25.12.2013 Views

A Solution to the Inherent List on Nimitz Class Aircraft Carriers

A Solution to the Inherent List on Nimitz Class Aircraft Carriers

A Solution to the Inherent List on Nimitz Class Aircraft Carriers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Inherent</str<strong>on</strong>g> <str<strong>on</strong>g>List</str<strong>on</strong>g> <strong>on</strong> <strong>Nimitz</strong> <strong>Class</strong> <strong>Aircraft</strong> <strong>Carriers</strong><br />

by<br />

Dianna Wolf s<strong>on</strong><br />

B.S. Marine Engineering Systems, United States Merchant Marine Academy, 1996<br />

Submitted <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Departments of Ocean Engineering and Civil and Envir<strong>on</strong>mental Engineering<br />

in Partial Fulfillment of <str<strong>on</strong>g>the</str<strong>on</strong>g> Requirements for <str<strong>on</strong>g>the</str<strong>on</strong>g> Degrees of<br />

Naval Engineer<br />

and<br />

Master of Science in Civil and Envir<strong>on</strong>mental Engineering<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Massachusetts Institute of Technology<br />

June 2004<br />

© 2004 Dianna Wolfs<strong>on</strong><br />

All rights reserved<br />

The author hereby grants MIT and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Government permissi<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> reproduce and <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

distribute publicly paper and electr<strong>on</strong>ic copies of this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis document in whole or in part.<br />

Author<br />

Certified by<br />

Certified by<br />

Department of Ocean Engineering and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Department of Civil and Envir<strong>on</strong>mental Engineering<br />

May 07, 2004<br />

David V. Burke, Senior Lecturer<br />

Department of Ocean Engineering<br />

Thesis Supervisor<br />

Eduardo Kausel, Professor of Civil and Envir<strong>on</strong>mental Engineering<br />

Department of Civil and Envir<strong>on</strong>mental Engineering<br />

Thesis Reader<br />

Accepted by<br />

Heidi Nepf,<br />

ssociate Professor of Civil and Envir<strong>on</strong>mental Engineering<br />

Chairman, Departmental Committee <strong>on</strong> Graduate Studies<br />

Department of Civil and Envir<strong>on</strong>mental Engineering<br />

Accepted by<br />

DISTRIBUTION STATEMENT A<br />

Approved for Public Release<br />

Distributi<strong>on</strong> Unlimited<br />

Michael S. Triantafyllou, Professor of Ocean Engineering<br />

Chairman, Departmental Committee <strong>on</strong> Graduate Studies<br />

Department of Ocean Engineering<br />

BEST AVAILABLE COPY<br />

20040901 104


PAGE INTENTIONALLY LEFT BLANK


A <str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Inherent</str<strong>on</strong>g> <str<strong>on</strong>g>List</str<strong>on</strong>g> <strong>on</strong> <strong>Nimitz</strong> <strong>Class</strong> <strong>Aircraft</strong> <strong>Carriers</strong><br />

by<br />

Dianna Wolfs<strong>on</strong><br />

Abstract<br />

Submitted <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Departments of Ocean Engineering and<br />

Civil and Envir<strong>on</strong>mental Engineering<br />

<strong>on</strong> May 07, 2004, in partial fulfillment of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Requirements for <str<strong>on</strong>g>the</str<strong>on</strong>g> degrees of<br />

Naval Engineer<br />

and<br />

Master of Science in Civil and Envir<strong>on</strong>mental Engineering<br />

<strong>Nimitz</strong> class aircraft carriers possess an inherent list <str<strong>on</strong>g>to</str<strong>on</strong>g> starboard that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir list c<strong>on</strong>trol<br />

systems (LCS) are typically unable <str<strong>on</strong>g>to</str<strong>on</strong>g> correct while under Combat Load C<strong>on</strong>diti<strong>on</strong>s. As a result,<br />

it has become necessary <str<strong>on</strong>g>to</str<strong>on</strong>g> use fresh water ballast in a number of inner bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m voids and damage<br />

c<strong>on</strong>trol voids <str<strong>on</strong>g>to</str<strong>on</strong>g> augment <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS. Maintaining liquid ballast in damage c<strong>on</strong>trol voids is<br />

unacceptable, as it reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> design counter flooding capability of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship, and thus reduces<br />

ship survivability. In order <str<strong>on</strong>g>to</str<strong>on</strong>g> res<str<strong>on</strong>g>to</str<strong>on</strong>g>re <str<strong>on</strong>g>the</str<strong>on</strong>g> ships operati<strong>on</strong>al flexibility and achieve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

necessary/desired list correcti<strong>on</strong>, this study determines <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of adding solid ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> a<br />

series of voids/tanks identified <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2""^, 4*, and 8* decks.<br />

Based <strong>on</strong> ballast density, tank locati<strong>on</strong> and capacity, ease of ballast installati<strong>on</strong>, minor<br />

tank structural modificati<strong>on</strong>s, and a decisi<strong>on</strong> making cost analysis, solid ballast was determined<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> be <str<strong>on</strong>g>the</str<strong>on</strong>g> most advantageous for use in correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft<br />

carriers. Fresh water ballast was also examined as a possible alternative, but not as extensively<br />

due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large quantity of water required and its limited ability <str<strong>on</strong>g>to</str<strong>on</strong>g> achieve a list correcti<strong>on</strong>.<br />

<strong>Nimitz</strong> class aircraft carriers currently have an average list of L5 degrees and a KG of 47<br />

feet. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>ir allowable KG cannot exceed 48.5 feet, <str<strong>on</strong>g>the</str<strong>on</strong>g> average service life allowance (SLA)<br />

for KG is approximately 1.5 feet. This study shows that by adding approximately 400 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n of<br />

solid ballast, list can be corrected by 1.5 degrees with <strong>on</strong>ly a 0.1 percent increase in KG. Thus,<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> permanently fix <str<strong>on</strong>g>the</str<strong>on</strong>g> average <strong>Nimitz</strong> class aircraft carrier starboard list, <str<strong>on</strong>g>the</str<strong>on</strong>g>re would be a 0.05<br />

foot increase in KG, which in all cases is within <str<strong>on</strong>g>the</str<strong>on</strong>g> SLA. Additi<strong>on</strong>ally, this study shows that<br />

this L5 degree list correcti<strong>on</strong> can be accomplished at a low cost of approximately $1,200 per<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> in operati<strong>on</strong>al c<strong>on</strong>straints and <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits <str<strong>on</strong>g>to</str<strong>on</strong>g> ship survivability,<br />

this is truly an inexpensive propositi<strong>on</strong>.<br />

Thesis Supervisor: David V. Burke<br />

Title: Senior Lecturer<br />

Thesis Reader: Eduardo Kausel<br />

Title: Professor of Civil and Envir<strong>on</strong>mental Engineering


Acknowledgements<br />

I would like <str<strong>on</strong>g>to</str<strong>on</strong>g> thank CDR Kevin Terry who c<strong>on</strong>tacted MIT with a project proposal <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

find an advantageous and cost effective soluti<strong>on</strong> for fixing <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class<br />

aircraft carriers. Without his support, this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis would not have been possible.<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> course of this project, many individuals from various organizati<strong>on</strong>s<br />

provided invaluable operati<strong>on</strong>al and technical assistance. I would like <str<strong>on</strong>g>to</str<strong>on</strong>g> take this opportunity <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

thank every<strong>on</strong>e for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tributi<strong>on</strong>s and advice. I would also like <str<strong>on</strong>g>to</str<strong>on</strong>g> thank my husband for his<br />

friendship, love, and encouragement over <str<strong>on</strong>g>the</str<strong>on</strong>g> past three years and always.<br />

NAVSEA<br />

CDR Kevin Terry<br />

CAPT (ret.) Chuck Bush<br />

CAPT T. Moore<br />

CAPT James Murdoch<br />

Dominick Cimino<br />

Roger M. Nutting<br />

Evelisse Marti r<br />

Wei d<strong>on</strong> Gimbel<br />

LCDR Brian Lawerence<br />

LCDR Rick Thiel<br />

Bath Ir<strong>on</strong> Works<br />

John Grostick<br />

Lew Pratt<br />

Allen Pac<br />

Ray Lacour<br />

LCDR Michael Taylor<br />

CVN Ships<br />

LCDR Chariie Strassle (DCA, CVN 69)<br />

CDR Robert Finely (Cheng, CVN 71)<br />

LCDR Peter Pasquale (DCA, CVN 71)<br />

LCDR John Rickards (DCA, CVN 72)<br />

LCDR Scott Noe (DCA, CVN 76)<br />

CDR Glenn Hofert (Cheng, CVN 76)<br />

Massachusetts Institute of Technology<br />

Dr. David V. Burke<br />

CDR (ret.) John Amy<br />

CDR Timothy McCoy<br />

NGC - Newport News Shipbuilding<br />

Jerry Dudley<br />

Hal McCaskill<br />

NSWC Carderock<br />

John M. Rosborough<br />

Carlos R. Corretjer<br />

Charlie Snelling<br />

Bruce Winterstein<br />

Todd Heidenreich<br />

PCCI. Inc.<br />

John A. 'T<strong>on</strong>y" Kupersmith<br />

Jessica R. Coles<br />

Herbert Engineering Corporati<strong>on</strong><br />

Colin Moore<br />

Norfolk Naval Shipvard<br />

Walt Del<strong>on</strong>g<br />

Larry Back<br />

Ballast Technologies. Inc.<br />

Mark Ensio<br />

N.S. NAPPI Associates<br />

Nat Nappi, Sr.<br />

#<br />

Please accept my apologies if I have left some<strong>on</strong>e off this list.


Table of C<strong>on</strong>tents<br />

Abstract 3<br />

Acknowledgements 4<br />

Table of C<strong>on</strong>tents 5<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Figures 6<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Tables 6<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Appendices 6<br />

1.0 Introducti<strong>on</strong> 7<br />

1.0 Introducti<strong>on</strong> 7<br />

1.1 Motivati<strong>on</strong> 7<br />

1.2 Background 7<br />

1.2.1 Past Research 10<br />

1.2.2 Stability 10<br />

1.2.3 Survivability 13<br />

1.2.4 Displacement Limits 14<br />

1.2.5 KG Limits 14<br />

1.3 Present Opti<strong>on</strong>s 15<br />

1.3.1 C<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> operate using inner bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m and DC voids 15<br />

1.3.2 Add a list c<strong>on</strong>trol tank <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> port side 17<br />

1.3.3 Move or exchange compartment spaces 18<br />

1.3.4 C<strong>on</strong>vert a current DC void(s) <str<strong>on</strong>g>to</str<strong>on</strong>g> a JP-5 tank(s) and pump last 18<br />

1.3.5 Future ship alterati<strong>on</strong>s and modificati<strong>on</strong>s 18<br />

1.3.6 Re-examine current <str<strong>on</strong>g>List</str<strong>on</strong>g> C<strong>on</strong>trol System 19<br />

1.3.7 Ballast Additi<strong>on</strong> 21<br />

1.3.7.1 Water Ballast 21<br />

1.3.7.2 Solid Ballast 21<br />

1.4 Opti<strong>on</strong> Selecti<strong>on</strong> 23<br />

2.0 Preliminary Analysis and Results 23<br />

2.1 Tank Selecti<strong>on</strong> 24<br />

2.2 Modeling Analysis Performed 25<br />

2.3 Preliminary Decisi<strong>on</strong>-Making Cost Estimati<strong>on</strong> 31<br />

2.4 Structural Analysis 35<br />

2.4.1 Structural Modificati<strong>on</strong>s 39<br />

2.4.1.1 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'* Deck 39<br />

2.4.1.2 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"" Deck 41<br />

2.4.1.3 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* Deck 43<br />

3.0 Final Analysis and Results 44<br />

3.1 Final POSSE Results 45<br />

3.2 Final Cost Estimati<strong>on</strong> 46<br />

3.2.1 Ease of Removal 48<br />

3.2.2 Evidence Perma Ballast® is n<strong>on</strong>-corrosive 48<br />

4.0 C<strong>on</strong>clusi<strong>on</strong> 50<br />

5.0 Recommendati<strong>on</strong>s 51<br />

References 53


<str<strong>on</strong>g>List</str<strong>on</strong>g> of Figures<br />

Figure 1: Stresses in rectangular plates under uniform lateral pressure [2] 38<br />

Figure 2: 2"^* Deck Compartment 2-165-8-V 39<br />

Figure 3: 2"'' Deck Compartment 2-165-8-V, transverse secti<strong>on</strong> 41<br />

Figure 4: 4"" Deck Compartment 4-165-4-V 42<br />

Figure 5: S'*" Deck Compartment 8-225-6-V 43<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Tables<br />

Table 1: CVN 68 <strong>Class</strong> Delivery Data and <strong>Class</strong> Predicti<strong>on</strong>s as of 11/17/03 8<br />

Table 2: Deck Locati<strong>on</strong> Cost Comparis<strong>on</strong> 32<br />

Table 3: Required Structural Modificati<strong>on</strong>s for 2-165-8-V 40<br />

Table 4: Required Structural Modificati<strong>on</strong>s for 4-165-4-V 42<br />

Table 5: Required Structural Modificati<strong>on</strong>s for 8-225-6-V 44<br />

Table 6: Final Cost, Weight Additi<strong>on</strong>, and Change in KG Comparis<strong>on</strong> 47<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> of Appendices<br />

Appendix A: Tank Locati<strong>on</strong> Study 54<br />

Appendix B: Preliminary POSSE Modeling Results 58<br />

Appendix C: Preliminary Cost Estimati<strong>on</strong> Data and Worksheets 62<br />

Appendix D: Preliminary Cost Comparis<strong>on</strong> 86<br />

Appendix E: Complete Structural Analysis 88<br />

Appendix F: Final POSSE Modeling Results 148<br />

Appendix G: Final Cost Estimati<strong>on</strong> Data and Worksheets 150


1.0 Introducti<strong>on</strong><br />

1.1 Motivati<strong>on</strong><br />

<strong>Aircraft</strong> carriers are <str<strong>on</strong>g>the</str<strong>on</strong>g> largest combatant ships in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. They are huge floating<br />

cities, carrying thousands of sailors and aircraft, each vessel with more military power than many<br />

nati<strong>on</strong>s. But with such might comes mighty operati<strong>on</strong>al requirements.<br />

In order <str<strong>on</strong>g>to</str<strong>on</strong>g> launch and recover aircraft <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight deck, most ships will report any<br />

change in list in excess of V4 degree <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Engineering Officer of <str<strong>on</strong>g>the</str<strong>on</strong>g> Watch (EOOW) for<br />

correcti<strong>on</strong>. The <strong>Nimitz</strong> class aircraft carrier was designed <str<strong>on</strong>g>to</str<strong>on</strong>g> maintain a level deck during flight<br />

operati<strong>on</strong>s through <str<strong>on</strong>g>the</str<strong>on</strong>g> utilizati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS. The LCS is designed <str<strong>on</strong>g>to</str<strong>on</strong>g> compensate for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

operati<strong>on</strong>al effects of aircraft movement <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight deck and in <str<strong>on</strong>g>the</str<strong>on</strong>g> hangar bays and not<br />

intended <str<strong>on</strong>g>to</str<strong>on</strong>g> compensate for an inherent list. Any inherent list imposes operati<strong>on</strong>al c<strong>on</strong>straints <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ship, particularly when <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier has embarked a full air-wing and full fuel loading (Combat<br />

Load C<strong>on</strong>diti<strong>on</strong>). <strong>Nimitz</strong> class carriers have a his<str<strong>on</strong>g>to</str<strong>on</strong>g>ry of inherent starboard list, due primarily <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ship's c<strong>on</strong>figurati<strong>on</strong>. His<str<strong>on</strong>g>to</str<strong>on</strong>g>ry shows that modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class are have increased<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inherent starboard list of each carrier. This <str<strong>on</strong>g>the</str<strong>on</strong>g>sis will explore various opti<strong>on</strong>s for finding a<br />

permanent soluti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class list c<strong>on</strong>trol issues, particularly, <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> of solid<br />

ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> counter list.<br />

1.2 Background<br />

There are a number of obstacles in finding a permanent soluti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list<br />

associated with most <strong>Nimitz</strong> class carriers, as each carrier has a different inherent list associated<br />

with it. This may sound strange, but every ship is slightly different. The ships are so large and<br />

have such a high procurement cost that <strong>on</strong>ly <strong>on</strong>e is built at a time. It takes an average of five<br />

years <str<strong>on</strong>g>to</str<strong>on</strong>g> build <strong>on</strong>e carrier, and in that time, modernizati<strong>on</strong>s, upgrades, and improvements are


introduced in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> design. As such, <str<strong>on</strong>g>the</str<strong>on</strong>g> ships are c<strong>on</strong>stantly changing and evolving, all within<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same skin designed in <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1960's. A comparative analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> commissi<strong>on</strong>ed and<br />

predicted current displacement, vertical center of gravity (KG), and list with <str<strong>on</strong>g>the</str<strong>on</strong>g> latest unknown<br />

growth correcti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft carriers are shown in Table 1.<br />

Table 1: CVN 68 <strong>Class</strong> Delivery Data and <strong>Class</strong> Predicti<strong>on</strong>s as of 11/17/03<br />

Delivery<br />

Displacement<br />

(I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns)<br />

Predicted<br />

Current<br />

Displacement<br />

(I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns)<br />

Predicted<br />

Current<br />

KG (ft)<br />

Delivery<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g><br />

(degrees)<br />

Predicted<br />

Current<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g><br />

(degrees)<br />

Delivery<br />

Ship<br />

KG (ft)<br />

68 93,283 100,064 45.73 47.22 l.Ol(S) 0.10 (S)<br />

69 93,832 100,588 45.94 47.1 0.82 (S) 0.25 (S)<br />

70 94,069 100,599 46.29 47.28 1.22 (S) 0.11 (P)<br />

71 96,865 103,700 46.4 47.27 0.27 (S) 0.41 (S)<br />

72 97,497 103,912 46.61 47.2 0.77 (S) 1.81 (S)<br />

73 97,816 104,095 46.54 47.03 0.85 (S) 1.55 (S)<br />

74 97,490 103,419 46.63 47.23 1.63 (S) 2.54 (S)<br />

75 97,944 103,863 46.4 46.93 0.43 (S) 1.61 (S)<br />

76 97,953 101,187 46.66 46.77 0.08 (S) 0.99 (S)<br />

#<br />

<strong>Nimitz</strong> class carrier c<strong>on</strong>tracts require that an Accepted Weight Estimate (AWE) be<br />

negotiated between <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>trac<str<strong>on</strong>g>to</str<strong>on</strong>g>r and <str<strong>on</strong>g>the</str<strong>on</strong>g> Government. A starboard inherent list was seen<br />

creeping upwards through CVN 73, such that for <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 74/75 c<strong>on</strong>tract, <str<strong>on</strong>g>the</str<strong>on</strong>g> program office<br />

invoked a list <str<strong>on</strong>g>to</str<strong>on</strong>g>lerance of 0.50 degree (P/S) for <str<strong>on</strong>g>the</str<strong>on</strong>g> combat load c<strong>on</strong>diti<strong>on</strong>. As a result of this<br />

new requirement, and beginning with <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 74/75 c<strong>on</strong>tract, <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trac<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

agreed <str<strong>on</strong>g>to</str<strong>on</strong>g> include 850 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns of c<strong>on</strong>trac<str<strong>on</strong>g>to</str<strong>on</strong>g>r-c<strong>on</strong>trolled ballast in <str<strong>on</strong>g>the</str<strong>on</strong>g> AWE <str<strong>on</strong>g>to</str<strong>on</strong>g> offset <str<strong>on</strong>g>the</str<strong>on</strong>g> already<br />

projected design inherent starboard list. Before any real ballast was <str<strong>on</strong>g>to</str<strong>on</strong>g> be added <strong>on</strong> CVN 74,<br />

however, <str<strong>on</strong>g>the</str<strong>on</strong>g> program office wanted <str<strong>on</strong>g>to</str<strong>on</strong>g> see if <str<strong>on</strong>g>the</str<strong>on</strong>g>re was indeed a list problem after <str<strong>on</strong>g>the</str<strong>on</strong>g> ship was<br />

delivered and fully loaded. It is at this time that CVN 74 was found <str<strong>on</strong>g>to</str<strong>on</strong>g> a have real inherent<br />

starboard list problem. The identified list problem was resolved by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of fresh water (FW)<br />

ballast. To date, permanent ballast has not been installed <strong>on</strong> any aircraft carrier of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong>


class. Changes <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 76 design resulted in a reduced starboard list and c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>trac<str<strong>on</strong>g>to</str<strong>on</strong>g>r-c<strong>on</strong>trolled ballast included in <str<strong>on</strong>g>the</str<strong>on</strong>g> AWE was reduced <str<strong>on</strong>g>to</str<strong>on</strong>g> 650 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns.<br />

From operati<strong>on</strong>al experience, it would be safe <str<strong>on</strong>g>to</str<strong>on</strong>g> say that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an inherent starboard<br />

list under full fuel load (or virtually full) with <str<strong>on</strong>g>the</str<strong>on</strong>g> airwing embarked and no flight operati<strong>on</strong>s<br />

being c<strong>on</strong>ducted <strong>on</strong> most <strong>Nimitz</strong> class carriers. When all <str<strong>on</strong>g>the</str<strong>on</strong>g> planes are stacked <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard<br />

side and <str<strong>on</strong>g>the</str<strong>on</strong>g> ship has just been refueled, <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS is unable <str<strong>on</strong>g>to</str<strong>on</strong>g> level <str<strong>on</strong>g>the</str<strong>on</strong>g> deck. This is when it has<br />

become necessary for some carriers <str<strong>on</strong>g>to</str<strong>on</strong>g> use fresh water ballast in a number of inner bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m voids<br />

and damage c<strong>on</strong>trol (DC) voids <str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g> adverse list c<strong>on</strong>diti<strong>on</strong>. But from a ship<br />

survivability standpoint, and as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir name implies, DC voids are not an acceptable list c<strong>on</strong>trol<br />

measure under normal operating c<strong>on</strong>diti<strong>on</strong>s. Maintaining liquid ballast in DC voids reduces <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

design counter flooding capability of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship. N<strong>on</strong>e <str<strong>on</strong>g>the</str<strong>on</strong>g> less, this is how some ships operate in<br />

order <str<strong>on</strong>g>to</str<strong>on</strong>g> keep <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class ships at sea.<br />

