft<br />

1^<br />

1<br />

00<br />

><br />

1<br />

00<br />

00<br />

><br />

6<br />

rH<br />

1<br />

00<br />

><br />

■<br />

Ift<br />

r^<br />

■<br />

00<br />

><br />

Ift<br />

1<br />

00<br />

><br />

■<br />

00<br />

><br />

■<br />

2<br />

><br />

I<br />

SO<br />

1<br />

00<br />

><br />

•<br />

00<br />

•<br />

•<br />

00 i


*• en<br />

* 5fc<br />

M<br />

S<br />

00 00<br />

* yj c« 1/3 CO<br />

H * 3fc * *<br />

-


00 in<br />

*<br />

00<br />

4t<br />

H<br />


CO<br />

5t<br />

CO 00<br />

en<br />

St<br />

0\<br />

CO<br />

5t<br />

o<br />

©<br />

St<br />

o<br />

o<br />

3t<br />

c« W3<br />

St:<br />

ON<br />

CO<br />

*<br />

o<br />

©<br />

NO<br />

H<br />

00<br />

VO<br />

o<br />

H<br />

>/5<br />

©<br />

■se-<br />

Q<br />

O<br />

PM<br />

o<br />

H<br />

Q<br />

O<br />

VO<br />

00 00<br />

rH<br />

rH~<br />

00<br />

rH^ rH<br />

rH^ rH 1-H rH<br />

NO<br />

00<br />

rH<br />

rn"<br />

»S<br />

s<br />

00<br />

•<br />

o<br />

r-l<br />

o&<br />

00<br />

rH<br />

00<br />

><br />

6<br />

rH<br />

>A<br />

rH<br />

00<br />

>■<br />

00<br />

00<br />

><br />

6<br />

00<br />

><br />

I<br />

00<br />

><br />

I<br />

00<br />

><br />

f<br />

o<br />

00<br />

NO<br />

o<br />

GO<br />

><br />

NO ■<br />

00<br />

><br />

I<br />

00<br />

00<br />

CO


*<br />

H<br />

-) HJ .J NJ .J<br />

o o © © o © ©<br />

C/l<br />

■ ■<br />

00 >-]<br />

VO<br />

■<br />

o<br />

00<br />

1<br />

O 1-H TH r«<br />

p!« ><br />

■<br />

o > ><br />

1 © 1 6 > > > > 2<br />

l-H 00<br />

i<br />

1^ 00 1-H<br />

"? 00 TT VO VO *?<br />

o «o tn © © m m © © in in<br />

1-^ 1-H 1-H (S


* CO<br />

*<br />

*<br />

vT 00<br />

*<br />

in<br />

r4~ vT<br />

* cr C/l [/) C/l C/1 t/i t/i 1/5 t/l C/3 cr c«<br />

H * * * * * * * * * * * ©<br />

V) in VI v> V) V) V5 VI<br />

r» «s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!