In February 1999, PEO <strong>Carriers</strong> issued a Message <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 68 <strong>Class</strong> identifying<br />

several voids (i.e., n<strong>on</strong> DC voids) that could be used for FW ballasting for ships experiencing list<br />

c<strong>on</strong>trol problems. Prior <str<strong>on</strong>g>to</str<strong>on</strong>g> using those voids, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> message requested <str<strong>on</strong>g>the</str<strong>on</strong>g> ships <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

c<strong>on</strong>firm that <str<strong>on</strong>g>the</str<strong>on</strong>g> list c<strong>on</strong>trol difficulties were not <str<strong>on</strong>g>the</str<strong>on</strong>g> result of abnormal LCS operati<strong>on</strong>s or<br />

adverse liquid loading or s<str<strong>on</strong>g>to</str<strong>on</strong>g>res management. <strong>Carriers</strong> experiencing list c<strong>on</strong>trol difficulties were<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> request approval from <str<strong>on</strong>g>the</str<strong>on</strong>g> Type Commander (TYCOM) <str<strong>on</strong>g>to</str<strong>on</strong>g> fill <str<strong>on</strong>g>the</str<strong>on</strong>g> voids listed in <str<strong>on</strong>g>the</str<strong>on</strong>g> message.<br />

The approval would remain in effect for that ship until a permanent soluti<strong>on</strong> was identified and<br />

implemented.<br />

It is obvious that fixing <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list cannot be solved by leaving aircraft behind or by<br />

limiting <str<strong>on</strong>g>the</str<strong>on</strong>g> load of fuel carried. TYCOM directive states that <str<strong>on</strong>g>the</str<strong>on</strong>g> JP-5 system is required <str<strong>on</strong>g>to</str<strong>on</strong>g>


emain at least 60% full at all times. These ships have a very specific warfighting requirement<br />

that must be achieved, and a reducti<strong>on</strong> in capabilities is unacceptable.<br />

There must be a soluti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list problem bey<strong>on</strong>d limiting ships payload or<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> DC voids outside of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir designed intent. This report evaluates o<str<strong>on</strong>g>the</str<strong>on</strong>g>r alternatives <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

finding a soluti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> fix <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <strong>Nimitz</strong> class aircraft carriers.<br />

1.2.1 Past Research<br />

A <str<strong>on</strong>g>the</str<strong>on</strong>g>sis was performed in 2001 by Michael Mal<strong>on</strong>e, a graduate of MIT. His <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, titled<br />

"An Alternate Method for <str<strong>on</strong>g>the</str<strong>on</strong>g> Determinati<strong>on</strong> of <strong>Aircraft</strong> Carrier Limiting Displacement for<br />

Strength;" determined that although all <strong>Nimitz</strong> class aircraft carriers are approaching <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

limiting displacement for strength, <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al methods of such calculati<strong>on</strong>s are c<strong>on</strong>servative.<br />

In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers can accommodate more weight than previously thought.<br />

Because of this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Navy <strong>Aircraft</strong> Carrier Program Office (PMS 312) later directed<br />

N.S. NAPPI Associates <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>duct a detailed analysis <strong>on</strong> estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting displacement for<br />

strength. Again, it was proven that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class hull is capable of sustaining additi<strong>on</strong>al<br />

weights which would exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> current established limiting displacement for strength.<br />

1.2.2 Stability<br />

The stability status for USN ships is defined in [4] and is supported by [11]. The Chief of<br />

Naval Operati<strong>on</strong>s has directed that <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy's ships will be kept within naval architectural limits<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> ensure that essential survivability features are maintained. For each ship class, <str<strong>on</strong>g>the</str<strong>on</strong>g> Naval Sea<br />

Systems Command's Weights and Stability Divisi<strong>on</strong> is <str<strong>on</strong>g>to</str<strong>on</strong>g> keep track of <str<strong>on</strong>g>the</str<strong>on</strong>g> weight and stability<br />

status, limiting draft and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r limitati<strong>on</strong>s including being an advocate for weight and moment<br />

status and moment compensati<strong>on</strong> necessary <str<strong>on</strong>g>to</str<strong>on</strong>g> adhere <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> established limits. Surface ships are<br />

10


classified in<str<strong>on</strong>g>to</str<strong>on</strong>g> four status c<strong>on</strong>diti<strong>on</strong>s for vertical center of gravity (KG) and limiting drafts. As<br />

specified in [4], <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> status listings are:<br />

• STATUS 1 An increase in weight and a rise of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's center of gravity are<br />

acceptable. Added weight and moment resulting from changes will not require any<br />

compensati<strong>on</strong> unless <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude of <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>s is so large as <str<strong>on</strong>g>to</str<strong>on</strong>g> make <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

approach stability limits.<br />

• STATUS 2<br />

accepted.<br />

Nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an increase in weight nor a rise of a ship's center of gravity can be<br />

• STATUS 3 An increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's weight is acceptable, but a rise of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's center<br />

of gravity must be avoided.<br />

• STATUS 4 A rise of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's center of gravity is acceptable, but increase in weight<br />

must be avoided. Compensati<strong>on</strong> for added weight may be obtained by removal of an<br />

equal or greater weight at any level.<br />

Status 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly acceptable ship status. The goal is for ships in <str<strong>on</strong>g>the</str<strong>on</strong>g> fleet <str<strong>on</strong>g>to</str<strong>on</strong>g> remain in<br />

Status 1. In <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r three status c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement and KG must be closely<br />

m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>red <str<strong>on</strong>g>to</str<strong>on</strong>g> ensure <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> does not worsen and steps must be taken <str<strong>on</strong>g>to</str<strong>on</strong>g> try <str<strong>on</strong>g>to</str<strong>on</strong>g> bring <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ship back within acceptable design limits. Typically, when an in-service carrier requires a<br />

modificati<strong>on</strong> that will add weight <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility of <str<strong>on</strong>g>the</str<strong>on</strong>g> program office and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planning yard <str<strong>on</strong>g>to</str<strong>on</strong>g> put <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r a package that includes maintenance and repair items, as well as<br />

modernizati<strong>on</strong> changes. First, a preliminary weight estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> modernizati<strong>on</strong> changes are<br />

put <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r in <str<strong>on</strong>g>the</str<strong>on</strong>g> package and made ready for installati<strong>on</strong>. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> package is installed, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planning yard or shipyard keeps track of <str<strong>on</strong>g>the</str<strong>on</strong>g> weights being installed. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

availability, an actual weight report for <str<strong>on</strong>g>the</str<strong>on</strong>g> installed changes is generated. This report is passed<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> shipyard <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> program office where it is incorporated in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stability baseline of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pertinent ship.<br />

11


For any c<strong>on</strong>figurati<strong>on</strong> changes, such as adding weight <str<strong>on</strong>g>to</str<strong>on</strong>g> a carrier in Stability Status 2, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interested party fills out a Justificati<strong>on</strong> Cost Form (JCF) with <str<strong>on</strong>g>the</str<strong>on</strong>g> weight and KG impact as well<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's Stability Status. A C<strong>on</strong>figurati<strong>on</strong> C<strong>on</strong>trol Board that includes <str<strong>on</strong>g>the</str<strong>on</strong>g> Program Office,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ship Design Manager, and <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary Technical Authorities <str<strong>on</strong>g>the</str<strong>on</strong>g>n meet <str<strong>on</strong>g>to</str<strong>on</strong>g> approve or<br />

disapprove <str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong>. If approved, an Engineering Change Proposal (ECP) for newly<br />

commissi<strong>on</strong>ed ships or a Ship Alterati<strong>on</strong> Request (SAR) for in-service ships is <str<strong>on</strong>g>the</str<strong>on</strong>g>n generated.<br />

The <strong>Nimitz</strong> class was assigned <str<strong>on</strong>g>to</str<strong>on</strong>g> Stability Status 2 by <str<strong>on</strong>g>the</str<strong>on</strong>g> Weight C<strong>on</strong>trol and Stability<br />

Divisi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Naval Sea Systems Command. This was d<strong>on</strong>e as a result of <str<strong>on</strong>g>the</str<strong>on</strong>g> stability reanalysis<br />

performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers. The re-analysis revealed <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

• The originally calculated Allowable KG of 48.50 feet was no l<strong>on</strong>ger applicable for this<br />

class of ships. While 48.50 feet is no l<strong>on</strong>ger <str<strong>on</strong>g>the</str<strong>on</strong>g> allowable KG value, it c<strong>on</strong>tinues <str<strong>on</strong>g>to</str<strong>on</strong>g> be<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> KG compara<str<strong>on</strong>g>to</str<strong>on</strong>g>r for CVN 68 - 77 for c<strong>on</strong>tractual reas<strong>on</strong>s.<br />

• The actual damage capability of this class of carriers is not as originally calculated.<br />

• The damage capability of this class decreases as displacement increases.<br />

• It is important for <str<strong>on</strong>g>the</str<strong>on</strong>g> holding bulkhead <str<strong>on</strong>g>to</str<strong>on</strong>g> remain intact.<br />

• The 40'-l 1" limiting draft is based <strong>on</strong> ship geometry limitati<strong>on</strong>s.<br />

As a result of <str<strong>on</strong>g>the</str<strong>on</strong>g> above study, it was determined by that a stability status of 2 should<br />

c<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> be assigned <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class in order <str<strong>on</strong>g>to</str<strong>on</strong>g>:<br />

o C<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement growth of <str<strong>on</strong>g>the</str<strong>on</strong>g> class even though some ships are<br />

substantially below <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting draft. This is an<br />

acknowledgement that an increased displacement degrades damage stability<br />

capability.<br />

12


o C<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> KG growth of <str<strong>on</strong>g>the</str<strong>on</strong>g> class even though some ships were substantially<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g> KG compara<str<strong>on</strong>g>to</str<strong>on</strong>g>r of 48.50 feet. This is an acknowledgement that an<br />

increased KG degrades damage stability capability.<br />

1.2.3 Survivability<br />

Survivability is defined in [10] as <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity of a ship <str<strong>on</strong>g>to</str<strong>on</strong>g> absorb damage and maintain<br />

missi<strong>on</strong> integrity. Typically, most decisi<strong>on</strong> making regarding survivability is d<strong>on</strong>e during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

early trade-off stages of ship design. As a result, it is imperative that naval architectural<br />

parameters be c<strong>on</strong>sidered over <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetime of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship in order <str<strong>on</strong>g>to</str<strong>on</strong>g> successfully withstand<br />

designated threat levels. Every attempt must be made <str<strong>on</strong>g>to</str<strong>on</strong>g> prevent any degradati<strong>on</strong> of a warship's<br />

ability <str<strong>on</strong>g>to</str<strong>on</strong>g> perform its offensive missi<strong>on</strong>, sustain battle damage, and survive. <strong>Aircraft</strong> carriers are<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r defined in [10] as 'capital ships' in that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are expected <str<strong>on</strong>g>to</str<strong>on</strong>g> survive more than <strong>on</strong>e<br />

weap<strong>on</strong>s hit and return <str<strong>on</strong>g>to</str<strong>on</strong>g> some level of missi<strong>on</strong> capability. All o<str<strong>on</strong>g>the</str<strong>on</strong>g>r ships are <strong>on</strong>ly expected <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

survive design level damage from a single design level weap<strong>on</strong> or a single peacetime hazard.<br />

Survivability, weap<strong>on</strong>s effects and operati<strong>on</strong>al envir<strong>on</strong>ments are categorized in terms of<br />

three levels of severity. Level I represents <str<strong>on</strong>g>the</str<strong>on</strong>g> least severe envir<strong>on</strong>ment anticipated for a class of<br />

ship, while Level El represents <str<strong>on</strong>g>the</str<strong>on</strong>g> most severe envir<strong>on</strong>ment projected for a combatant battle<br />

group and includes <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ability <str<strong>on</strong>g>to</str<strong>on</strong>g> deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> broad degrading effects of damage from antiship<br />

cruise missiles (ASCM). <strong>Aircraft</strong> carriers and battle force surface combatants are both<br />

c<strong>on</strong>sidered Level III. Therefore, it is imperative that <str<strong>on</strong>g>the</str<strong>on</strong>g>se ships be operated and maintained as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y were designed. Any digressi<strong>on</strong> from operati<strong>on</strong>al restricti<strong>on</strong>s and guidelines makes all<br />

analyses irrelevant.<br />

13


1.2.4 Displacement Limits<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g>se aircraft carriers are so important and because any reducti<strong>on</strong> in freeboard<br />

will inherently reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>rpedo side protecti<strong>on</strong> system (TSPS), <str<strong>on</strong>g>the</str<strong>on</strong>g>se ships<br />

are usually displacement critical. The limit is typically expressed in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> Full Load<br />

C<strong>on</strong>diti<strong>on</strong>. Following is <str<strong>on</strong>g>the</str<strong>on</strong>g> criteria Naval Surface Warfare Center (NSWC) Carderock's Weight<br />

C<strong>on</strong>trol and Stability Divisi<strong>on</strong> uses <str<strong>on</strong>g>to</str<strong>on</strong>g> determine displacement limits for aircraft carriers with a<br />

TSPS:<br />

L2.5 KG Limits<br />

• Strength: The displacement, with an assumed l<strong>on</strong>gitudinal weight distributi<strong>on</strong>, at<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal bending moments caused by a standardized wave will<br />

produce <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum allowable stress in <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's hull girder.<br />

• Speed: The displacement for surface warships at which <str<strong>on</strong>g>the</str<strong>on</strong>g> ships machinery,<br />

operating at a specified percent of maximum available power, will drive <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> original design speed specified by <str<strong>on</strong>g>the</str<strong>on</strong>g> ships characteristics c<strong>on</strong>sidering<br />

power plant, RPM and <str<strong>on</strong>g>to</str<strong>on</strong>g>rque limits.<br />

• TSPS: The maximum draft for a surface warship which prevents <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>p of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

TSPS from being immersed more than a specified amount.<br />

• Subdivisi<strong>on</strong>: The maximum displacement at which a ship with a TSPS will<br />

satisfac<str<strong>on</strong>g>to</str<strong>on</strong>g>rily resist <str<strong>on</strong>g>the</str<strong>on</strong>g> flooding effects of a specified number of <str<strong>on</strong>g>to</str<strong>on</strong>g>rpedo hits or<br />

similar weap<strong>on</strong>s without submerging <str<strong>on</strong>g>the</str<strong>on</strong>g> margin line at <str<strong>on</strong>g>the</str<strong>on</strong>g> bow or <str<strong>on</strong>g>the</str<strong>on</strong>g> stem.<br />

• Damage Stability: The maximum displacement at which a ship with a TSPS will<br />

satisfac<str<strong>on</strong>g>to</str<strong>on</strong>g>rily resist <str<strong>on</strong>g>the</str<strong>on</strong>g> flooding effects of a specified number of <str<strong>on</strong>g>to</str<strong>on</strong>g>rpedo hits or<br />

similar weap<strong>on</strong>s while providing adequate stability <str<strong>on</strong>g>to</str<strong>on</strong>g> resist high static heel<br />

angles, resist capsizing, and return <str<strong>on</strong>g>to</str<strong>on</strong>g> some level of missi<strong>on</strong> capability.<br />

The KG Limit for a warship is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum height of <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical center of gravity of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ship in <str<strong>on</strong>g>the</str<strong>on</strong>g> Full Load c<strong>on</strong>diti<strong>on</strong>. Any Full Load KG below this limit is expected <str<strong>on</strong>g>to</str<strong>on</strong>g> survive <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hazards of wind, high speed maneuvering or damage, assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> ship follows its liquid<br />

loading instructi<strong>on</strong>s. The Limiting KG is <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest limit of ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> damage stability limit or<br />

14


<str<strong>on</strong>g>the</str<strong>on</strong>g> intact stability limit. Following is <str<strong>on</strong>g>the</str<strong>on</strong>g> DDS-079-1 criteria NSWC Carderock's Weight<br />

C<strong>on</strong>trol and Stability Divisi<strong>on</strong> uses <str<strong>on</strong>g>to</str<strong>on</strong>g> determine stability limits for surface warships with a SPS:<br />

• Intact: 100 Knot Beam Wind - The Full Load KG which will permit <str<strong>on</strong>g>the</str<strong>on</strong>g> ship <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

operate in any normal loading c<strong>on</strong>diti<strong>on</strong> and survive <str<strong>on</strong>g>the</str<strong>on</strong>g> heeling force of a fully<br />

developed hurricane (assumed as a nominal 100 knots). The ship will retain<br />

sufficient stability <str<strong>on</strong>g>to</str<strong>on</strong>g> absorb higher gusts without being knocked over, and <str<strong>on</strong>g>to</str<strong>on</strong>g> absorb<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic effects of wave acti<strong>on</strong> without being rolled over.<br />

• Damage: The Full Load KG Limit for large surface combatants, such as battleships<br />

and aircraft carriers which have a side protective system, is associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> worst<br />

possible combinati<strong>on</strong> of a specified number of hazards (<str<strong>on</strong>g>to</str<strong>on</strong>g>rpedoes/missiles) which<br />

will:<br />

1) Cause <str<strong>on</strong>g>the</str<strong>on</strong>g> ship <str<strong>on</strong>g>to</str<strong>on</strong>g> heel <str<strong>on</strong>g>to</str<strong>on</strong>g> a large initial angle of 15 - 20 degrees,<br />

2) Cause <str<strong>on</strong>g>the</str<strong>on</strong>g> ship <str<strong>on</strong>g>to</str<strong>on</strong>g> approach a capsize situati<strong>on</strong>, or<br />

3) Exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> counter flooding capability <str<strong>on</strong>g>to</str<strong>on</strong>g> return <str<strong>on</strong>g>to</str<strong>on</strong>g> limited operati<strong>on</strong>. Limited<br />

operati<strong>on</strong> is defined as a heel of less than 5 degrees <str<strong>on</strong>g>to</str<strong>on</strong>g> operate aircraft (should be<br />

3 degrees for current aircraft) or less than 10 degrees <str<strong>on</strong>g>to</str<strong>on</strong>g> operate <str<strong>on</strong>g>the</str<strong>on</strong>g> main turrets.<br />

In any of <str<strong>on</strong>g>the</str<strong>on</strong>g> above damage c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> ship must still possess sufficient dynamic<br />

stability <str<strong>on</strong>g>to</str<strong>on</strong>g> resist capsizing moments induced by wind and waves.<br />

1.3 Present Opti<strong>on</strong>s<br />

1.3.1 C<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> operate using inner bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m and DC voids<br />

Any departure from proper design and operati<strong>on</strong>al criteria degrades any analysis<br />

performed. For example, most stability analyses performed assumes that DC voids are used<br />

correctly, <str<strong>on</strong>g>the</str<strong>on</strong>g> ship is <strong>on</strong> an even keel, and that <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting displacement is not exceeded. In fact,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is an interrelati<strong>on</strong>ship between increasing displacement and a number of fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs, <str<strong>on</strong>g>to</str<strong>on</strong>g> include<br />

ship strength, survivability, stability and seakeeping. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> weight, or displacement, of<br />

carriers is a serious c<strong>on</strong>cern because any weight increase <strong>on</strong>ly serves <str<strong>on</strong>g>to</str<strong>on</strong>g> reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> service life of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ship. It should be noted again that not all carriers use DC voids <str<strong>on</strong>g>to</str<strong>on</strong>g> augment <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS, but it is<br />

also uncertain as <str<strong>on</strong>g>to</str<strong>on</strong>g> how many actually will use <str<strong>on</strong>g>the</str<strong>on</strong>g>m as a last resort.<br />

DC void usage results in a reducti<strong>on</strong> in TSPS defense. The purpose of <str<strong>on</strong>g>the</str<strong>on</strong>g> TSPS <strong>on</strong> any<br />

capital ship is <str<strong>on</strong>g>to</str<strong>on</strong>g> protect <str<strong>on</strong>g>the</str<strong>on</strong>g> vital spaces of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship against flooding and/or de<str<strong>on</strong>g>to</str<strong>on</strong>g>nati<strong>on</strong> of s<str<strong>on</strong>g>to</str<strong>on</strong>g>wed<br />

15


ordnance. Vital spaces include magazine and propulsi<strong>on</strong> system spaces. The TSPS provides <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desired protecti<strong>on</strong> by being c<strong>on</strong>structed of a series of l<strong>on</strong>gitudinal bulkheads nested transversely.<br />

These l<strong>on</strong>gitudinal spaces are fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r subdivided by transverse fluid-tight bulkheads creating a<br />

'h<strong>on</strong>eycomb' arrangement outboard of <str<strong>on</strong>g>the</str<strong>on</strong>g> vital magazines and machinery spaces. The spaces<br />

thus created between <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkheads are alternately filled with liquids (fuel oil, JP-5, ballast<br />

water, etc.) or are left empty (damage c<strong>on</strong>trol voids). The passive protecti<strong>on</strong> afforded by this<br />

combinati<strong>on</strong> of bulkheads and 'liquid/air layers" serves <str<strong>on</strong>g>to</str<strong>on</strong>g> absorb, deflect and reject <str<strong>on</strong>g>the</str<strong>on</strong>g> explosive<br />

force generated by weap<strong>on</strong>s such as <str<strong>on</strong>g>to</str<strong>on</strong>g>rpedoes or mines. Placing liquid in <str<strong>on</strong>g>the</str<strong>on</strong>g> void layer<br />

combined with an empty liquid layer will be <str<strong>on</strong>g>the</str<strong>on</strong>g> worst-case scenario, while <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r will<br />

result in less of a reducti<strong>on</strong>.<br />

Similarly, DC voids are supposed <str<strong>on</strong>g>to</str<strong>on</strong>g> be used exactly as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir name implies, <str<strong>on</strong>g>to</str<strong>on</strong>g> combat<br />

flooding with <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>to</str<strong>on</strong>g> adjust for list and trim in order <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> fulfill missi<strong>on</strong><br />

objectives after sustained damage by being able <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>tinue <str<strong>on</strong>g>to</str<strong>on</strong>g> launch and recover aircraft. The<br />

specified primary purpose of <str<strong>on</strong>g>the</str<strong>on</strong>g> DC voids is for damage c<strong>on</strong>trol. Sea chests and valves for<br />

flooding underwater side protecti<strong>on</strong> system spaces (DC voids) are required <str<strong>on</strong>g>to</str<strong>on</strong>g> flood within six<br />

minutes <str<strong>on</strong>g>to</str<strong>on</strong>g> fill <str<strong>on</strong>g>the</str<strong>on</strong>g> space <str<strong>on</strong>g>to</str<strong>on</strong>g> within 1 foot of <str<strong>on</strong>g>the</str<strong>on</strong>g> full load waterline per secti<strong>on</strong> 529i of [6]. In fact,<br />

current stability criteria require that <str<strong>on</strong>g>the</str<strong>on</strong>g> ship be able <str<strong>on</strong>g>to</str<strong>on</strong>g> counter flood <str<strong>on</strong>g>to</str<strong>on</strong>g> return <str<strong>on</strong>g>the</str<strong>on</strong>g> flight deck <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

within 5 degrees of upright after damage. When a ship has <str<strong>on</strong>g>to</str<strong>on</strong>g> resort <str<strong>on</strong>g>to</str<strong>on</strong>g> maintaining list by<br />

flooding DC voids, <str<strong>on</strong>g>the</str<strong>on</strong>g> crew becomes encumbered by a task that should be unnecessary. The<br />

Damage C<strong>on</strong>trol Assistant (DCA) and EOOW are drawn away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir normal tasks and in<str<strong>on</strong>g>to</str<strong>on</strong>g><br />

roles as reacti<strong>on</strong>ary problem-solvers, keeping an eye <strong>on</strong> flight deck aircraft placements, fuel tank<br />

levels, and ship list. This is a poor utilizati<strong>on</strong> of manpower, c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> primary duties of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

DCA and EOOW, which are <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinati<strong>on</strong> of damage c<strong>on</strong>trol acti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility<br />

16


for ships propulsi<strong>on</strong>, respectively. Also, a ship's crew is c<strong>on</strong>tinuously rotating. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is a c<strong>on</strong>tinual learning curve that relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> passage of operati<strong>on</strong>al knowledge from generati<strong>on</strong><br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> generati<strong>on</strong>. This is not <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal way <str<strong>on</strong>g>to</str<strong>on</strong>g> operate a multi-billi<strong>on</strong> dollar asset, and it is in our<br />

best interest <str<strong>on</strong>g>to</str<strong>on</strong>g> not put <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>us of correcting an evoluti<strong>on</strong>ary design fault <strong>on</strong> a crew who will<br />

serve at most a three year <str<strong>on</strong>g>to</str<strong>on</strong>g>ur. Additi<strong>on</strong>ally, de-ballasting DC voids is extremely time intensive.<br />

If a real casualty was <str<strong>on</strong>g>to</str<strong>on</strong>g> occur with <str<strong>on</strong>g>the</str<strong>on</strong>g> wr<strong>on</strong>g or <str<strong>on</strong>g>to</str<strong>on</strong>g>o many DC voids flooded, <str<strong>on</strong>g>the</str<strong>on</strong>g>re may not be<br />

sufficient time <str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>. It is not hard <str<strong>on</strong>g>to</str<strong>on</strong>g> imagine <str<strong>on</strong>g>the</str<strong>on</strong>g> disastrous results possible.<br />

1.3.2 Add a list c<strong>on</strong>trol tank <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> port side<br />

The c<strong>on</strong>trol of permanent lists (static heel angles) by adding an additi<strong>on</strong>al list c<strong>on</strong>trol tank<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> port side could also be c<strong>on</strong>sidered an opti<strong>on</strong>. The LCS is designed <str<strong>on</strong>g>to</str<strong>on</strong>g> compensate for<br />

variable lists generated by load items that are moved about <str<strong>on</strong>g>the</str<strong>on</strong>g> ship over short periods of time.<br />

Such loads could be liquids, cargo, s<str<strong>on</strong>g>to</str<strong>on</strong>g>res, vehicles or aircraft. The current <strong>Nimitz</strong> class LCS<br />

c<strong>on</strong>sists often list c<strong>on</strong>trol tanks, two centrifugal pumps each rated at 1800 gpm at 30 psi, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

associated piping and valves required <str<strong>on</strong>g>to</str<strong>on</strong>g> compensate for lists up <str<strong>on</strong>g>to</str<strong>on</strong>g> 1.5 degrees in 20 minutes.<br />

The system is designed <str<strong>on</strong>g>to</str<strong>on</strong>g> be filled with seawater (SW) or firemain <str<strong>on</strong>g>to</str<strong>on</strong>g> 50% of its <str<strong>on</strong>g>to</str<strong>on</strong>g>tal capacity of<br />

278,533 gall<strong>on</strong>s. This allows tanks <str<strong>on</strong>g>to</str<strong>on</strong>g> be filled <str<strong>on</strong>g>to</str<strong>on</strong>g> 100% <strong>on</strong> <strong>on</strong>e side while <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side is left<br />

empty.<br />

The problems encountered with using SW in tanks may be c<strong>on</strong>mi<strong>on</strong> knowledge <str<strong>on</strong>g>to</str<strong>on</strong>g> most<br />

people; however, potential corrosi<strong>on</strong> from using salt water has encouraged some carriers <str<strong>on</strong>g>to</str<strong>on</strong>g> use<br />

potable water (PW) as a means <str<strong>on</strong>g>to</str<strong>on</strong>g> fill <str<strong>on</strong>g>the</str<strong>on</strong>g>ir list c<strong>on</strong>trol tanks. The LCS is designed with PW as a<br />

back-up <str<strong>on</strong>g>to</str<strong>on</strong>g> using SW or firemain. This is advantageous for corrosi<strong>on</strong> issues, but can be a<br />

problem for PW inven<str<strong>on</strong>g>to</str<strong>on</strong>g>ry. Any leaks in <str<strong>on</strong>g>the</str<strong>on</strong>g> system or maintenance requiring system fill and<br />

17


drain could use a large amount of PW. When underway, potable water c<strong>on</strong>servati<strong>on</strong> is of<br />

primary importance.<br />

1.3.3 Move or exchange compartment spaces<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r opti<strong>on</strong> is <str<strong>on</strong>g>to</str<strong>on</strong>g> move or exchange compartment spaces, such as relocating heavy<br />

equipment <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard side <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> port side and vice versa. The reducti<strong>on</strong> of starboard<br />

moment by <str<strong>on</strong>g>the</str<strong>on</strong>g> removal or relocati<strong>on</strong> of items of lightship weight would reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity of<br />

ballast required, but would be very small by comparis<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of permanent ballast<br />

required. In order <str<strong>on</strong>g>to</str<strong>on</strong>g> achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary list correcti<strong>on</strong>s, an enormous amount of weight<br />

would have <str<strong>on</strong>g>to</str<strong>on</strong>g> be relocated. The costs involved with such an undertaking would be extremely<br />

high.<br />

1.3.4 C<strong>on</strong>vert a current DC void(s) <str<strong>on</strong>g>to</str<strong>on</strong>g> a JP-5 tank(s) and pump last<br />

C<strong>on</strong>verting portside DC floodable voids in<str<strong>on</strong>g>to</str<strong>on</strong>g> fuel tanks is also an opti<strong>on</strong>. This opti<strong>on</strong> will<br />

add <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overall weight of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship and again a reducti<strong>on</strong> in TSPS capability becomes a large<br />

c<strong>on</strong>cern as liquid is being placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> air layer and thus opening a window of vulnerability.<br />

1.3.5 Future ship alterati<strong>on</strong>s and modiflcati<strong>on</strong>s<br />

It is also possible that future modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft carrier will serve <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

provide a port list, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent starboard list. Modificati<strong>on</strong>s such as replacing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> existing <strong>Nimitz</strong> class starboard island with <str<strong>on</strong>g>the</str<strong>on</strong>g> new modified CVN 76 island could serve <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard list. In fact, CVN 76 has had so many design changes that its starboard<br />

inherent list is less than <strong>on</strong>e degree, currently based <strong>on</strong> preliminary results of its inclining<br />

experiment. <str<strong>on</strong>g>List</str<strong>on</strong>g> for CVN 76 has not been an issue thus far, however, at <str<strong>on</strong>g>the</str<strong>on</strong>g> time feedback was<br />

gained, <str<strong>on</strong>g>the</str<strong>on</strong>g> ship had not been fully loaded out. CVN 76 is slightly different from <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<strong>Nimitz</strong> class ships. The weap<strong>on</strong>s eleva<str<strong>on</strong>g>to</str<strong>on</strong>g>r is combined in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main structure and <str<strong>on</strong>g>the</str<strong>on</strong>g> aft mast is<br />

18


combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> island which is <strong>on</strong>e level shorter. There is also a more realistic protecti<strong>on</strong><br />

scheme such that a space armor c<strong>on</strong>cept was employed. On <str<strong>on</strong>g>the</str<strong>on</strong>g> older islands, such as CVN 73,<br />

Level III protecti<strong>on</strong> can be seen throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> entire island. This includes 40# (1") plating,<br />

whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> new CVN 76 island has Level II protecti<strong>on</strong> in some areas and is thus lighter.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r opti<strong>on</strong> could be <str<strong>on</strong>g>to</str<strong>on</strong>g> extend <str<strong>on</strong>g>the</str<strong>on</strong>g> port side flight deck <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> old <strong>Nimitz</strong> class, as<br />

was d<strong>on</strong>e <strong>on</strong> CVN 76. This allowed for more operati<strong>on</strong>al flexibility as <str<strong>on</strong>g>the</str<strong>on</strong>g> forward port jet blast<br />

deflec<str<strong>on</strong>g>to</str<strong>on</strong>g>r can now be used <str<strong>on</strong>g>to</str<strong>on</strong>g> its full extent. In any case, it is important <str<strong>on</strong>g>to</str<strong>on</strong>g> note that any number<br />

of ship alterati<strong>on</strong>s could be made when time and m<strong>on</strong>ey become available in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

1.3.6 Re-examine current <str<strong>on</strong>g>List</str<strong>on</strong>g> C<strong>on</strong>trol System<br />

Fleet feedback was taken in<str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>siderati<strong>on</strong> when performing this study. The design of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> current LCS reportedly requires extensive manpower for operati<strong>on</strong>s, possesses obsolete<br />

comp<strong>on</strong>ents, and is not integrated with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r shipboard liquid-movement functi<strong>on</strong>s. The<br />

installed LCS c<strong>on</strong>sists of 10 tanks, 2 pumps and 14 associated valves <str<strong>on</strong>g>to</str<strong>on</strong>g> distribute seawater<br />

ballast as required compensating for lists up <str<strong>on</strong>g>to</str<strong>on</strong>g> 1.5 degrees. The manually c<strong>on</strong>trolled system<br />

uses verbal communicati<strong>on</strong>s and associated sailor acti<strong>on</strong>s for operati<strong>on</strong>.<br />

Much of <str<strong>on</strong>g>the</str<strong>on</strong>g> fleet feedback received noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> current LCS provides sufficient<br />

c<strong>on</strong>trol when <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent starboard list has been corrected. The fleet also noted, however, that if<br />

correcti<strong>on</strong> has not been provided, <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS al<strong>on</strong>e does not provide ample list correcti<strong>on</strong> while at<br />

full combat load (average displacement between 98,000 and 100,000 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns, mean draft<br />

approximately between 38'10" and 39'10", even liquid distributi<strong>on</strong>, and standard spotting of<br />

aircraft for flight operati<strong>on</strong>s). Standard spotting includes F-18s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 and 4 row, hummers<br />

(fleet jarg<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> E-2C Hawkeye) in <str<strong>on</strong>g>the</str<strong>on</strong>g> hummer hole, F-14s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stem of <str<strong>on</strong>g>the</str<strong>on</strong>g> flight deck.<br />

19


helicopters and C-2 Greyhounds inboard of <str<strong>on</strong>g>the</str<strong>on</strong>g> island, cranes aft of <str<strong>on</strong>g>the</str<strong>on</strong>g> island, and <str<strong>on</strong>g>the</str<strong>on</strong>g> rest of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aircraft dispersed between <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

The LCS is currently being au<str<strong>on</strong>g>to</str<strong>on</strong>g>mated via <str<strong>on</strong>g>the</str<strong>on</strong>g> Au<str<strong>on</strong>g>to</str<strong>on</strong>g>mated <str<strong>on</strong>g>List</str<strong>on</strong>g> C<strong>on</strong>trol System alterati<strong>on</strong><br />

(ALCS 9145K). The ALCS provides remote c<strong>on</strong>trol and m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>ring of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft carrier LCS<br />

from Damage C<strong>on</strong>trol Central (DCC) and Shaft Alley via a flat panel display. Four existing loop<br />

valves are upgraded from manual <str<strong>on</strong>g>to</str<strong>on</strong>g> mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r operated and are integrated in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol system.<br />

Existing pump c<strong>on</strong>trollers are replaced and c<strong>on</strong>trol of pumps, valves and tank level m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>ring<br />

are integrated in<str<strong>on</strong>g>to</str<strong>on</strong>g> a single system with redundant capabilities. The ALCS utilizes commercialoff-<str<strong>on</strong>g>the</str<strong>on</strong>g>-shelf<br />

comp<strong>on</strong>ents and Navy-owned software <str<strong>on</strong>g>to</str<strong>on</strong>g> decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> manpower needed for<br />

operati<strong>on</strong> and maintenance, increase au<str<strong>on</strong>g>to</str<strong>on</strong>g>mati<strong>on</strong>, reduce life cycle costs and significantly<br />

improve system reliability. System line-up and tank management is au<str<strong>on</strong>g>to</str<strong>on</strong>g>mated and managed<br />

such that tanks can be filled faster, utilizing fewer watchstanders and increasing system<br />

efficiency. C<strong>on</strong>trol and m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>ring of <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS is performed from two human-machine interface<br />

(HMI) stati<strong>on</strong>s: <strong>on</strong>e in DCC and <strong>on</strong>e in Shaft Alley. The system can also be operated from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Central C<strong>on</strong>trol Stati<strong>on</strong>, and operates in both remote and semi-au<str<strong>on</strong>g>to</str<strong>on</strong>g>matic modes.<br />

Very little feedback has been obtained regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> new ALCS and its improvements <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

overall ship operati<strong>on</strong>s. To date, installati<strong>on</strong> has been completed <strong>on</strong> three of <str<strong>on</strong>g>the</str<strong>on</strong>g> ten planned<br />

carriers. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> system provides <str<strong>on</strong>g>the</str<strong>on</strong>g> means <str<strong>on</strong>g>to</str<strong>on</strong>g> au<str<strong>on</strong>g>to</str<strong>on</strong>g>matically operate pumps and valves,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> capacity of <str<strong>on</strong>g>the</str<strong>on</strong>g> system has not been changed. To really affect <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard inherent list,<br />

more ballasting is going <str<strong>on</strong>g>to</str<strong>on</strong>g> be required. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent starboard list is fixed, <str<strong>on</strong>g>the</str<strong>on</strong>g> ALCS will<br />

be extremely advantageous <str<strong>on</strong>g>to</str<strong>on</strong>g> overall carrier operati<strong>on</strong>s.<br />

20


1.3.7 Ballast Additi<strong>on</strong><br />

1.3.7.1 Water Ballast<br />

Special preparati<strong>on</strong> would be required for all tanks or voids using locked-in water ballast<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g> starboard inherent list. The sp<strong>on</strong>s<strong>on</strong> voids, in particular, are coated with epoxy over<br />

an inorganic zinc primer; this is suitable for installati<strong>on</strong> of water ballast, but <strong>on</strong>ly for a period of<br />

up <str<strong>on</strong>g>to</str<strong>on</strong>g> five years if it is intact. Preparati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong> voids for installati<strong>on</strong> of water would<br />

require inspecti<strong>on</strong> and possibly repair of <str<strong>on</strong>g>the</str<strong>on</strong>g> existing coating systems. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r problem with<br />

using water as a source of ballast is that it is difficult <str<strong>on</strong>g>to</str<strong>on</strong>g> provide a sufficient amount of water<br />

ballast in a space judicious manner in order <str<strong>on</strong>g>to</str<strong>on</strong>g> provide enough permanent list correcti<strong>on</strong>.<br />

Although water is an inexpensive material, utilities would have <str<strong>on</strong>g>to</str<strong>on</strong>g> be relocated <str<strong>on</strong>g>to</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r spaces<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves cannot be partially filled.<br />

1.3.7.2 Solid Ballast<br />

For purposes of this project, lead was not c<strong>on</strong>sidered as an opti<strong>on</strong> due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tremendous<br />

handling expenses and associated carcinogenic problems. Instead, a pumpable slurry of ir<strong>on</strong>-ore,<br />

known as Perma Ballast®, was examined as a possible source of solid ballast. Ballast<br />

Technologies Inc. (BTI) has been a provider and installer of Perma Ballast® since 1983. Their<br />

product is widely acknowledged <str<strong>on</strong>g>to</str<strong>on</strong>g> be <str<strong>on</strong>g>the</str<strong>on</strong>g> quickest and most cost-effective method of ballast<br />

installati<strong>on</strong>. All materials, including <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid used <str<strong>on</strong>g>to</str<strong>on</strong>g> install <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast, are naturally occurring,<br />

n<strong>on</strong><str<strong>on</strong>g>to</str<strong>on</strong>g>xic, n<strong>on</strong>-corrosive and envir<strong>on</strong>mentally safe. No gases or vapors are generated and no<br />

special handling is required up<strong>on</strong> installati<strong>on</strong> or removal.<br />

Minimal vessel modificati<strong>on</strong> is required <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby providing savings <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shipyard. Jobs are not generally subc<strong>on</strong>tracted out, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby cutting out <str<strong>on</strong>g>the</str<strong>on</strong>g> middle man and<br />

making this product more competitive. Prior <str<strong>on</strong>g>to</str<strong>on</strong>g> installati<strong>on</strong>, engineers and key pers<strong>on</strong>nel inspect<br />

21


<str<strong>on</strong>g>the</str<strong>on</strong>g> vessel <str<strong>on</strong>g>to</str<strong>on</strong>g> be ballasted and its locati<strong>on</strong>. Requirements such as electrical, water, compressed<br />

air, and equipment locati<strong>on</strong> are assessed. BTI engineers <str<strong>on</strong>g>the</str<strong>on</strong>g>n submit engineered drawings noting<br />

locati<strong>on</strong> of equipment and diagrams of <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> system al<strong>on</strong>g with a written operating plan<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> project. BTI uses its own experienced pers<strong>on</strong>nel and equipment during ballast<br />

installati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> ensure safe, rapid and efficient mobilizati<strong>on</strong>, installati<strong>on</strong>, and demobilizati<strong>on</strong>.<br />

BTI's ballast materials are mixed with water and pumped <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vessel via a combinati<strong>on</strong><br />

of rigid and flexible pipes. The slurry is pumped in at a c<strong>on</strong>trolled velocity in order <str<strong>on</strong>g>to</str<strong>on</strong>g> assure an<br />

even distributi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast around projecti<strong>on</strong>s, pipe, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objects, leaving no voids.<br />

Excess water is removed as <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast is installed and settles. This ensures that <str<strong>on</strong>g>the</str<strong>on</strong>g> in-place,<br />

fixed ballast is a dense mass which will not move or shift. Due <str<strong>on</strong>g>to</str<strong>on</strong>g> BTI's materials and placement<br />

method, no special handling or tank modificati<strong>on</strong>s are required.<br />

BTI pretests materials in its labora<str<strong>on</strong>g>to</str<strong>on</strong>g>ry <str<strong>on</strong>g>to</str<strong>on</strong>g> ensure proper density and uniformity.<br />

C<strong>on</strong>tinuous testing is performed during ballast installati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> verify installed density. Densities<br />

of materials range from 1501b/ft^ <str<strong>on</strong>g>to</str<strong>on</strong>g> 3501b/ftl All processes and materials used by BTI are<br />

approved by ASTM, ABS, MARAD, U.S. Navy, U.S. Coast Guard, Del Norske Veritas, and<br />

Lloyds. In fact, Perma Ballast® has already been installed <strong>on</strong> a number of naval vessels,<br />

particulariy DDG 73,76, and 77. The reas<strong>on</strong> for installati<strong>on</strong> was <str<strong>on</strong>g>to</str<strong>on</strong>g> correct a Flight II starboard<br />

list. Feedback obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g>se installati<strong>on</strong>s described <str<strong>on</strong>g>the</str<strong>on</strong>g> process as being very smooth and<br />

extremely successful.<br />

There are a number of advantages <str<strong>on</strong>g>to</str<strong>on</strong>g> using this Perma Ballast®. It is possible that Perma<br />

Ballast® will absorb shock over a limited area and serve <str<strong>on</strong>g>to</str<strong>on</strong>g> dampen it. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> individual<br />

particles and <str<strong>on</strong>g>the</str<strong>on</strong>g> water are incompressible, <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast® bed is made up of many very<br />

small particles which are not bound <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r by anything except gravity. There is approximately<br />

22


2% entrained air (by volume) in <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry. Some of this air probably remains in <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry after<br />

settling so it would be fair <str<strong>on</strong>g>to</str<strong>on</strong>g> say that Perma Ballast® c<strong>on</strong>tains about 1-2% (by volume)<br />

compressible comp<strong>on</strong>ents. Water is removed as <str<strong>on</strong>g>the</str<strong>on</strong>g> material settles, but even after <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma<br />

Ballast® settles, all of <str<strong>on</strong>g>the</str<strong>on</strong>g> voids between particles are filled by water. In fact, a settled bed of<br />

Perma Ballast® is an extremely effective barrier against permeati<strong>on</strong> of oxygen - ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bed or through it.<br />

1.4 Opti<strong>on</strong> Selecti<strong>on</strong><br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> opti<strong>on</strong>s presented above, <str<strong>on</strong>g>the</str<strong>on</strong>g> choice was made <str<strong>on</strong>g>to</str<strong>on</strong>g> use solid ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

starboard inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers. Based <strong>on</strong> ballast density, tank locati<strong>on</strong> and<br />

capacity, ease of ballast installati<strong>on</strong>, minor tank structural modificati<strong>on</strong>s, and a decisi<strong>on</strong> making<br />

cost analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast® appears <str<strong>on</strong>g>to</str<strong>on</strong>g> be <str<strong>on</strong>g>the</str<strong>on</strong>g> best opti<strong>on</strong> for use in correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent<br />

list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft carriers and is discussed extensively in Chapter 2.<br />

2.0 Preliminary Analysis and Results<br />

Preliminary analysis began with tank selecti<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> serve as input <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Program of Ship<br />

Salvage and Engineering (POSSE) computer analysis program, discussed later in secti<strong>on</strong> 2.2.<br />

Once tanks were selected for ballasting, a naval architectural analysis using POSSE was<br />

performed for 36 scenarios <str<strong>on</strong>g>to</str<strong>on</strong>g> determine list correcti<strong>on</strong>s. These scenarios encompassed<br />

ballasting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2°'', 4*, and 8* decks with 200 Ib/ft^ and 325 Ib/ft^ density ballast. Fresh water<br />

was also examined as a possible alternative, but not as extensively as <str<strong>on</strong>g>the</str<strong>on</strong>g> solid ballast opti<strong>on</strong>.<br />

Once a complete set of data was obtained, a decisi<strong>on</strong> making cost analysis was performed. This<br />

cost estimati<strong>on</strong> analysis proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density ballast was <str<strong>on</strong>g>the</str<strong>on</strong>g> best opti<strong>on</strong>. As a result,<br />

all structural analysis was performed using <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density ballast. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> structural<br />

analysis was complete, modeling had <str<strong>on</strong>g>to</str<strong>on</strong>g> be performed again using POSSE. In some cases, a<br />

23


minimum ballast weight was calculated for a particular set of tanks for <str<strong>on</strong>g>the</str<strong>on</strong>g> prescribed design<br />

criteria. Analysis had <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n be performed again in POSSE with <str<strong>on</strong>g>the</str<strong>on</strong>g>se new ballast weights.<br />

Similarly, some of <str<strong>on</strong>g>the</str<strong>on</strong>g> structural analysis revealed that stiffening was required for plating in<br />

some of <str<strong>on</strong>g>the</str<strong>on</strong>g> tank bulkheads. This required ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r cost assessment be performed in order <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

achieve accurate cost estimati<strong>on</strong>s. So, <strong>on</strong>e can see that this project followed a design spiral<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g>wards <str<strong>on</strong>g>to</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> most cost effective and advantageous solid ballasting soluti<strong>on</strong> for<br />

correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers.<br />

2.1 Tank Selecti<strong>on</strong><br />

Tanks selecti<strong>on</strong> was based <strong>on</strong> locati<strong>on</strong> and those that were available for ballasting based<br />

<strong>on</strong> <strong>Nimitz</strong> class carrier drawings. As menti<strong>on</strong>ed previously, ballasting was accomplished <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

relieve up <str<strong>on</strong>g>to</str<strong>on</strong>g> 3 degrees of list in half degree increments. 30 tanks, primarily in <str<strong>on</strong>g>the</str<strong>on</strong>g> aft/port voids,<br />

have been identified <str<strong>on</strong>g>to</str<strong>on</strong>g> accommodate <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> of Perma Ballast® with 200 Ib/ft^ and 325<br />

Ib/ftl There are 3 tanks or sp<strong>on</strong>s<strong>on</strong> voids <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^ deck, 16 tanks <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4*^ deck, and 11 tanks<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8 deck. The methodology utilized was as follows: <str<strong>on</strong>g>to</str<strong>on</strong>g> correct <str<strong>on</strong>g>the</str<strong>on</strong>g> most list possible<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> least weight possible. For example, tanks could have been chosen in <str<strong>on</strong>g>the</str<strong>on</strong>g> order of fill<br />

that were fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r aft <str<strong>on</strong>g>to</str<strong>on</strong>g> assist in trim correcti<strong>on</strong>, but that does not provide <str<strong>on</strong>g>the</str<strong>on</strong>g> best list correcti<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> least weight additi<strong>on</strong>. Trim was, however, taken in<str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>siderati<strong>on</strong> such that any<br />

additi<strong>on</strong> of ballast would not serve <str<strong>on</strong>g>to</str<strong>on</strong>g> increase <str<strong>on</strong>g>the</str<strong>on</strong>g> existing trim c<strong>on</strong>diti<strong>on</strong>. As a result, all<br />

changes in trim are also closely m<strong>on</strong>i<str<strong>on</strong>g>to</str<strong>on</strong>g>red.<br />

Included in Appendix A is a series of tables providing informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects that<br />

each tank would produce if <str<strong>on</strong>g>the</str<strong>on</strong>g> tank was individually filled <str<strong>on</strong>g>to</str<strong>on</strong>g> capacity in a combat load<br />

c<strong>on</strong>diti<strong>on</strong> with fresh water as well as each of <str<strong>on</strong>g>the</str<strong>on</strong>g> two ballast density types, 200 Ib/ft^ and 325<br />

lb/ft. This informati<strong>on</strong> includes:<br />

24


Tank name<br />

Tank volume<br />

Ballast type density<br />

Tank weight<br />

Initial KG<br />

Initial trim<br />

Initial weight<br />

Final KG<br />

Final trim<br />

Final weight<br />

A KG<br />

A trim<br />

A weight<br />

2.2 Modeling Analysis Performed<br />

POSSE was used <str<strong>on</strong>g>to</str<strong>on</strong>g> analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carrier. POSSE is a<br />

software package of modeling, naval architectural design <str<strong>on</strong>g>to</str<strong>on</strong>g>ols, and intact loading and salvage<br />

analysis <str<strong>on</strong>g>to</str<strong>on</strong>g>ols designed primarily for U.S. Navy salvage resp<strong>on</strong>se. The Modeling and Naval<br />

Architecture modules are Microsoft DOS® applicati<strong>on</strong>s packaged through a Windows interface<br />

called <str<strong>on</strong>g>the</str<strong>on</strong>g> Ship Project Edi<str<strong>on</strong>g>to</str<strong>on</strong>g>r. A plan is <str<strong>on</strong>g>the</str<strong>on</strong>g>n developed so that <str<strong>on</strong>g>the</str<strong>on</strong>g> engineer can evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ship in various c<strong>on</strong>diti<strong>on</strong>s. The collecti<strong>on</strong> of c<strong>on</strong>diti<strong>on</strong>s represents <str<strong>on</strong>g>the</str<strong>on</strong>g> steps in <str<strong>on</strong>g>the</str<strong>on</strong>g> plan <str<strong>on</strong>g>to</str<strong>on</strong>g> assess<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> status of <str<strong>on</strong>g>the</str<strong>on</strong>g> vessel. POSSE provides an efficient means <str<strong>on</strong>g>to</str<strong>on</strong>g> develop plans using a tree<br />

structure <str<strong>on</strong>g>to</str<strong>on</strong>g> allow a hierarchical definiti<strong>on</strong> that permits branching <str<strong>on</strong>g>to</str<strong>on</strong>g> investigate various potential<br />

soluti<strong>on</strong>s. Several branches can be developed and viewed c<strong>on</strong>currently. A c<strong>on</strong>diti<strong>on</strong> represents a<br />

25


particular state of <str<strong>on</strong>g>the</str<strong>on</strong>g> vessel. It includes all load and strength informati<strong>on</strong> associated with that<br />

state. For purposes of this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, <strong>on</strong>ly intact states were analyzed.<br />

<strong>Aircraft</strong> carrier modeling in POSSE was <str<strong>on</strong>g>to</str<strong>on</strong>g>o cumbersome <str<strong>on</strong>g>to</str<strong>on</strong>g> analyze for <str<strong>on</strong>g>the</str<strong>on</strong>g> original DOS<br />

versi<strong>on</strong>. In fact, any analysis prior <str<strong>on</strong>g>to</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis would have <str<strong>on</strong>g>to</str<strong>on</strong>g> been d<strong>on</strong>e in secti<strong>on</strong>s. With<br />

POSSE 4.0, <str<strong>on</strong>g>the</str<strong>on</strong>g> complete Microsoft Windows® versi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong>s were able <str<strong>on</strong>g>to</str<strong>on</strong>g> be combined<br />

in<str<strong>on</strong>g>to</str<strong>on</strong>g> a single ship project (.shp) file using <str<strong>on</strong>g>the</str<strong>on</strong>g> ship project edi<str<strong>on</strong>g>to</str<strong>on</strong>g>r. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 68 <strong>Nimitz</strong> <strong>Class</strong><br />

hull was put <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, a weight ordinate was entered <str<strong>on</strong>g>to</str<strong>on</strong>g> adjust <str<strong>on</strong>g>the</str<strong>on</strong>g> lightship data so that it<br />

coincided with <str<strong>on</strong>g>the</str<strong>on</strong>g> most recent data available. It has been very difficult <str<strong>on</strong>g>to</str<strong>on</strong>g> determine <str<strong>on</strong>g>the</str<strong>on</strong>g> exact<br />

inherent list that each carrier exhibits when under combat load c<strong>on</strong>diti<strong>on</strong>s due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> "unknown<br />

light ship (LS) growth" associated with each carrier and due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lack of in-service inclining<br />

experiments performed <strong>on</strong> <strong>Nimitz</strong> class carriers. Unknown LS growth is used <str<strong>on</strong>g>to</str<strong>on</strong>g> term<br />

unattributable changes in displacement and centers of gravity over <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's service life.<br />

Examples of unknown LS growth include but are not limited <str<strong>on</strong>g>to</str<strong>on</strong>g>: unauthorized alterati<strong>on</strong>s or<br />

installati<strong>on</strong>s of equipment, accumulati<strong>on</strong>s of paint, deck covering, dead cable runs, old<br />

foundati<strong>on</strong>s, undocumented c<strong>on</strong>figurati<strong>on</strong> changes affecting weight and KG, and excess and<br />

obsolete repair parts, technical manuals, and paperwork. Naval Sea Systems Command's<br />

Weights and Stability Divisi<strong>on</strong> has recently revised <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown light ship (LS) weight and KG<br />

growth data for CVN 71 through CVN 75 based <strong>on</strong> re-evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> results of <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 71<br />

Actual Operating C<strong>on</strong>diti<strong>on</strong> (AOC) Weight Survey and Displacement Test and <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 68 Post-<br />

Refueling Complex Overhaul (RCOH) inclining experiment.<br />

The CVN 68 inclining experiment was <str<strong>on</strong>g>the</str<strong>on</strong>g> first in-service inclining experiment of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NIMITZ class in 27 years. The CVN 71 displacement test determined <str<strong>on</strong>g>the</str<strong>on</strong>g> ships displacement<br />

and l<strong>on</strong>gitudinal, transverse but not vertical center of gravity. The CVN 68 post RCOH inclining<br />

26


was successfully performed and <str<strong>on</strong>g>the</str<strong>on</strong>g> results are c<strong>on</strong>sidered <str<strong>on</strong>g>to</str<strong>on</strong>g> be accurate. The results of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inclining show that <str<strong>on</strong>g>the</str<strong>on</strong>g> ship had an unknown lightship weight growth of 1,818 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns and 0.47 feet<br />

of KG increase. The fully loaded c<strong>on</strong>diti<strong>on</strong> was determined <str<strong>on</strong>g>to</str<strong>on</strong>g> have a displacement of 100,019<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns with a KG of 47.21 feet. This provides 3,781 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns (3.78%) and 1.29 feet KG service life<br />

allowance remaining when compared <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting displacement of 103,800 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns and a KG<br />

compara<str<strong>on</strong>g>to</str<strong>on</strong>g>r value of 48.50 feet.<br />

The following changes were made <str<strong>on</strong>g>to</str<strong>on</strong>g> all stability baselines for CVN 71-75:<br />

• CVN 71<br />

o Increase <str<strong>on</strong>g>the</str<strong>on</strong>g> current LS vertical center of gravity by 0.25 feet <str<strong>on</strong>g>to</str<strong>on</strong>g> account for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unknown LS KG growth.<br />

• CVN 72-75<br />

o Revise <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown LS weight growth <str<strong>on</strong>g>to</str<strong>on</strong>g> 2,333 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns.<br />

o Locate <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown LS weight growth at <str<strong>on</strong>g>the</str<strong>on</strong>g> following centers of gravity:<br />

■ VCG = 60.5 ft<br />

■ LCG = 72.47 ft (A)<br />

■ TCG = 5.62 ft (P)<br />

As a result of this unknown growth, an average <strong>Nimitz</strong> class carrier baseline c<strong>on</strong>diti<strong>on</strong><br />

was modeled in POSSE and used for all analyses. Lightship and Combat Load C<strong>on</strong>diti<strong>on</strong> data<br />

was obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 72 Weight and Moment Baseline Report. This report is based <strong>on</strong>:<br />

1) CVN 68 post RCOH inclining experiment load out,<br />

2) CVN 71 Actual Operating C<strong>on</strong>diti<strong>on</strong> (AOC) results,<br />

3) CVN 73 <strong>Aircraft</strong>/JP-5 Revisi<strong>on</strong>s,<br />

4) Scheduled Restricted Availabilities (SRAs) actually accomplished.<br />

27


5) <str<strong>on</strong>g>the</str<strong>on</strong>g> latest estimates for next overhaul,<br />

6) <str<strong>on</strong>g>the</str<strong>on</strong>g> latest Availability FYOl Planned Incremental Availability (PIA), and<br />

7) LCS at 50%.<br />

A Lightship C<strong>on</strong>diti<strong>on</strong> of 81,450.69 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns and a Combat Load C<strong>on</strong>diti<strong>on</strong> of 104,263.10<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns were obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 72 Weight and Moment Baseline report and used for<br />

modeling purposes. These values are from before <str<strong>on</strong>g>the</str<strong>on</strong>g> latest correcti<strong>on</strong> for unknown growth was<br />

applied. Included in Table 1 are <str<strong>on</strong>g>the</str<strong>on</strong>g> current CVN class predicti<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> most recent<br />

unknown growth correcti<strong>on</strong>s applied. This is an extremely important chart because it shows<br />

each carrier's delivery data and class predicti<strong>on</strong>s for displacement, KG, and list.<br />

The VCG, LCG, TCG, and volume of each tank being analyzed was <str<strong>on</strong>g>the</str<strong>on</strong>g>n checked and<br />

modified if necessary <str<strong>on</strong>g>to</str<strong>on</strong>g> ensure accurate stability and analytical results. These naval architecture<br />

parameters were checked against <str<strong>on</strong>g>the</str<strong>on</strong>g> compartment and access database for CVN 70. Normally,<br />

<strong>on</strong>e would use <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's lines drawings and develop <str<strong>on</strong>g>the</str<strong>on</strong>g> hull up <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkhead and freeboard<br />

decks (i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> highest level <str<strong>on</strong>g>to</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be watertight/structural salvage operati<strong>on</strong>s). On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> basis of this modeling, <strong>on</strong>e checks <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrostatics and curves of form against <str<strong>on</strong>g>the</str<strong>on</strong>g> builder's<br />

documents <str<strong>on</strong>g>to</str<strong>on</strong>g> determine if <str<strong>on</strong>g>the</str<strong>on</strong>g> hull has been modeled correctly. Any freely flooding area above<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> freeboard deck will generally be left off <str<strong>on</strong>g>the</str<strong>on</strong>g> hull model unless <str<strong>on</strong>g>the</str<strong>on</strong>g> deck is a strength deck (i.e.<br />

part of hull girder bending). The 2"'' deck sp<strong>on</strong>s<strong>on</strong> voids had <str<strong>on</strong>g>to</str<strong>on</strong>g> be added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y were not included previously and POSSE is normally <strong>on</strong>ly utilized <str<strong>on</strong>g>to</str<strong>on</strong>g> model what is inside<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ship's hull. Builder's lines drawings were not used, however, because salvage and<br />

hydrostatic work was not needed for purposes of this project. Instead, weights and centers were<br />

input <str<strong>on</strong>g>to</str<strong>on</strong>g> model <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 72 data <str<strong>on</strong>g>to</str<strong>on</strong>g> determine and correct <str<strong>on</strong>g>the</str<strong>on</strong>g> ship's list. After careful accounting<br />

28


of each tank's locati<strong>on</strong> was added, verified, or corrected, <str<strong>on</strong>g>the</str<strong>on</strong>g> file was imported in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> POSSE<br />

program so that a combat load could be applied.<br />

The combat load c<strong>on</strong>diti<strong>on</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g>n modified <str<strong>on</strong>g>to</str<strong>on</strong>g> reflect <str<strong>on</strong>g>the</str<strong>on</strong>g> current CVN 72 baseline<br />

combat load data menti<strong>on</strong>ed previously as c<strong>on</strong>stants in <str<strong>on</strong>g>the</str<strong>on</strong>g> POSSE plan that was newly created.<br />

This includes a correcti<strong>on</strong> for:<br />

1) crew and effects,<br />

2) aviati<strong>on</strong> ammuniti<strong>on</strong>,<br />

3) ship ammuniti<strong>on</strong>,<br />

4) provisi<strong>on</strong>s and s<str<strong>on</strong>g>to</str<strong>on</strong>g>res,<br />

5) general s<str<strong>on</strong>g>to</str<strong>on</strong>g>res,<br />

6) lube oil,<br />

7) potable water,<br />

8) reserve and emergency feed water,<br />

9) oxygen and nitrogen producti<strong>on</strong> plant,<br />

10) JP-5 aviati<strong>on</strong> fuel,<br />

ll)gasohne,<br />

12) aircraft,<br />

13) aviati<strong>on</strong> yellow gear,<br />

14) aviati<strong>on</strong> lube oil,<br />

15) <strong>on</strong>board discharge s<str<strong>on</strong>g>to</str<strong>on</strong>g>rage tanks, and<br />

16) bilge and oily water.<br />

Then, <str<strong>on</strong>g>to</str<strong>on</strong>g> reflect CVN 71 AOC results, a miscellaneous weight correcti<strong>on</strong> fac<str<strong>on</strong>g>to</str<strong>on</strong>g>r was<br />

added at <str<strong>on</strong>g>the</str<strong>on</strong>g> combat load c<strong>on</strong>diti<strong>on</strong> TCG, VCG, and LCG. Now, <str<strong>on</strong>g>the</str<strong>on</strong>g> combat load c<strong>on</strong>diti<strong>on</strong> was<br />

29


accurate and ready for <str<strong>on</strong>g>the</str<strong>on</strong>g> creati<strong>on</strong> of several variant c<strong>on</strong>diti<strong>on</strong>s. Specifically, a c<strong>on</strong>diti<strong>on</strong> for<br />

water ballast, high density ballast (325 Ib/ft^), and low density ballast (200 Ib/ft^) was created.<br />

Included in Appendix B is a series of tables providing POSSE modeling results in a<br />

combat load c<strong>on</strong>diti<strong>on</strong> for list correcti<strong>on</strong> in half degree increments up <str<strong>on</strong>g>to</str<strong>on</strong>g> 3 degrees for fresh water<br />

as well as each of <str<strong>on</strong>g>the</str<strong>on</strong>g> two ballast density types, 200 Ib/ft^ and 325 Ib/ftl This informati<strong>on</strong><br />

includes:<br />

• Tank name<br />

• Tank volume<br />

• Ballast type density<br />

• Tank weight<br />

Degree Increment:<br />

• Weight<br />

• Percent change<br />

• A KG<br />

• A Trim<br />

A 95% usable volume fracti<strong>on</strong> was utilized for all calculati<strong>on</strong>s. This value provides for<br />

structural internals as well as for any utilities that may be running through <str<strong>on</strong>g>the</str<strong>on</strong>g> spaces. There are<br />

no losses due <str<strong>on</strong>g>to</str<strong>on</strong>g> compacti<strong>on</strong>. According <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vendor, BTI, because <str<strong>on</strong>g>the</str<strong>on</strong>g> water is removed as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

material settles, all of <str<strong>on</strong>g>the</str<strong>on</strong>g> voids between particles are filled by water and remain filled by water.<br />

It must be noted again, however, that a settled bed of Perma Ballast® is an extremely effective<br />

barrier against permeati<strong>on</strong> of oxygen - ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bed or through it.<br />

30


2.3 Preliminary Decisi<strong>on</strong>-Making Cost Estimati<strong>on</strong><br />

All decisi<strong>on</strong> making costing or "c<strong>on</strong>cept" estimati<strong>on</strong> was performed by Norfolk Naval<br />

Shipyard's Structural Engineering and Planning Office (Code 256). This preliminary costing<br />

was performed prior <str<strong>on</strong>g>to</str<strong>on</strong>g> any structural analysis. It was presumed that <strong>on</strong>e type of ballast or <strong>on</strong>e<br />

locati<strong>on</strong> of ballast could be ruled out solely based <strong>on</strong> cost al<strong>on</strong>e. As a result, a final cost analysis<br />

would still need <str<strong>on</strong>g>to</str<strong>on</strong>g> be performed after <str<strong>on</strong>g>the</str<strong>on</strong>g> structural analysis was completed. Cost estimati<strong>on</strong><br />

was performed for a combinati<strong>on</strong> of 36 scenarios <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'', 4*, and 8* decks. A specific<br />

number of man-hours were allocated under each shop for jobs associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> of<br />

Perma Ballast®. These jobs ranged from <str<strong>on</strong>g>the</str<strong>on</strong>g> opening and closing of voids <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> preparing and<br />

painting of any additi<strong>on</strong>al structures. The cost estimati<strong>on</strong> was broken down by man-hours and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>verted <str<strong>on</strong>g>to</str<strong>on</strong>g> man-days. A <str<strong>on</strong>g>to</str<strong>on</strong>g>tal producti<strong>on</strong> cost was <str<strong>on</strong>g>the</str<strong>on</strong>g>n derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> man-days<br />

required for tank prepping <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast® installati<strong>on</strong>. Similarly, material producti<strong>on</strong> costs<br />

were calculated for prepping a typical void while additi<strong>on</strong>al material costs were additi<strong>on</strong>ally<br />

applied for canning plate installati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^" deck. A canning plate, used <str<strong>on</strong>g>to</str<strong>on</strong>g> enclose <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

required amount of ballast, would <strong>on</strong>ly be utilized in analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2°^ deck because both <str<strong>on</strong>g>the</str<strong>on</strong>g> 4'<br />

and 8* decks are completely filled in all of <str<strong>on</strong>g>the</str<strong>on</strong>g> modeling scenarios. Any additi<strong>on</strong>al weight added<br />

due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of internal structures or stiffening was also tabulated and tracked.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> 4* and 8* decks did not require canning plates, any costing associated with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se decks involved limited material costs and fairly minor producti<strong>on</strong> costs. Much of <str<strong>on</strong>g>the</str<strong>on</strong>g> work<br />

associated with all <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks includes:<br />

• Opening and closing of tanks<br />

• Touch-up painting<br />

• Removal and reinstallati<strong>on</strong> of accesses<br />

31


• Testing of all accesses<br />

• Removal and reinstallati<strong>on</strong> of any interferences<br />

• Patching and repair of deck coverings<br />

It was assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' deck would require structural modificati<strong>on</strong>s due <str<strong>on</strong>g>to</str<strong>on</strong>g> thinner shell<br />

plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong>s (compared <str<strong>on</strong>g>to</str<strong>on</strong>g> thicker hull shell plating found <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8"' deck voids).<br />

Two sp<strong>on</strong>s<strong>on</strong> voids were analyzed in depth for cost estimati<strong>on</strong> purposes, 2-165-8-V and 2-180-6-<br />

V. All producti<strong>on</strong> and material costs were based <strong>on</strong> prepping and work <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> entire tank. As a<br />

result, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'* deck void costs are much higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"* and 8* deck voids due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir size.<br />

Similarly, a thumb rule was applied <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> T"^ deck voids when filled <str<strong>on</strong>g>to</str<strong>on</strong>g> 95% and no canning pate<br />

work was required. The <str<strong>on</strong>g>to</str<strong>on</strong>g>tal structural work, for both producti<strong>on</strong> and material costs, is half <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cost of <str<strong>on</strong>g>the</str<strong>on</strong>g> canning plate work. These cost estimates do not take in<str<strong>on</strong>g>to</str<strong>on</strong>g> account relocati<strong>on</strong> of<br />

existing utilities that may be running through <str<strong>on</strong>g>the</str<strong>on</strong>g> spaces. An analysis was performed, however,<br />

that determined that ballasting <str<strong>on</strong>g>the</str<strong>on</strong>g>se selected tanks would have little, if any impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks,<br />

and that relocati<strong>on</strong> of utilities would probably not be required.<br />

Table 2 is an example cost comparis<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> preliminary cost estimati<strong>on</strong> results found.<br />

Producti<strong>on</strong> and material costs are <str<strong>on</strong>g>the</str<strong>on</strong>g> same regardless of <str<strong>on</strong>g>the</str<strong>on</strong>g> density of <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast being used.<br />

Table 2: Deck Locati<strong>on</strong> Cost Comparis<strong>on</strong><br />

2nd Deck 4th Deck 8th Deck<br />

2-165-8-V 2-180-6-V All Voids All Voids<br />

Volume (ft') 3,969 6,273 approx. 600 approx. 1,000<br />

Producti<strong>on</strong> Costs $328,704 $525,958 $21,186 $21,186<br />

Material Costs $22,126 $35,402 $500 $500<br />

Weight Added<br />

a<str<strong>on</strong>g>to</str<strong>on</strong>g>n) 4.71 7.54 0 0<br />

32


All fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r costing calculati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2°'' deck voids less than 95% filled were <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

performed as a percentage of <str<strong>on</strong>g>the</str<strong>on</strong>g> entire tank. For example, if a 2"'' deck sp<strong>on</strong>s<strong>on</strong> void was <str<strong>on</strong>g>to</str<strong>on</strong>g> be<br />

filled 22%, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding voids producti<strong>on</strong> and material costs were multiplied by 22%.<br />

This was allowable because of <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2°'* deck voids as shown in<br />

Figure 1. Sp<strong>on</strong>s<strong>on</strong> void 2-165-8-V runs 60 feet l<strong>on</strong>g and sp<strong>on</strong>s<strong>on</strong> void 2-180-6-V runs 96 feet<br />

l<strong>on</strong>g. A detailed producti<strong>on</strong> and material cost breakdown for <str<strong>on</strong>g>the</str<strong>on</strong>g> 36 opti<strong>on</strong>s menti<strong>on</strong>ed is located<br />

in Appendix C. The worksheets used <str<strong>on</strong>g>to</str<strong>on</strong>g> perform <str<strong>on</strong>g>the</str<strong>on</strong>g>se cost estimati<strong>on</strong>s are also located in<br />

Appendix C. A complete preliminary cost comparis<strong>on</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g>n performed for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2° , 4', and<br />

8* decks. This comparis<strong>on</strong> provides <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

• Total Cost<br />

o Producti<strong>on</strong> cost<br />

o Material cost<br />

o<br />

Perma Ballast® cost<br />

• Total Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns)<br />

o Material Weight<br />

o<br />

Perma Ballast® Weight<br />

• A KG<br />

This decisi<strong>on</strong> making cost comparis<strong>on</strong> revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density Perma Ballast®<br />

was much more ec<strong>on</strong>omical than <str<strong>on</strong>g>the</str<strong>on</strong>g> 325 Ib/ft^ density Perma Ballast®. It takes nearly <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

amount of ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> affect each incremental degree change <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same deck regardless if using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ or 325 Ib/ft^. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> number of tanks required <str<strong>on</strong>g>to</str<strong>on</strong>g> ballast with 200 Ib/ft^ was<br />

higher, it was still more cost effective <str<strong>on</strong>g>to</str<strong>on</strong>g> use <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density ballast due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> price per I<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> 325 Ib/ft^ ballast. The 325 Ib/ft^ ballast has steel shot added <str<strong>on</strong>g>to</str<strong>on</strong>g> it <str<strong>on</strong>g>to</str<strong>on</strong>g> help achieve its high<br />

33


density. It was also discovered at this early stage of analysis that for correcti<strong>on</strong>s at or bey<strong>on</strong>d 1.5<br />

degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2" deck was a much better locati<strong>on</strong> for this ballast additi<strong>on</strong> due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lesser weight<br />

additi<strong>on</strong> resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> larger moment arm generated by filling <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' deck voids. The costs<br />

associated with adding ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' deck is much higher, but <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of ballast required<br />

is significantly less than that required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"" and 8"' decks. For correcti<strong>on</strong>s less than 1.5<br />

degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2" deck and <str<strong>on</strong>g>the</str<strong>on</strong>g> 8"" decks have a fairly comparable weight additi<strong>on</strong>, however,<br />

ballasting <str<strong>on</strong>g>the</str<strong>on</strong>g> 8' deck tanks costs significantly less. The complete preliminary cost comparis<strong>on</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^ 4*^, and 8'" decks is found in Appendix D.<br />

Adding ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' deck voids does increase KG and thus reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> KG service<br />

life allowance margin; however, <str<strong>on</strong>g>the</str<strong>on</strong>g> increase seen is fairly small. In fact, as shown in Appendix<br />

D, a 1.5 degree list correcti<strong>on</strong> results in approximately a 0.1 percent KG increase. On average,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers currently have a KG of 47 feet, as shown in Table 1. The goal KG<br />

service life allowance is not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed 48.5 feet. Thus, <str<strong>on</strong>g>to</str<strong>on</strong>g> fix an inherent list of 1.5 degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

would be a .05 foot increase in KG.<br />

34


2.4 Structural Analysis<br />

One tank <strong>on</strong> each deck was chosen for structural analysis due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical<br />

similarities between tanks. Analysis was performed <strong>on</strong> any existing shell and/or deck plating, as<br />

well as all l<strong>on</strong>gitudinal and transverse bulkheads for <str<strong>on</strong>g>the</str<strong>on</strong>g> tank chosen from each deck. The<br />

volume of each tank was obtained from POSSE so that <str<strong>on</strong>g>the</str<strong>on</strong>g> weight of Perma Ballast® required <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

fill <str<strong>on</strong>g>the</str<strong>on</strong>g> entire tank could be calculated in I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns. The density used for all <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast®<br />

calculati<strong>on</strong>s was 200 Ib/ft^. All structural calculati<strong>on</strong>s are located in Appendix E.<br />

All surface ships shall be designed <str<strong>on</strong>g>to</str<strong>on</strong>g> withstand a number of loading c<strong>on</strong>diti<strong>on</strong>s including<br />

ship moti<strong>on</strong> loads. Ship moti<strong>on</strong> loads are defined by [6] as <str<strong>on</strong>g>the</str<strong>on</strong>g> inertia forces and gravity<br />

comp<strong>on</strong>ents resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> moti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ship in a seaway. The ship moti<strong>on</strong> fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs for this<br />

analysis were obtained from Naval Sea Systems Command's Ship Survivability Divisi<strong>on</strong>.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs will vary slightly depending <strong>on</strong> locati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> be<br />

c<strong>on</strong>stant. They are as follows:<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.25 Vertical<br />

A := 0.75 Athwartship<br />

F := 0.4 Fore/Aft<br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> ship moti<strong>on</strong> fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs were applied <str<strong>on</strong>g>to</str<strong>on</strong>g> each directi<strong>on</strong> respectively, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>tal normal<br />

force could be calculated. The force affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> structural analysis was dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck or bulkhead being analyzed. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>tal force acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"<br />

deck's sp<strong>on</strong>s<strong>on</strong> shell plating had <str<strong>on</strong>g>to</str<strong>on</strong>g> be resolved from both a vertical and athwartship force. The<br />

resulting pressure, or equivalent head, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plating was <str<strong>on</strong>g>the</str<strong>on</strong>g>n found using this resolved normal<br />

force. Each tank was based <strong>on</strong> a 95% usable volume <str<strong>on</strong>g>to</str<strong>on</strong>g> account for structural internals or<br />

utilities running through <str<strong>on</strong>g>the</str<strong>on</strong>g> space.<br />

35


In accordance with [6], panels of plating shall be proporti<strong>on</strong>ed so as not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

breadth-thickness ratios indicated by:<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

_b ^ C C = coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

t ~ K • -V/H locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

panel<br />

H = head of salt water (feet)<br />

The coefficients C and K are provided in Table I of Secti<strong>on</strong> 100, <str<strong>on</strong>g>the</str<strong>on</strong>g> General<br />

Requirements for Hull Structure, in [6]. There are a number of key assumpti<strong>on</strong>s that were made<br />

following <str<strong>on</strong>g>the</str<strong>on</strong>g>se design criteria for plate panels subjected <str<strong>on</strong>g>to</str<strong>on</strong>g> normal loads. The ship plating is<br />

divided up in<str<strong>on</strong>g>to</str<strong>on</strong>g> any number of panels, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of stiffening that exists. The<br />

panel is c<strong>on</strong>sidered <str<strong>on</strong>g>to</str<strong>on</strong>g> have clamped or fixed ends and is subject <str<strong>on</strong>g>to</str<strong>on</strong>g> cylindrical bending, a plate<br />

that is subject <str<strong>on</strong>g>to</str<strong>on</strong>g> bending about <strong>on</strong>e axis <strong>on</strong>ly (as usually occurs for l<strong>on</strong>g plates). The cross-<br />

secti<strong>on</strong> of this panel is c<strong>on</strong>sidered <str<strong>on</strong>g>to</str<strong>on</strong>g> be rectangular in shape with a depth equal <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plating<br />

thickness and a unit width. The K coefficient is important for relatively short panels. The C<br />

coefficient is actually derived from standard beam <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for a fixed-fixed beam, by combining<br />

allowable stress, specific gravity of salt water, and this K coefficient. An example of a C<br />

coefficient derivati<strong>on</strong> starting with beam <str<strong>on</strong>g>the</str<strong>on</strong>g>ory can be seen at <str<strong>on</strong>g>the</str<strong>on</strong>g> end of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^* deck sp<strong>on</strong>s<strong>on</strong><br />

shell plating structural calculati<strong>on</strong>s shown in Appendix E.<br />

Also important <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> structural calculati<strong>on</strong>s, particularly for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'^ deck<br />

sp<strong>on</strong>s<strong>on</strong> shell plating, was <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum shell plating pressure. According <str<strong>on</strong>g>to</str<strong>on</strong>g> CVN 76<br />

specificati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum pressure for sp<strong>on</strong>s<strong>on</strong> shell plating is 1000 psf. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

limiting weight of Perma Ballast® for <str<strong>on</strong>g>the</str<strong>on</strong>g>se tanks had <str<strong>on</strong>g>to</str<strong>on</strong>g> be calculated based <strong>on</strong> not exceeding<br />

36


this pressure. This resulted in a reducti<strong>on</strong> of approximately 55 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast, for this particular<br />

case <strong>on</strong>ly. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly structural analysis performed for <str<strong>on</strong>g>the</str<strong>on</strong>g> 4* deck void was <strong>on</strong> its deck<br />

plating. Once it was determined that deck stiffening would be required, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4* deck tanks were<br />

taken out of c<strong>on</strong>siderati<strong>on</strong> as a possible locati<strong>on</strong> for placing this ballast. Although adding a<br />

stiffener down <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating would alleviate any structural c<strong>on</strong>cerns, welding <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating would have <str<strong>on</strong>g>to</str<strong>on</strong>g> be performed. With welding required <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m deck plating,<br />

a watch would need <str<strong>on</strong>g>to</str<strong>on</strong>g> be stati<strong>on</strong>ed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck. The tanks below <str<strong>on</strong>g>the</str<strong>on</strong>g>se 4 deck<br />

tanks are foam filled and a fire watch cannot be stati<strong>on</strong>ed in <str<strong>on</strong>g>the</str<strong>on</strong>g>se tanks.<br />

Once a maximum pressure in head of water was calculated, <str<strong>on</strong>g>the</str<strong>on</strong>g> breadth-thickness ratio<br />

formula could be used again <str<strong>on</strong>g>to</str<strong>on</strong>g> determine <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffener spacing or limiting short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

panel. If <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated maximum distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners can be located apart fell less than<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> actual stiffener spacing, <str<strong>on</strong>g>the</str<strong>on</strong>g>n no plastic deformati<strong>on</strong> would occur and stiffening of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating<br />

was not required. If stiffening was required, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> panel thickness was usually divided in half<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> accommodate <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated pressure.<br />

The final calculati<strong>on</strong>s involved verifying that <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated maximum allowable stress<br />

was less than <str<strong>on</strong>g>the</str<strong>on</strong>g> design allowable stress for <str<strong>on</strong>g>the</str<strong>on</strong>g> particular type of steel, regardless of whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

any modificati<strong>on</strong>s were made. The basic equati<strong>on</strong> used <str<strong>on</strong>g>to</str<strong>on</strong>g> calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum stress<br />

governing <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior of plating under lateral load, or plate bending, can be seen below.<br />

Using small deflecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> value of <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient k depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary<br />

c<strong>on</strong>diti<strong>on</strong>s. For simply supported edges, k=.75 and for clamped edges, k=.5. Simply supported<br />

and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating zero<br />

stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On<br />

37


oard ship, structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in<br />

fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. This equati<strong>on</strong> is used for all plates whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>y are<br />

l<strong>on</strong>g or not, and <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient k also accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio a/b. Again, b is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel and t is <str<strong>on</strong>g>the</str<strong>on</strong>g> plating thickness. Figure 1 illustrates graphically <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stresses in rectangular plates under uniform lateral pressure.<br />

— 050<br />

-^ 0 225<br />

Of<br />

Stress<br />

k P l-j- )<br />

k Depends <strong>on</strong> : piatt edge c<strong>on</strong>diti<strong>on</strong>s<br />

Plote side ratio —<br />

b<br />

Positi<strong>on</strong> of point c<strong>on</strong>sidered<br />

These k values are calculated from<br />

Elastic Small - Deflecti<strong>on</strong> plote <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

j taking Poiss<strong>on</strong>'s rotio i) « 0-3<br />

12 14 1-6 18 2 0<br />

2 2 2 i<br />

Figure 1: Stresses in rectangular plates under uniform lateral pressure [2]<br />

38


2.4.1 Structural Modificati<strong>on</strong>s<br />

2.4.1.1 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2'"' Deck<br />

There were actually three port sp<strong>on</strong>s<strong>on</strong> voids modeled in POSSE <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2° deck.<br />

Due <str<strong>on</strong>g>to</str<strong>on</strong>g> existing geometrical similarities between <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks, <strong>on</strong>ly compartment 2-165-8-V was<br />

analyzed for possible structural modificati<strong>on</strong>s. Basic dimensi<strong>on</strong>s and tank geometry can be seen<br />

below in Figure 2.<br />

FR 175<br />

FR 180<br />

Main Deck<br />

4^<br />

9.83'<br />

6 3/4"<br />

2nd Deck<br />

S Tees, spaced 25" apart {30#)<br />

Figure 2: 2°" Deck Compartment 2-165-8-V<br />

It was found that <strong>on</strong>ly 281 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast could be added <str<strong>on</strong>g>to</str<strong>on</strong>g> this compartment in order<br />

not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> 1000 psf sp<strong>on</strong>s<strong>on</strong> shell plating maximum pressure criteria. Table 3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

required structural modificati<strong>on</strong>s for compartment 2-165-8-V for a 281 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n ballast additi<strong>on</strong> at<br />

200 Ib/ft^. All calculati<strong>on</strong>s are located in Appendix E.<br />

39


Table 3: Required Structural Modificati<strong>on</strong>s for 2-165-8-V<br />

Ship Structure<br />

Structural Modiflcati<strong>on</strong>s<br />

Sp<strong>on</strong>s<strong>on</strong> Shell<br />

Plating<br />

Add 7 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 13" X 181.56"<br />

Ship Shell Plating<br />

(Inner L<strong>on</strong>gitudinal<br />

Bulkhead)<br />

No modificati<strong>on</strong>s required<br />

Transverse<br />

Bulkheads (Frames<br />

165,170,175, and<br />

180) No modificati<strong>on</strong>s required<br />

The sp<strong>on</strong>s<strong>on</strong> shell plating required <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of 7 vertical stiffeners due <str<strong>on</strong>g>to</str<strong>on</strong>g> its thinner<br />

plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong>s. The sp<strong>on</strong>s<strong>on</strong> shell plating is <strong>on</strong>ly 10.2# (.25") plate. The inner<br />

l<strong>on</strong>gitudinal bulkhead, which is really <str<strong>on</strong>g>the</str<strong>on</strong>g> ship shell plating, is 30.6# (.75") and <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse<br />

bulkheads are 20.4# (.5"). Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse bulkheads are extensively stiffened, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

l<strong>on</strong>gitudinal stiffener has <strong>on</strong>e large horiz<strong>on</strong>tal stiffener running down <str<strong>on</strong>g>the</str<strong>on</strong>g> center of <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkhead.<br />

As a result, modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se bulkheads were not required. A cross-secti<strong>on</strong>al view of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transverse bulkhead at Frame 165 is shown in Figure 3.<br />

40


Main Deck<br />

Shell<br />

FR 165 - FR 180 Transverse Bulkheads<br />

20.4# (.5")<br />

11.5' ><br />

Stringer #6<br />

Girder<br />

13 7/8" X 6 3/4" Tee-<br />

Ship<br />

Shell<br />

Plating<br />

30.6# (.75")<br />

fr Sp<strong>on</strong>s<strong>on</strong><br />

^Plating<br />

10.2 #(.251<br />

2nd Deck<br />

Stringer #1<br />

Shell<br />

Figure 3: 2 Deck Compartment 2-165-8-V, transverse secti<strong>on</strong><br />

4 th<br />

2.4.1.2 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4" Deck<br />

As menti<strong>on</strong>ed previously, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly structural analysis performed for <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"^ deck void was<br />

<strong>on</strong> its deck plating. Once it was determined that deck stiffening would be required, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4 deck<br />

tanks were taken out of c<strong>on</strong>siderati<strong>on</strong> as a possible locati<strong>on</strong> for placing this ballast. The 4' deck<br />

voids do not have any stiffened plating. Although adding a stiffener down <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck<br />

plating would alleviate any structural c<strong>on</strong>cerns, welding <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating could not be<br />

performed due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam filled void below and <str<strong>on</strong>g>the</str<strong>on</strong>g> inability <str<strong>on</strong>g>to</str<strong>on</strong>g> stati<strong>on</strong> a fire watch <str<strong>on</strong>g>the</str<strong>on</strong>g>re. Table<br />

4, however, shows <str<strong>on</strong>g>the</str<strong>on</strong>g> structural modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating that would be necessary for<br />

ith<br />

41


compartment 4-165-4-V for a 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n ballast additi<strong>on</strong> at 200 Ib/ftl All calculati<strong>on</strong>s are located in<br />

Appendix E.<br />

Table 4: Required Structural Modificati<strong>on</strong>s for 4-165-4-V<br />

Ship Structure<br />

Deck Plating<br />

Structural Modificati<strong>on</strong>s<br />

Add 1 l<strong>on</strong>gitudinal stiffener<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 24" X<br />

240"<br />

There were sixteen port voids modeled in POSSE <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4"' deck. Due <str<strong>on</strong>g>to</str<strong>on</strong>g> existing<br />

geometrical similarities between <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks, <strong>on</strong>ly compartment 4-165-4-V was analyzed for<br />

possible structural modificati<strong>on</strong>s. Basic dimensi<strong>on</strong>s and tank geometry can be seen below in<br />

Figure 4.<br />

3rd Deck<br />

FR 170 Transverse Bulkhead<br />

20.4# {.5")<br />

4th Deck Plating<br />

20.4# (.5")<br />

4th Deck<br />

FR 165 Transverse Bulkhead<br />

HB#3 4-4' ^BB#2 20.4# (.5")<br />

40.8#(1.0") 25.5#(.625")<br />


2.4.1.3 Modificati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* Deck<br />

There were eleven port voids modeled in POSSE <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* deck. Due <str<strong>on</strong>g>to</str<strong>on</strong>g> existing<br />

geometrical similarities between <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks, <strong>on</strong>ly compartment 8-225-6-V was analyzed for<br />

possible structural modificati<strong>on</strong>s. Basic dimensi<strong>on</strong>s and tank geometry can be seen below in<br />

Figure 5.<br />

Innsr L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4)<br />

14.024# (.343")<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

(L<strong>on</strong>gitudinal Bulkhead #3)<br />

17.85# (.437')<br />

FR 230 Trans^/erse Bulkhead<br />

12:75# (.3125")<br />

Shell Plating<br />

30.S# (.75")<br />

FR 225 Transverse Bulkhead<br />

'Q.- ^-1. 15.3#(.375l<br />

, —Stringer #14<br />

^Stringer #11<br />

Figure 5: 8* Deck Compartment 8-225-6-V<br />

There is c<strong>on</strong>siderable stiffening already in all <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* deck voids. It was determined,<br />

however, that <str<strong>on</strong>g>the</str<strong>on</strong>g> plating thickness for <str<strong>on</strong>g>the</str<strong>on</strong>g>se voids is much thinner than initially estimated. As a<br />

result, most of <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkheads require stiffening. Structural analysis was first performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shell plating. A minimum ballast weight of 227 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns was calculated so that structural<br />

modificati<strong>on</strong>s would not be required <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship shell plating. This weight, however, is still <str<strong>on</strong>g>to</str<strong>on</strong>g>o<br />

high for <str<strong>on</strong>g>the</str<strong>on</strong>g> rest of <str<strong>on</strong>g>the</str<strong>on</strong>g> bulkheads, as <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r bulkheads do require stiffening. It is<br />

recommended that a stiffener be placed between each existing stiffener <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal and<br />

transverse bulkheads. Table 5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> required structural modificati<strong>on</strong>s for compartment 8-<br />

225-6-V for a 227 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n ballast additi<strong>on</strong> at 200 Ib/ft^. All calculati<strong>on</strong>s are located in Appendix E.<br />

43


Table 5: Required Structural Modificati<strong>on</strong>s for 8-225-6-V<br />

Ship Structure<br />

Structural Modiflcati<strong>on</strong>s<br />

Shell Plating<br />

Inner L<strong>on</strong>gitudinal<br />

Bulkhead (Shaft Alley<br />

Bulkhead #4)<br />

Outer L<strong>on</strong>gitudinal<br />

Bulkhead (Bulkhead<br />

#3)<br />

Transverse Bulkhead<br />

(Frame 225)<br />

Transverse Bulkhead<br />

(Frame 230)<br />

No modificati<strong>on</strong>s required<br />

Add 5 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 24" X 114"<br />

Add 5 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 24" X 87"<br />

Add 4 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 15" X 114"<br />

*Note-panel height is dependent <strong>on</strong><br />

trapezoidal geometry<br />

Add 4 vertical stiffeners<br />

(5" X 4" X 7.5# X T) (MS)<br />

Max Panel Plating Size: 15" X 114"<br />

*Note-panel height is dependent <strong>on</strong><br />

trapezoidal geometry<br />

3.0 Final Analysis and Results<br />

This project design spiraled <str<strong>on</strong>g>to</str<strong>on</strong>g>ward finding <str<strong>on</strong>g>the</str<strong>on</strong>g> most cost effective and advantageous<br />

solid ballasting soluti<strong>on</strong> for correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers. The<br />

preliminary decisi<strong>on</strong>-making cost estimati<strong>on</strong> proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density was <str<strong>on</strong>g>the</str<strong>on</strong>g> most cost<br />

effective for <str<strong>on</strong>g>the</str<strong>on</strong>g> same amount of ballast weight. The 325 Ib/ft^ ballast was so much more<br />

expensive, that although <str<strong>on</strong>g>the</str<strong>on</strong>g> number of tanks required <str<strong>on</strong>g>to</str<strong>on</strong>g> ballast with 200 Ib/ft^ was higher, it was<br />

still more cost effective <str<strong>on</strong>g>to</str<strong>on</strong>g> use <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 Ib/ft^ density ballast. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> structural analysis was<br />

complete, <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum ballasting weights that were found had <str<strong>on</strong>g>to</str<strong>on</strong>g> be analyzed in POSSE again.<br />

For this analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4'*' deck was eliminated completely due <str<strong>on</strong>g>to</str<strong>on</strong>g> its structural limitati<strong>on</strong>s.<br />

Similarly, any required structural modificati<strong>on</strong>s that were not already included in <str<strong>on</strong>g>the</str<strong>on</strong>g> cost<br />

estimati<strong>on</strong>s had <str<strong>on</strong>g>to</str<strong>on</strong>g> be taken in <str<strong>on</strong>g>to</str<strong>on</strong>g> account for both <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' and S"' decks.<br />

44


3.1 Final POSSE Results<br />

The minimum amount of 200 Ib/ft^ ballast that could be added <str<strong>on</strong>g>to</str<strong>on</strong>g> compartment 2-165-8-V<br />

was found <str<strong>on</strong>g>to</str<strong>on</strong>g> be 281 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns which corresp<strong>on</strong>ds <str<strong>on</strong>g>to</str<strong>on</strong>g> 79% of that compartment's <str<strong>on</strong>g>to</str<strong>on</strong>g>tal capacity. Up<br />

until this point, all tanks had been analyzed <str<strong>on</strong>g>to</str<strong>on</strong>g> 95% of <str<strong>on</strong>g>to</str<strong>on</strong>g>tal capacity due <str<strong>on</strong>g>to</str<strong>on</strong>g> structural internals or<br />

possible utilities running through <str<strong>on</strong>g>the</str<strong>on</strong>g> space. Structural analysis was <str<strong>on</strong>g>the</str<strong>on</strong>g>n performed for<br />

compartment 2-180-6-V. A minimum ballast weight of 448 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns was calculated so that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum pressure design criteri<strong>on</strong> of 1000 psf was not violated. Because less ballast could be<br />

added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se tanks, <str<strong>on</strong>g>the</str<strong>on</strong>g> POSSE analysis had <str<strong>on</strong>g>to</str<strong>on</strong>g> be expanded <str<strong>on</strong>g>to</str<strong>on</strong>g> include compartment 2-250-4-V.<br />

These new results for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2""^ deck had little effect <strong>on</strong> KG and <strong>on</strong>ly enhanced <str<strong>on</strong>g>the</str<strong>on</strong>g> aft trim<br />

correcti<strong>on</strong>.<br />

The minimum amount of 200 Ib/ft^ ballast that could be added <str<strong>on</strong>g>to</str<strong>on</strong>g> compartment 8-225-6-V<br />

was 227 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns. This was calculated <str<strong>on</strong>g>to</str<strong>on</strong>g> avoid performing structural modificati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship shell<br />

plating. As a result, <strong>on</strong>ly 90% of that compartment's <str<strong>on</strong>g>to</str<strong>on</strong>g>tal capacity could be utilized which was<br />

5% less than originally analyzed in POSSE. This time, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than perform a structural analysis<br />

<strong>on</strong> all <str<strong>on</strong>g>the</str<strong>on</strong>g> 8* deck voids, a maximum capacity thumb rule of 90% was applied <str<strong>on</strong>g>to</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> 8"' deck<br />

voids. As a result, different tanks were selected and analyzed <str<strong>on</strong>g>to</str<strong>on</strong>g> achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> least I<str<strong>on</strong>g>to</str<strong>on</strong>g>n additi<strong>on</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> same incremental change in degrees. Again, this had little effect <strong>on</strong> KG and change in<br />

trim.<br />

A table providing POSSE modeling results in a combat load c<strong>on</strong>diti<strong>on</strong> for list correcti<strong>on</strong><br />

in half degree increments up <str<strong>on</strong>g>to</str<strong>on</strong>g> 3 degrees for 200 Ib/ft^ is included in Appendix F. This<br />

informati<strong>on</strong> includes:<br />

• Tank name<br />

• Tank volume<br />

45


• Ballast type density<br />

• Tank weight<br />

Degree Increment:<br />

• Weight<br />

• Percent change<br />

• A KG<br />

• A Trim<br />

3.2 Final Cost Estimati<strong>on</strong><br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> POSSE modeling analysis was complete, a final cost assessment was made<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> new results for list correcti<strong>on</strong> in half degree increments up <str<strong>on</strong>g>to</str<strong>on</strong>g> 3 degrees for <str<strong>on</strong>g>the</str<strong>on</strong>g> T^<br />

and 8"" deck tanks. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> 8'*' deck tanks now had <str<strong>on</strong>g>to</str<strong>on</strong>g> be stiffened, <str<strong>on</strong>g>the</str<strong>on</strong>g> material costs and<br />

material weights had <str<strong>on</strong>g>to</str<strong>on</strong>g> be determined. The producti<strong>on</strong> costs were assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> be <str<strong>on</strong>g>the</str<strong>on</strong>g> same. This<br />

informati<strong>on</strong> is included in Appendix G. Also, analysis <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> T^ deck revealed that<br />

compartment 2-250-2-V had <str<strong>on</strong>g>to</str<strong>on</strong>g> be used when trying <str<strong>on</strong>g>to</str<strong>on</strong>g> correct 3 degrees of list. Code 256<br />

provided producti<strong>on</strong> and material costs as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> material weights for tank prepping <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Perma Ballast® installati<strong>on</strong>.<br />

All cost estimati<strong>on</strong>s were calculated and derived as previously discussed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preliminary cost estimati<strong>on</strong> secti<strong>on</strong>. This time, however, 2"^* deck tanks were based <strong>on</strong><br />

approximately 80% fillable capacity and S"" deck tanks were based <strong>on</strong> approximately 90%<br />

finable capacity. When filled <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se capacities, canning plate work was not required.<br />

Similarly, any additi<strong>on</strong>al weight added due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of internal structures or stiffening was<br />

again tabulated and tracked. Table 6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>tal cost, <str<strong>on</strong>g>to</str<strong>on</strong>g>tal weight additi<strong>on</strong>, and change in<br />

KG for each half degree increment <strong>on</strong> both <str<strong>on</strong>g>the</str<strong>on</strong>g> T^ and 8'*' decks.<br />

46


Table 6: Final Cost, Weight Additi<strong>on</strong>, and Change in KG Comparis<strong>on</strong><br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> (Degrees) 0.5 1 1.5<br />

Ballast Density (200 lbs/ft') (200 lbs/ft^) (200 lbs/ft^)<br />

Tank Locati<strong>on</strong><br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

Producti<strong>on</strong> Cost ($) 115,046 42,372 243,240 84,744 280,062 127,116<br />

Material Cost ($) 7,744 8,850 16,373 17,700 18,851 26,550<br />

Perma Cost ($)** 127,900 139,825 158,950 186,400 190,675 227,125<br />

Total Cost ($) 250,690 191,047 418,563 288,844 489,588 380,791<br />

Material Weight<br />

(L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 1.65 0.80 3.49 1.61 4.01 2.41<br />

Perma Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 124 177 262 384 403 565<br />

Total Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 125.65 177.80 265.49 385.61 407.01 567.41<br />

A KG (ft)** +0.02 -0.02 +0.04 -0.05 +0.05 -0.08<br />

**Perma cost estimates 5ased<strong>on</strong> $1 00,000 + $: >25/lt for 200 lbs/ft'^3<br />

**(+) indicates increasing KG which is a negative effect<br />

**(-) indicates decreasing KG which is a positive effect<br />

<str<strong>on</strong>g>List</str<strong>on</strong>g> (Degrees) 2 2.5 3<br />

Ballast Density (20011 bs/ft^) (20011 t>s/ft') (2001 bs/ft^)<br />

Tank Locati<strong>on</strong><br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

2nd<br />

Deck<br />

8th<br />

Deck<br />

Producti<strong>on</strong> Cost ($) 411,552 148,302 427,331 211,860 478,840 233,046<br />

Material Cost ($) 27,701 30,975 28,764 44,250 32,231 48,675<br />

Perma Cost ($)** 222,175 295,075 253,675 341,200 288,775 392,050<br />

Total Cost ($) 661,428 474,352 709,770 597,310 799,846 673,771<br />

Material Weight<br />

(L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 5.90 2.81 6.13 4.02 6.86 4.42<br />

Perma Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 543 867 683 1,072 839 1,298<br />

Total Weight (L<str<strong>on</strong>g>to</str<strong>on</strong>g>ns) 548.90 869.81 689.13 1,076.02 845.86 1302.42<br />

A KG (ft)** +0.07 -0.13 +0.09 -0.14 +0.11 -0.17<br />

**Perma cost estimates jased <strong>on</strong> $1 00,000 + $: I25l\i for 20 0 lbs/ft'^3<br />

**(+) indicates increasing KG which is a negative effect<br />

**(-) indicates decreasing KG which is a positive effect<br />

47


3.2.1 Ease of Removal<br />

As menti<strong>on</strong>ed previously, Perma Ballast® is removable. In fact, removal costs were ^<br />

assessed as well for this project <strong>on</strong> a per tank basis. For <str<strong>on</strong>g>the</str<strong>on</strong>g> purposes of this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, all tank<br />

prepping costs for ballast removal by BTI were also calculated by Norfolk Naval Shipyard (Code<br />

256). It was estimated that it would cost approximately $78,652 for labor and material <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

remove/reinstall accesses and interferences for <strong>on</strong>e 8"" deck tank, and approximately $63,412 for<br />

labor and material <str<strong>on</strong>g>to</str<strong>on</strong>g> remove/reinstall accesses for <strong>on</strong>e 2"^* deck tank.<br />

Ballast removal costs were also obtained from BTI. It was determined that it would be<br />

best for BTI <str<strong>on</strong>g>to</str<strong>on</strong>g> actually remove <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast and dispose of it due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high costs involved should<br />

a naval shipyard need <str<strong>on</strong>g>to</str<strong>on</strong>g> dispose of <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast. For ballast removal, BTI will charge a fixed fee •<br />

of $100,000 for locating and utilizing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir equipment and approximately $395 <str<strong>on</strong>g>to</str<strong>on</strong>g> remove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ballast per I<str<strong>on</strong>g>to</str<strong>on</strong>g>n. They also estimated approximately $65 per I<str<strong>on</strong>g>to</str<strong>on</strong>g>n <str<strong>on</strong>g>to</str<strong>on</strong>g> dispose of it. All pricing is<br />

based <strong>on</strong> disposal of 100% of <str<strong>on</strong>g>the</str<strong>on</strong>g> water used <str<strong>on</strong>g>to</str<strong>on</strong>g> re-slurry <str<strong>on</strong>g>the</str<strong>on</strong>g> material.<br />

I*<br />

For example, a 1.5 degree list correcti<strong>on</strong> would require approximately 400 I<str<strong>on</strong>g>to</str<strong>on</strong>g>n of ballast<br />

and would need <str<strong>on</strong>g>to</str<strong>on</strong>g> be removed from two 2"*^ deck tanks. This would result in a <str<strong>on</strong>g>to</str<strong>on</strong>g>tal removal ^<br />

cost of $347,412 of which $284,000 is for <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast removal and $63,412 is for removing and<br />

reinstalling accesses. It should be noted that this ballast additi<strong>on</strong> is <strong>on</strong>ly as permanent a soluti<strong>on</strong><br />

as it needs <str<strong>on</strong>g>to</str<strong>on</strong>g> be. For example, should future modificati<strong>on</strong>s entail replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> old <strong>Nimitz</strong> island ^<br />

with a new CVN 76 island, it would <str<strong>on</strong>g>the</str<strong>on</strong>g>n be desirable and cost effective <str<strong>on</strong>g>to</str<strong>on</strong>g> remove this ballast.<br />

3.2.2 Evidence Perma Ballast® is n<strong>on</strong>-corrosive<br />

Recently, <str<strong>on</strong>g>the</str<strong>on</strong>g> American Bureau of Shipping (ABS) required a sealift c<strong>on</strong>versi<strong>on</strong> vessel<br />

that installed this Perma Ballast® in 1984 <str<strong>on</strong>g>to</str<strong>on</strong>g> remove its ballast. C<strong>on</strong>cern had arisen because a<br />

tank inspecti<strong>on</strong> revealed that corrosi<strong>on</strong> coup<strong>on</strong>s had underg<strong>on</strong>e significant weight loss. ti<br />

48


Corrosi<strong>on</strong> coup<strong>on</strong>s are placed in all tanks that have Perma Ballast® installed so that periodic<br />

tank inspecti<strong>on</strong>s can be made <str<strong>on</strong>g>to</str<strong>on</strong>g> determine if corrosi<strong>on</strong> exists. It turned out that <str<strong>on</strong>g>the</str<strong>on</strong>g> corrosi<strong>on</strong><br />

coup<strong>on</strong>s were improperly attached <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> manhole covers and <strong>on</strong>ly rested in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>ps of <str<strong>on</strong>g>the</str<strong>on</strong>g> beds<br />

of Perma Ballast®. The corrosi<strong>on</strong> coup<strong>on</strong>s should be hung <strong>on</strong> chains and buried within <str<strong>on</strong>g>the</str<strong>on</strong>g> bed<br />

of ballast. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> years, <str<strong>on</strong>g>the</str<strong>on</strong>g> coup<strong>on</strong>s were repeatedly exposed <str<strong>on</strong>g>to</str<strong>on</strong>g> air and water during<br />

inspecti<strong>on</strong>s, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than being properly re-installed in<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast®. ABS did report,<br />

however, that all 4 of <str<strong>on</strong>g>the</str<strong>on</strong>g> tanks were in perfect c<strong>on</strong>diti<strong>on</strong> after <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma Ballast® removal,<br />

almost 20 years after initial installati<strong>on</strong>. Actual cost data was also obtained from this vessel.<br />

The cost <str<strong>on</strong>g>to</str<strong>on</strong>g> cut in<str<strong>on</strong>g>to</str<strong>on</strong>g> 8 compartments and remove <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast was approximately $250,000. The<br />

cost <str<strong>on</strong>g>to</str<strong>on</strong>g> replace <str<strong>on</strong>g>the</str<strong>on</strong>g> steel and reweld <str<strong>on</strong>g>the</str<strong>on</strong>g> hull after <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast was reinstalled was approximately<br />

$100,000. As <strong>on</strong>e can see, <str<strong>on</strong>g>the</str<strong>on</strong>g> removal costs are relatively low and experience proves that<br />

corrosi<strong>on</strong> will not be a c<strong>on</strong>cern.<br />

49


4.0 C<strong>on</strong>clusi<strong>on</strong><br />

Solid ballast is <str<strong>on</strong>g>the</str<strong>on</strong>g> most advantageous soluti<strong>on</strong> for correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Nimitz</strong> class aircraft carriers. Table 6 illustrates that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a number of advantages and<br />

disadvantages that must be c<strong>on</strong>sidered when determining <str<strong>on</strong>g>the</str<strong>on</strong>g> proper locati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Perma<br />

Ballast®.<br />

• The 2" deck is <str<strong>on</strong>g>the</str<strong>on</strong>g> choice locati<strong>on</strong> for list correcti<strong>on</strong>s at or bey<strong>on</strong>d 1.5 degrees.<br />

The costs associated with adding ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"^^ deck is much higher, but <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount of ballast required is significantly less than that required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 4'^ and 8<br />

decks.<br />

o Advantages:<br />

■ significantly less weight added<br />

o Disadvantages:<br />

■ more costly<br />

■ increased KG*<br />

• For list correcti<strong>on</strong>s less than 1.5 degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g> choice locati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> S'*' deck. Less<br />

than 1.5 degrees, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2"'' and 8"" decks have a fairly comparable weight additi<strong>on</strong>,<br />

however, ballasting <str<strong>on</strong>g>the</str<strong>on</strong>g> 8'*' deck tanks costs significantly less.<br />

o Advantages:<br />

■ significantly less costly<br />

■ decreased KG*<br />

o Disadvantages:<br />

■ increased weight additi<strong>on</strong><br />

th<br />

*Any positive change in KG serves <str<strong>on</strong>g>to</str<strong>on</strong>g> reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining KG service life allowance. The<br />

average KG service life allowance remaining for most carriers is approximately 1.5 feet. Even<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> greatest list correcti<strong>on</strong> of 3 degrees is <strong>on</strong>ly a 7% reducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining KG service life<br />

allowance for <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft carriers.<br />

50


5.0 Recommendati<strong>on</strong>s<br />

1. As can be seen in Table 1, most of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class aircraft carriers currently have an<br />

average list of approximately 1.5 degrees. It is recommended that <str<strong>on</strong>g>the</str<strong>on</strong>g> ships be ballasted <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

T^ deck at this point <str<strong>on</strong>g>to</str<strong>on</strong>g> avoid adding excess ballast as menti<strong>on</strong>ed previously. The cost is<br />

approximately 22% higher, but <str<strong>on</strong>g>the</str<strong>on</strong>g> weight additi<strong>on</strong> is approximately 28% less. This is a<br />

c<strong>on</strong>siderable amount of weight reducti<strong>on</strong>. The displacement service life allowance must also be<br />

analyzed. If you assume a c<strong>on</strong>tract displacement of 100,000 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns with a 5% service life<br />

displacement allowance for an in-service carrier, <str<strong>on</strong>g>the</str<strong>on</strong>g>n 400 l<strong>on</strong>g <str<strong>on</strong>g>to</str<strong>on</strong>g>ns <str<strong>on</strong>g>to</str<strong>on</strong>g> correct 1.5 degrees of<br />

inherent list would be less than 1/10 of <str<strong>on</strong>g>the</str<strong>on</strong>g> service life (100,000 * .05 = 5,000 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns and 400 /<br />

5000 is approx. 8%). This can be viewed as a significant change in displacement or a relatively<br />

small change in displacement when looking at all <str<strong>on</strong>g>the</str<strong>on</strong>g> advantages that come with correcting <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inherent list <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Nimitz</strong> class carriers. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> cost per I<str<strong>on</strong>g>to</str<strong>on</strong>g>n for a 1.5 degree list correcti<strong>on</strong> is<br />

approximately $1,200. This is truly inexpensive from a survivability standpoint and also reduces<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong>al c<strong>on</strong>straints placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship.<br />

2. The prudent manner in which <str<strong>on</strong>g>to</str<strong>on</strong>g> handle <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list associated with each aircraft<br />

carrier is <str<strong>on</strong>g>to</str<strong>on</strong>g> perform an inclining experiment <strong>on</strong> each carrier. The inclining experiment data can<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n be used <str<strong>on</strong>g>to</str<strong>on</strong>g> assess <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of ballast necessary for installati<strong>on</strong> and can be c<strong>on</strong>ducted when<br />

each ship's operati<strong>on</strong>al schedule will permit it. As menti<strong>on</strong>ed previously, much of <str<strong>on</strong>g>the</str<strong>on</strong>g> data for<br />

each carrier has been extrapolated from re-evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> results of <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 71 Displacement<br />

Test and <str<strong>on</strong>g>the</str<strong>on</strong>g> CVN 68 Post-RCOH inclining experiment. Knowing that <str<strong>on</strong>g>the</str<strong>on</strong>g>se tests are extremely<br />

expensive and that CVN 71-75 are <str<strong>on</strong>g>the</str<strong>on</strong>g> carriers in need of list correcti<strong>on</strong>, perhaps an inclining<br />

experiment could be performed <strong>on</strong> <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g>se carriers so that data could <str<strong>on</strong>g>the</str<strong>on</strong>g>n be extrapolated<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

51


3. Until this point, <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been Httle menti<strong>on</strong> of what reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent list could<br />

do for manpower reducti<strong>on</strong>. The number of man-hours that could be saved due <str<strong>on</strong>g>to</str<strong>on</strong>g> fixing this<br />

problem could far outweigh anything discussed in this project so far. This is certainly something<br />

that should be studied and investigated as well.<br />

^<br />

52


References<br />

[I] Design Data Sheet 079-1, "Stability and buoyancy of U. S. Naval Surface Ships,"<br />

Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Ship Engineering Center.<br />

[2] Hughes, Owen F., "Ship Structural Design: A Rati<strong>on</strong>ally-Based, Computer-Aided<br />

Optimizati<strong>on</strong> Approach," The Society of Naval Architects and Marine Engineers, 1988.<br />

[3] NAVSEA 0900-LP-097-4010, "Structural Design Manual For Naval Surface Ships,"<br />

Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Sea System Command, 15 December 1976.<br />

[4] NAVSEAINST 9096.3D, "Weight and Moment Compensati<strong>on</strong> and Limiting Drafts for<br />

Naval Surface Ships," Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Sea Systems Command, 16<br />

August 2001.<br />

[5] NAVSEAINST 9096.6B, "Policy for Weight and Vertical Center of Gravity Above<br />

Bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m of Keel (KG) Margins for Surface Ships," Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Sea<br />

Systems Command, 16 August 2001.<br />

[6] NAVSEA S9AA0-AA-SPN-010, "General Specificati<strong>on</strong> for Ships of <str<strong>on</strong>g>the</str<strong>on</strong>g> United States<br />

Navy," Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Naval Sea Systems Command, 1991.<br />

[7] <strong>Nimitz</strong> <strong>Class</strong> Ship Specificati<strong>on</strong>s<br />

[8] <strong>Nimitz</strong> <strong>Class</strong> Ship Characteristics and Drawings<br />

[9] N.S. NAPPI ASSOCIATES, INC, "Investigati<strong>on</strong> of an Alternative Method for<br />

Determining <str<strong>on</strong>g>the</str<strong>on</strong>g> Limiting Displacement for Strength for CVN 68-CVN 70 Ships,"<br />

Rockville, Maryland, January 2003.<br />

[10] OPNAVINST 9070.1, "Survivability Policy for Surface Ships of <str<strong>on</strong>g>the</str<strong>on</strong>g> U. S. Navy,"<br />

Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Office of <str<strong>on</strong>g>the</str<strong>on</strong>g> Chief of Naval Operati<strong>on</strong>s, 23 September 1988.<br />

[II] OPNAVINST 9096.1, "Weight and Stability Limits for Naval Surface Ships,"<br />

Department of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Office of <str<strong>on</strong>g>the</str<strong>on</strong>g> Chief of Naval Operati<strong>on</strong>s, 12 November 1985.<br />

[12] Mal<strong>on</strong>e, Michael L., "An Alternate Method for <str<strong>on</strong>g>the</str<strong>on</strong>g> Determinati<strong>on</strong> of <strong>Aircraft</strong> <strong>Carriers</strong><br />

Limiting Displacement for Strength," Master's Thesis, Massachusetts Institute of<br />

Technology, June 2001.<br />

[13] Roark, Raym<strong>on</strong>d J., "Formulas for Stress and Strain," McGraw-Hill Book Company,<br />

1975.<br />

[14] USS Dwight D. Eisenhower (CVN 69) Engineering Department Standing Order 05, "<str<strong>on</strong>g>List</str<strong>on</strong>g><br />

C<strong>on</strong>trol System Management," Engineering Department, USS Dwight D. Eisenhower<br />

(CVN 69), 30 December 1999.<br />

53


Appendix A: Tank Locati<strong>on</strong> Study<br />

54


O<br />

CO<br />

■*.<br />

CM<br />

d CVI<br />

d CVI<br />

d CO<br />

d CO<br />

d CO<br />

d CO<br />

d CVI<br />

d CVI<br />

d CVI<br />

d CO<br />

d d CO CO<br />

d d CO CO<br />

d CO<br />

d<br />

d d in d d CO<br />

d 00<br />

d d CD<br />

d cvi<br />

d d d<br />

CO<br />

LI<br />

«<br />

q<br />

5<br />

CO 00<br />

cvj<br />

00<br />

cvi<br />

00<br />

cvi cvi cvi cvi cvi CO<br />

cvi<br />

00<br />

cvi<br />

oo<br />

cvi<br />

1^<br />

cvi<br />

1^<br />

cvj cvi cvi 1^<br />

cvi cvi<br />

CO<br />

cvj<br />

CD<br />

cvj<br />

in<br />

cvi<br />

CO<br />

cvi cvi CVI<br />

cvi<br />

CO<br />

cvi cvi 00<br />

cvj<br />

CO<br />

cvi<br />

CO<br />

cvi<br />

LL<br />

E<br />

k.<br />

H<br />

<br />

•a<br />

c<br />

(B<br />

E<br />

H<br />

iS<br />

c<br />


!D<br />

2<br />

(0<br />

"O<br />

c<br />

a<br />

E<br />

k.<br />

1-<br />

o<br />

m<br />

c<br />

OJ a> d<br />

d d d CVI<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d CM<br />

d<br />

d CO<br />

d CO<br />

d CM<br />

d CVI<br />

d in<br />

d CO<br />

d d CM<br />

d CO<br />

d d<br />

w<br />

LI<br />

la<br />

c<br />

ii.<br />

CO ^<br />

CM<br />

en<br />

cvi CM<br />

en<br />

CM<br />

oo<br />

cvi<br />

00<br />

CM<br />

oo<br />

CM<br />

00<br />

CM<br />

CO<br />

cvi<br />

oo<br />

cvi<br />

CO<br />

cvi<br />

OO<br />

cvi<br />

00<br />

c\i<br />

00<br />

cvi<br />

00<br />

cvi<br />

oo<br />

cvi<br />

00<br />

CM<br />

CO<br />

CM<br />

cvi cvi<br />

oo<br />

cvi<br />

00<br />

cvi<br />

in<br />

cvi cvi<br />

CD<br />

cvi<br />

00<br />

cvi cvi<br />

CO<br />

cvi<br />

T—<br />

d<br />

CM<br />

in<br />

d<br />

in<br />

CD<br />

d<br />

in<br />

o<br />

d<br />

■<br />

in<br />

o<br />

CD<br />

§<br />

d<br />

1<br />

in<br />

o<br />

d<br />

1<br />

O<br />

d<br />

1<br />

CO<br />

o<br />

d<br />

1<br />

CO<br />

o<br />

d<br />

1<br />

o<br />

o<br />

d<br />

o<br />

o<br />

d<br />

o<br />

d d<br />

CM<br />

o<br />

d<br />

CO<br />

o<br />

d o<br />

d d<br />

in<br />

o<br />

d<br />

d<br />

in<br />

d<br />

in<br />

d d<br />

o<br />

d<br />

5<br />

d<br />

CD<br />

d<br />

CM<br />

CO<br />

d<br />

o<br />

d<br />

■5t<br />

CM<br />

d d<br />

E<br />

H<br />

LL<br />

c\i<br />

CO<br />

CM<br />

CM<br />

CM<br />

cvi CM<br />

o<br />

cvi CM<br />

o<br />

cvi<br />

00<br />

cvi<br />

05<br />

CO<br />

cvi<br />

CD<br />

00<br />

cvi<br />

CD<br />

00<br />

cvi<br />

in<br />

00<br />

cvi<br />

s<br />

CM<br />

00<br />

cvi<br />

CO<br />

oo<br />

cvi<br />

CM<br />

00<br />

cvi<br />

00<br />

cvi<br />

00<br />

Cvi<br />

CD<br />

CD<br />

cvi cvi<br />

r>3<br />

cvi<br />

CM<br />

CM<br />

CD<br />

cvi<br />

in<br />

cvi CM<br />

in<br />

Cvi<br />

CD<br />

cvi<br />

CM<br />

CD<br />

cvi<br />

CM<br />

in<br />

cvi<br />

<br />

00<br />

o<br />

d<br />

§<br />

d<br />

00<br />

q<br />

o<br />

00<br />

O<br />

d<br />

Oi<br />

00<br />

o<br />

d §<br />

d<br />

00<br />

o<br />

d<br />

•<br />

1<br />

CO<br />

1<br />

o<br />

00<br />

1<br />

CM<br />

><br />

1<br />

o<br />

in<br />

CM<br />

9<br />

><br />

CD<br />

o><br />

1<br />

><br />

1<br />

1<br />

o<br />

o<br />

1<br />

><br />

1<br />

o<br />

1<br />

><br />

1<br />

CM<br />

1<br />

00<br />

o<br />

T—<br />

1<br />

><br />

1<br />

1<br />

CO<br />

1<br />

><br />

C<br />

CD<br />

CO<br />

CM<br />

4<br />

><br />

1<br />

CM<br />

1<br />

00<br />

T—<br />

1<br />

><br />

I<br />

CM<br />

1<br />

CM<br />

in<br />

><br />

1<br />

CM<br />

1<br />

CD<br />

in<br />

1<br />

><br />

1<br />

CO<br />

1<br />

o<br />

CD<br />

1<br />

><br />

1<br />

in<br />

CO<br />

4<br />

><br />

1<br />

CM<br />

1<br />

g<br />

1<br />

><br />

1<br />

CD<br />

1<br />

><br />

CD<br />

1<br />

O<br />

00<br />

T—<br />

1<br />

><br />

1<br />

t<br />

in<br />

oo<br />

4<br />

^<br />

£<br />

s<br />

><br />

1<br />

o<br />

1<br />

o<br />

CM<br />

1<br />

oo<br />

><br />

00<br />

1<br />

in<br />

00<br />

><br />

1<br />

o<br />

in<br />

CM<br />

00<br />

><br />

1<br />

oo<br />

1<br />

o<br />

CM<br />

CM<br />

1<br />

00<br />

><br />

1<br />

o<br />

1<br />

o<br />

CM<br />

CM<br />

1<br />

00<br />

><br />

CD<br />

1<br />

in<br />

eg<br />

CM<br />

00<br />

><br />

op<br />

in<br />

CM<br />

CM<br />

00<br />

><br />

1<br />

CD<br />

CO<br />

CM<br />

1<br />

00<br />

><br />

1<br />

CD<br />

1<br />

o<br />

CO<br />

CM<br />

00<br />

><br />

CD<br />

1<br />

in<br />

CO<br />

CM<br />

00<br />

><br />

op<br />

in<br />

CO<br />

cvi<br />

00


1<br />


Appendix B: Preliminary POSSE Modeling Results<br />

Provided by Norfolk Naval Shipyard Structural Engineering and Planning Office (Code 256)<br />

58


■<br />

•<br />

s*;<br />

eo<br />

1<br />

CM<br />


1<br />

|2<br />

«o<br />

CM<br />

cC<br />

5^<br />

"OJ cc<br />

5<br />

^<br />

^<br />

^<br />

S<br />

t—<br />

g.<br />

j<br />

1<br />

><br />

&<br />

1<br />

»3 s '^<br />

_ _<br />

S3 3! S3 33 33 33 S3 « 33 33 33 s;<br />

S S i<br />

1<br />

f ° 5 S s 8 &> CO ir><br />

s CO<br />

§<br />

8<br />

1<br />

S <str<strong>on</strong>g>to</str<strong>on</strong>g> g<br />

^ 5<br />

5<br />

CO<br />

S3 s s? S3 s S3 S3 S! S3 S3 S3 « S3 S3 33 8! S3 ffi S3 S3 S3 S3 S3 33 33 S3 s jj;<br />

. CM g 1 ig Sg <str<strong>on</strong>g>to</str<strong>on</strong>g> lO te K ft ^ sg ^ s CT> <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

S S S Ci<br />

S 5 g S g & " !8 g<br />

<<br />

i s<br />

s<br />

1<br />

CM<br />

5<br />

» 85 5 i$3 S3 « S3 S3 S3 S3 S3 S? S3 % S! S3 R s; 5! s; 3! 33 S! 3!<br />

10<br />

s<br />

g « i<br />

1<br />

lO tjfj LfJ S Sg ^ <str<strong>on</strong>g>to</str<strong>on</strong>g> > >-<br />

s<br />

-3- 5<br />

><br />

3!<br />

5<br />

^<br />

1<br />

5<br />

s 5 > ><br />

1 1<br />

cvj<br />

5 -5-<br />

1 ><br />

i 5 >• =><br />

5 5 5 1<br />

1 5 1 S ><br />

c6<br />

S i c6<br />

> >•<br />

cf><br />

> > ><br />

t&<br />

i ci<br />

•TT^<br />

10<br />

5<br />

C7><br />

i2<br />

^^<br />

o<br />


■<br />

E<br />

1-<br />

<<br />

O<br />

Y<br />

<<br />

^^<br />

i<br />

SS!<br />

m<br />

c<br />

in in in in<br />

^ o> t» a> 0)<br />

<br />

Q.<br />

i<br />

H<br />

iw<br />

_I<br />

in (D o S<br />

o (0<br />

s:<br />

CO<br />

a<br />

m<br />

o<br />

rf<br />

§ R<br />

1<br />

<<br />

M<br />

(T<br />

^<br />

< P<br />

H! ss<br />

1 o> g<br />

"■'<br />

in<br />

k<br />

H i%<br />

_l<br />

t:<br />

o<br />

o<br />

in o> ts CJ> a> O) o> CJ> O) (j> 0) (3) en OJ at o> c»<br />

p £J<br />

n> o<br />

Q. Q.<br />

~ ~ ^ $M<br />

l^<br />

P ^ P<br />

-J,<br />

■* ■* ^ 00 CO CO CO ■* ■* m 0) a> 00 oo oo CO in<br />

^ f<br />

CO<br />

E<br />

CO m o in<br />

CM CM g s t-- § in<br />

in<br />

S<br />

•* m<br />

10<br />

5 1 1 5 i<br />

O)<br />

E<br />

E<br />

^<br />

1- 1-<br />

< b <<br />

1<br />

? o s i<br />

< °<br />

0) a> O) a> O) o> at ()> O) o><br />

p<br />

[^<br />

y<br />

O<br />

Q. Q.<br />

^ ■" '" ^j w<br />

P fe'<br />

1<br />

p n<br />

-* ■* in 0) 05 CO oo 00 1^ a<br />

in CO in<br />

CO CO CM<br />

2<br />

5 ^ ^<br />

P<br />

P<br />

Hi<br />

*- in in in n> CD m O) in in in o o m O) O) m E<br />

o><br />

c»<br />

1 '(1)<br />

S^<br />

eo in CO 00 1— at CM CO 00 CM 00<br />

T- CM CM T- ■* CO CO OJ CM N<br />

■^<br />

n> m at m CD m o> oi 2-<br />

at 05<br />

i<br />

o> a> 0) at at 01 0) 0)<br />

1^ h- h. r^ h- [^ rs. l~. N t^ 1^ f~ r^ h- (> r^ r^ t^ h- 1^ t^ r-- N N<br />

ffl (M (M Al N IM Kr Ki Ki KI (M ><br />

fi ■<br />

1-^<br />

lit ff (0 >. ^ ~> *<br />

c<br />

a > :> > > > ><br />

J£ CM CM CM 5 > > > > ><br />

CM CM CM 4 > ><br />

CM (6 ^ 5 P fe c ><br />

ra je O o > o ><br />

CO 00 <br />

4 5 1 ; P H o n<br />

1<br />

Tt no CO oo


Appendix C: Preliminary Cost Estimati<strong>on</strong> Data and Worksheets<br />

62


ON OC)<br />

00<br />

00<br />

o<br />

o<br />

o<br />

^ <<br />

^ <<br />

o<br />

00<br />

o<br />

IT)<br />

Q<br />

•n W<br />

oo >^<br />

en >H<br />

H<br />

fs<br />

o<br />

o<br />

H<br />

H<br />

T-H in<br />

^ C/5<br />

«o<br />

QO<br />

C/3<br />

o<br />

r*^<br />

^ CO<br />

T-( CO<br />

e<br />

«<br />

n<br />

oo<br />

b* o<br />

><br />

o<br />

1-1 01<br />

H O<br />

-si H4<br />

> U<br />

■<br />

00 =a<br />

■o z<br />

ve w<br />

r-^ CL,<br />

f^ o<br />

OS<br />

00<br />

O<br />

U<br />

o<br />

o<br />

00<br />

fe '^<br />

ON<br />

IT)<br />

en 'z<br />

f-' o<br />

B §<br />


MATERIAL WORK SHEET<br />

PERMA BALLAST® INSTALLATION<br />

SHOP PC# MATERIAL STOCK NO. QTY SS/PUR COST<br />

CANNING PLATES:<br />

600 SF AREA FOR 2-165-8-V<br />

AT 100% COVERAGE<br />

llSl 001 10.2# OSS PLATE (10.2#/SF) 9515-00-153-3184 600 $4.12/SF $2,472<br />

llSl 002 2-1/2 X 2-1/2" ANGLE (4.1#LF) 9520-00-277-4920 170 $2.12/FT $360<br />

SPONSON STIFFENING:<br />

llSl 003 5" X 4" ANGLE (7.5#LF) 9520-00-277-5978 225 $6.46/FT $1,454<br />

71AA 004 PAINT $1,200<br />

74YY N/A BLAST AND PAINT FACILITY $12,000<br />

ALL N/A CONSUMABLES $4,640<br />

TOTAL MATERIAL COSTS: $22,126<br />

TOTAL MATERIAL WEIGHT:<br />

10,556 #'S<br />

64


«n <<br />

1-H<br />

ON H ^ 0\<br />

1—1 i-(<br />

o<br />

©<br />

iH<br />

■Tf<br />

o<br />

1—(<br />

t/5<br />

S?<br />

as 1—1 o<br />

00<br />

H<br />

\0 '—'<br />

m OH<br />

in W<br />

oo >-'<br />

CO ^<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> <<br />

en O<br />

1—1 1—1<br />

1—(<br />

1—1<br />

o<br />

ON<br />

1-H<br />

^ CO<br />

^;:::<br />

Tt<br />

■«*<br />

^ C/3<br />

o<br />

1—( s<br />

^<br />

1-^<br />

-—I C/3<br />

oo 00<br />

r-H (N<br />

^ CO ^ ^<br />

1-H r-H<br />

'—• CO 1-H<br />

^<br />

^<br />

1—1<br />

WORK TO BE<br />

ACCOMPLISHED<br />

960 SF ■ CANNING<br />

PLATES FOR<br />

2-180-6-V AT 100%<br />

9<br />

o<br />

><br />

w<br />

00<br />

§<br />

00 ^<br />

§ U<br />

o<br />

U<br />

o<br />

00<br />

OH<br />

g (Si<br />

Is<br />

00<br />

ii<br />

00 00<br />

CUT/INST ACCESSES<br />

(6) 12" FOR FILLING<br />

00<br />

O<br />

Is<br />

z ^<br />

|w<br />

H U<br />

c/2


MATERIAL WORK SHEET<br />

PERAAA BALLAST® INSTALLATION<br />

SHOP PC# MATERIAL STOCK NO. Qjy SS/PUR COST<br />

CANNING PLATES:<br />

960 SF AREA FOR 2-180-6-V<br />

AT 100% COVERAGE<br />

llSl 001 10.2# OSS PLATE (10.2#/SF) 9515-00-153-3184 960 $4.12/SF $3,955<br />

llSl 002 2-1/2 X 2-1/2" ANGLE (4.1#LF) 9520-00-277-4920 275 $2.12/FT $583<br />

SPONSON STIFFENING:<br />

llSl 003 5" X 4" ANGLE (7.5#LF) 9520-00-277-5978 360 $6.46/FT $2,326<br />

71AA 004 PAINT $1,920<br />

74YY N/A BLAST AND PAINT FACILITY $19,200<br />

ALL N/A CONSUMABLES $7,418<br />

TOTAL MATERIAL COSTS: $35,402<br />

TOTAL MATERIAL WEIGHT:<br />

16,890 #'S<br />

66


in -^J<br />

r--<br />

OS H<br />

00<br />

■*<br />

ri<br />

o<br />

F^^<br />

^ oo ^<br />

•n <<br />

m O<br />

■* TT<br />

QO<br />

?5<br />

Tt<br />

Tf<br />

^ »n © QO<br />

00<br />

1-^<br />

H<br />

r^ 00<br />

rr<br />

Tt<br />

n<br />

1—1 I—1<br />

WORK TO BE<br />

ACCOMPLISHED<br />

<br />

u<br />

8<br />

1<br />

1<br />

^<br />

CUT/INST ACCESSES<br />

(2) 12" FOR FILLING<br />

00<br />

W<br />

00<br />

00<br />

8<br />

u<br />

<<br />

00<br />

W<br />

H<br />

H 00<br />

=y o<br />

H u<br />

< w<br />

OH P<br />

S<br />

• •<br />

s<br />

TOTAL 264 MH'S<br />

TOTAL 33 MD'S<br />

TOTAL PROD<br />

$21,186<br />

MATERIAL:<br />

$500<br />

NO ADDITIONAL<br />

WEIGHT ADDED


c« 05<br />

*<br />

H * *<br />

< Ss' 0\<br />

S<br />

1/1<br />

*<br />

CO<br />

H * %<br />

^<br />

S<br />

^ rt<br />

5<br />

< rr t^ t--<br />

^<br />

" *^<br />

H<br />

oo<br />

VO<br />

H<br />

Z<br />

H<br />

Z<br />

« r'j<br />

u<br />

BU<br />

« r^<br />

Ed<br />

pL,<br />

H o n o<br />

V) IT) W ID<br />

O O o<br />

H o n o<br />

(/) Ml U1 «n<br />

>-] o © ©<br />

iii<br />

> > > C/)<br />

I<br />

00<br />

< 58 o<br />

H f-t<br />

■<br />

4 NJ<br />

00 ,?<br />

rH fS p<br />

M > > CO<br />

■<br />

^ 00 sh _]<br />

O<br />

s ■<br />

00 ©<br />


=» *<br />

o o o o o o o<br />

§ §<br />

<<br />

S<br />

, ,<br />

s s s<br />

g<br />

>n in • > > > > > > > >• > > > > > >■ >■<br />

«J > > > > ;> > > >■<br />

> > S> >- > >- > ><br />

4<br />

2; •? ^ 4<br />

r!| ve r<<br />

•? i M


I/)<br />

o<br />

O<br />

c«<br />

a<br />

o<br />

><br />

u<br />

u<br />

Q<br />

© o ©<br />

1 o<br />

o<br />

r-T<br />

Q<br />

O<br />

00 00<br />

1—1<br />

eu<br />

(/I<br />

pa<br />

i<br />

u<br />

(A ^<br />

^<br />

^<br />

^<br />

!3<br />

0<br />

o<br />

o<br />

2 0<br />

V)<br />

d<br />

0<br />

©<br />

o<br />

in<br />

d<br />

o<br />

©<br />

o<br />

2 o<br />

c5<br />

0<br />

©<br />

o<br />

1/1<br />

d<br />

o<br />

1/1<br />

d<br />

z ><br />

•<br />

o<br />

f-H<br />

•<br />

o<br />

00<br />

><br />

•<br />

I<br />

00<br />

><br />

6<br />

■<br />

n<br />

><br />

■<br />

00<br />

©<br />

2<br />

><br />

6<br />

1-1<br />

©<br />

I<br />

00<br />

><br />

I<br />

00<br />

><br />

1<br />

00<br />

><br />

1<br />

I<br />

00<br />

><br />

1<br />

2<br />

1<br />

I<br />

00<br />

><br />

1<br />

00<br />

2<br />

1<br />

H<br />

1/3<br />

©<br />

o9<br />

u<br />

00<br />

*<br />

© o<br />

o<br />

©<br />

O<br />

00<br />

1-H<br />

00<br />

1-H<br />

1-H<br />

eu<br />

H<br />

IT)<br />

Z<br />

a<br />

u<br />

eu<br />

^<br />

S<br />

2<br />

0<br />

©<br />

o<br />

©<br />

o<br />

VI<br />

©<br />

o<br />

V)<br />

©<br />

o<br />

©<br />

o<br />

in<br />

©<br />

o<br />

©<br />

o<br />

©<br />

0<br />

V)<br />

©<br />

o<br />

v><br />

©<br />

o<br />

V)<br />

©<br />

z ><br />

o<br />

1<br />

00<br />

><br />

■<br />

00<br />

1<br />

r«<br />

o&<br />

><br />

•<br />

©<br />

1-H<br />

1<br />

tn<br />

I-H<br />

■<br />

00<br />

><br />

■<br />

©<br />

M<br />

I<br />

00<br />

><br />

©<br />

1-H<br />

■<br />

©<br />

•<br />

00<br />

><br />

■<br />

'^<br />

00<br />

><br />

•<br />

00<br />

1<br />

V)<br />

00<br />

><br />

•<br />

I<br />

00<br />

><br />

t<br />

©<br />

I<br />

00<br />

><br />

■<br />

V)<br />

1<br />

00<br />

><br />

■<br />

00<br />

■<br />

1<br />

00<br />

H<br />

O<br />

H<br />

o


i V)<br />

H % *<br />

l-H<br />


S<br />

e e o © o o<br />

o<br />

*<br />

H<br />

S<br />

o o o O<br />

o<br />

S<br />

e<br />

o<br />

•0 1/1 V) IT) in<br />

•!/3-


%<br />

H o o o ©<br />

s<br />

*<br />

< © © o<br />

i^ ©<br />

H o o o<br />

o<br />

© ©<br />

■n<br />

^^ V) >r> VI<br />

^<br />


00<br />

W3<br />

SO<br />

4t c« c«<br />

H ^ ^<br />

n<br />

■< 00 00<br />

S f^<br />

r- t^<br />

00<br />


* *<br />

H<br />

o o o o o o o o o e o o O o o o o o<br />

§<br />

^<br />

^ o o<br />

^■ ^•<br />

n w<br />

^ "^' *(*<br />

m ^ iA «» i«- > > sr > >■ ><br />

>■<br />

;> > > >• >• > > >■<br />

> > > > S> > >■ >■<br />

>■ > > > > > > ><br />

r-1 ^ •? ^ 4 N VO c!|


o o o © o o o<br />

4):<br />

H<br />


M t» c«<br />

*<br />

ft ft<br />

H ft<br />

00 O 00<br />

r- O r--<br />

5 n 00 ©<br />

•n tn ON<br />

ft CO<br />

ft<br />

00<br />

CO<br />

ft<br />

00<br />

§<br />

in<br />

-F/V ro V) 00<br />

vo rr ©<br />

H © r- 00<br />

^ rt «s fo<br />

TH 1—1 «N<br />

^ ^ ^<br />

S<br />

^ so so<br />

H © ©<br />

«N<br />

a (^ © TT<br />

o •rr ^ 00<br />

so 00<br />

l-H TT<br />

1-1 ro<br />

«» i^ ^<br />

g<br />

«5<br />

««■<br />

U C1 f^<br />

o Tf TT<br />

Pd SO 1-H 1-^<br />

IX, ■e«- <br />

u<br />

m<br />

^<br />

ti ii! 1$<br />

fV C/3 ^<br />

^ 09 n<br />

.4 I-)<br />

o<br />

o ©<br />

r« i ^<br />

H 1-1<br />

^<br />

2<br />

pj ON<br />

u<br />

OH<br />

r-<br />

H o o o<br />

t/i O © ©<br />

rl «S M<br />

3<br />

H o o o<br />

(/) © © ©<br />

r» r< r<<br />

3<br />

z<br />

H<br />

> > > ■^<br />

00 ve<br />

I<br />

1<br />

iH i^ r»<br />

M M r< H<br />

Z<br />

H<br />

> > > Crt<br />

00 so<br />

i f<br />

i H<br />

o<br />

i-i 1-1<br />

'V<br />

M r» f^ H


S<br />

e o e o o o e o © © © o © ©<br />

*<br />

H<br />

-*•<br />

S<br />

© © © © o © © © ©<br />

i/i<br />

H<br />

^<br />

s s s g § o<br />

o § § g § © § s<br />

"n in m in •n m m "I<br />

*» H pa pa pa sa aa pa sa a<br />

H ^ i-i u u u i-j u ^<br />

m m m in m in in in<br />

»s «s r< fS > > > > > > > > > > > c«<br />

1* «s 't ^ '^ ^ N VO N ♦^ •? -f «S «s 4 \o >-l<br />

<<br />

< ^ 00 fl SO f^ 00 «s ve © in e in A<br />

e s o »-( ^H «s TT in m \o ve r~ t~- <strong>on</strong> 00<br />

TM<br />

H<br />

1^ iH 1—) t-H *-H f>H i-H w^ ^H »-4 O<br />

^ 4 4 4 4 4 Tf ^ 4 4 4 t ■9 " > > > > > > > > > > > > > > ><br />

tj; A M M<br />

i ^ ^ r


1^ r-( 1-H M n


* 1/) C/3<br />

5»- *<br />

H 00 *s ©<br />

■< © 00<br />

S<br />

1—1<br />

©<br />

*<br />

n 00<br />

V)


Vi<br />

^■ ««■ -^<br />

^^<br />

* *<br />

o o o o o o O o o o o o o o o o ®<br />

o © O o o © © © © o ©<br />

§<br />

H ^-^ r^ (-> (—1 l-> o e O (—1 o 9 ©<br />

,-^ s<br />

o /-»! e o o ^ e (^ o o o o A o O o o ir> Wii v-^ '^ ©<br />

-< ■r ■n ir> in in in in in in in in m >n in in ••al l/J 1/1 u\<br />

■£» Vi ^ ^^ ^ Vi Vi ^^ ^■ Vi «« ^ ■^<br />

§<br />

^<br />

«» vn vo \o ve vo >« vo ^ ve ^ 'O ve ve « \o ^o<br />

as- NO NO \e NO<br />

f "9 f f: NO vo 5?<br />

O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00<br />

00 00 1X3<br />

S<br />

0\ o<br />

1—t 1-H FH 1-1 FH 1H4 *H HH 1—1 »<br />

o<br />

•><br />

FH<br />

-H I-( 1—( 1-H i-H rH FH' 1-H IH ^H 1-1 1-H<br />

^«^ frf r-l r» s • > > ><br />

2<br />

>- > ><br />

1<br />

>■ > > > > > > > > > >■ > ><br />

TJ> r!.


S<br />

o o o © © © © © © ©<br />

< © © © © © © ©<br />

o © o o o © © © o © o §<br />

■< VI *n f) V) trt tt ID VI ■n<br />

^


4t<br />

S<br />

C/l r/i<br />

00<br />

*<br />

s<br />

M<br />

*<br />

o<br />

*<br />

<<br />

ly) C/5 C«<br />

* *<br />

5t<br />

?5<br />

% (N o<br />

in yrt ©<br />

1—1<br />

-F/V f^ rq v><br />

'O «s 00<br />

H o (S «N<br />

y-^ *n vo<br />

I-H l-H n<br />

^ *e «»<br />

^<br />

ff\ r


* *<br />

H<br />

H<br />

■< -if o e o o © o © © o © © © ©<br />

s<br />

s<br />

^ w*<br />

H s 1 s § § s g § s ©<br />

© § §<br />

l/> iri trt V) IT) in IT) IT) W1 in m in<br />


^5-<br />

<br />

Q © © © © © © o o © © ir)<br />

■«»' m in ■n v> m m V) *n in ^<br />

■£«• «^ «e ^«-


Appendix D: Preliminary Cost Comparis<strong>on</strong><br />

86


"~" ~ 00<br />

s ^ SS<br />

o<br />

s<br />

■g<br />

Q ■*<br />

ja<br />

^ .id P-' «;<br />

S 1<br />

^<br />

fi 30<br />

a<br />

i-i in (N<br />

u-i<br />

^ n? 00 ;cs >? s a s n<br />

o ■* r- f*i -^<br />

^ «N<br />

O «n O<br />

CO<br />

Tl<br />

Vi rs<br />

^<br />

VO n y? o \D so oo<br />

w<br />

•C<br />

J^ s *n<br />

m •n o<br />

a R en ICl l*^<br />

-y<br />

00<br />

(1^<br />

X ii<br />

'"'<br />

r-<br />

^ s a s 3,<br />

(TN<br />

S<br />

■3 (N en<br />

Q (TV so<br />

1<br />

(N<br />

■^l<br />

«^<br />

00<br />

>r<br />

m (*1<br />

-c ^ ^ ^ p 2<br />

t_J oo<br />

^.<br />

1 1 s (N r^<br />

tl<br />

^<br />

•^<br />

r^<br />

9<br />

1^ o m<br />

o<br />

r4 s<br />

1^<br />

9<br />

o<br />

S<br />

rj r- o<br />

1<br />

1<br />

oo<br />

£<br />

oe<br />

^ ^<br />

1 U<br />

"<br />

s S SR<br />

s<br />

O<br />

U1<br />

—.<br />

so<br />

1<br />

(Ti o<br />

i<br />

i^ — o o m m<br />

t<br />

s<br />

1 6<br />

■"'<br />

r-i<br />

t<br />

r-i "« m o<br />


Appendix E: Complete Structural Analysis


structural Analysis for Compartment 2-165-8-V; Shell Plating<br />

Perma Ballast® Data<br />

PP: erma :=200A<br />

ft^<br />

/"Perma fill :=.9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

lb<br />

Psw:=64.4—<br />

ft<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Compartment 2-165-8-V<br />

Volume := 3969ft^<br />

Volume of Compartment<br />

^Perma •" 354<str<strong>on</strong>g>to</str<strong>on</strong>g>n Weight of Permanent Ballast<br />

FR 175<br />

FR180<br />

Main Deck<br />

9.83*<br />

2nd Deck<br />

6 Tees, spaced 26" apart {7.6#)<br />

89


Main Deck<br />

FR 165 - FR 180 Transverse Bulkheads<br />

20.4# (.5")<br />

11.5* ><br />

Stringer #6<br />

Girder<br />

Ship<br />

Shell<br />

Plating<br />

30.6# (.75<br />

10.2 # (.25")<br />

2nd Deck<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

Shell<br />

V := 1.2f Vertical a := asinf^^<br />

V1513<br />

A := 0.7f Athwartship p<br />

. (^9.83<br />

:= asm •<br />

V 15.13<br />

F := 0.4 Fore/Aft<br />

a = 49.47 Ideg<br />

P =40.519deg<br />

Loading <strong>on</strong> Shell Plating:<br />

Wperma = 7.93x10^ lb<br />

Weight of Perma Ballast®<br />

Fv:=V-Wp,^,<br />

Fy = 9.912X 10 lb Vertical Load (Downward)<br />

F^ := A • Wpg^3<br />

F^ = 5.947X 10 lb Athwartship Load (Port)<br />

Fp :- F • Wpgj.j„3<br />

Fp = 3.172X 10 lb Fore/Aft Load<br />

% := Fy ■ '=os(P) + FA ' cos(a) F^ = 1.14x 10^lb Normal Force<br />

90


Resulting Pressure <strong>on</strong> Sp<strong>on</strong>s<strong>on</strong> Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 60ft Ht := 15.13ft<br />

Area := L ■ Ht<br />

Area = 907.8ft^<br />

P:=<br />

^N<br />

Area<br />

.3 lb<br />

P = 1.256X 10"<br />

ft<br />

P = 8.72—<br />

. 2<br />

m<br />

.3 lb_<br />

^95% '■= %erma_fill' ^ ^95% = ^"^^^^ ^^ —<br />

.2<br />

^^^^^ °" ^^^^ F^"^^^® Volume<br />

ft<br />

H:= ^95%<br />

sw<br />

H = 18.524ft<br />

Equivalent Head<br />

In accordance with CVN 76 Specs, sp<strong>on</strong>s<strong>on</strong> plating aft of Frame 88 shall be designed for 1000 psf. Therefore, less ballast must<br />

be added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se sp<strong>on</strong>s<strong>on</strong> voids.<br />

1193 psf> 1000 psf<br />

91


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

Panels of plating shall be proporti<strong>on</strong>ed so as not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> breadth-thickness ratios<br />

found below:<br />

b := 2fin a := 240in AR := — AR = 0.108<br />

a<br />

^actual :== •25in Thickness of Plate, HTS<br />

H = 18.524ft<br />

Head of Water<br />

K := 1 For AR = 0.108, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C :- 400ft'^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />

c ■<br />

— /H<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

K-VHb ,, rr,, ...<br />

*min ■" "^<br />

Note: The stirfeners are assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> be spaced evenly across<br />

C<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong> shell plating with 6 stiffeners spanning 15.13'.<br />

^min = 0.28in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .28 in. The actual<br />

plate thickness is .25 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck shell plating must ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be stiffened or have less ballast added. It should be<br />

noted,<br />

however, that some structural margin exists within <str<strong>on</strong>g>the</str<strong>on</strong>g>se calculati<strong>on</strong>s and that .28 is close enough <str<strong>on</strong>g>to</str<strong>on</strong>g> .25 in. As a result, it is<br />

possible that stiffening is not required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck shell sp<strong>on</strong>s<strong>on</strong> plating.<br />

t_min > t_actual<br />

92


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Maximum Ballast Weight:<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Resulting Pressure <strong>on</strong> Sp<strong>on</strong>s<strong>on</strong> Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 60ft Ht := 15.13ft<br />

Area := L • Ht<br />

P ■= 1000- •—<br />

ft^<br />

Area = 907.8ft^<br />

Maximum pressure allowed for sp<strong>on</strong>s<strong>on</strong> shell plating lAW CVN 76 Specs<br />

FN_new == ? " Area FN_new = 9.078x 10^ lb<br />

p<br />

H := H = 15.528ft<br />

Psw<br />

New Equivalent Head<br />

Loading <strong>on</strong> Shell Plating:<br />

. f 11.5<br />

a := asm<br />

U5-13<br />

a = 49.47 Ideg<br />

P := asinf-^ I P = 40.519deg<br />

pN_new = Fv_new ' cos(p) + F^jiew " '^os(a)<br />

Py new = ^ ■ Wperma<br />

V^^ical Load (Downward)<br />

FA_new = ^ • Wp^^^ Athwartship Load (Port)<br />

% new = V • Wperma " cos(p) + A • Wp^^^ • cos (a)<br />

N_new<br />

^P^^ ''^ (v.cos(p) + A.cos(a))<br />

^Perma = 281.9041<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Weight of Perma Ballast® that cannot be exceeded<br />

93


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

tjjjjn := .25in<br />

Thickness of Plate, HTS<br />

H = 15.528ft<br />

Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := 1 Assume AR remains less than .5<br />

C:= 400ft'^ For HTS, No Set<br />

b<br />

— <<br />

K-VH<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

C h<br />

''limit '■= ^min T ^ = ^^i" T = 13in<br />

L 2<br />

2<br />

KH<br />

''limit = 25-377in<br />

25.377 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners can be apart and have no plastic deformati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existing .25 in plating.<br />

The current stiffeners are located 26 in apart. It is recommended that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners be placed less than maximum distance apart.<br />

Therefore, adding a vertical stiffener in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing stiffener <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shell sp<strong>on</strong>s<strong>on</strong> plating will put b at 13 in and<br />

meet <str<strong>on</strong>g>the</str<strong>on</strong>g> 25.377 in requirement-<br />

Results<br />

A combinati<strong>on</strong> of Lesser Weight Additi<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> meet <str<strong>on</strong>g>the</str<strong>on</strong>g> lOOOpsf limit al<strong>on</strong>g with adding a stiffener in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing<br />

stiffener will alleviate any structural c<strong>on</strong>cerns.<br />

94


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := k • P •<br />

p = pressure based <strong>on</strong> 1000 psf <strong>on</strong> sp<strong>on</strong>s<strong>on</strong> shell plating<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

''simply_supported •<br />

lc,i fi := -5 ^ values are most c<strong>on</strong>servative<br />

a := 2Qft b := Bin based <strong>on</strong> 13 in separati<strong>on</strong> between stiffeners<br />

Jlb_<br />

P = 6.944-<br />

. 2<br />

in<br />

t := .25in<br />

^max allowable= 40,000 Jb_<br />

. 2<br />

in<br />

I AW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

^simply_supported • Simply_supported<br />

,., lb<br />

^simply_supported<br />

14083<br />

in<br />

"■'7<br />

^clamped • "Clamped<br />

I ^<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding stiffeners at 13 in, <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below that of simply<br />

supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support<br />

illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship,<br />

structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below maximum allowable.<br />

^clamped<br />

^max_allowabl(<br />

95


C coefficient derivati<strong>on</strong> from beam <str<strong>on</strong>g>the</str<strong>on</strong>g>ory:<br />

Panel is c<strong>on</strong>sidered a series of beams having FIXED ends.<br />

1,3 Y-H<br />

I := — • 1 ■ t q := -^<br />

12 ^ 144<br />

12 ^ t<br />

Ox_max-~ ■ ~ P'^'^ bending now equivalent <str<strong>on</strong>g>to</str<strong>on</strong>g> Navy's standard, see Eqn 2<br />

Nx_max'288 j<br />

b_over_t := j y := 64.'^<br />

V Y VH<br />

^x max'" ^^^ without introducing K fac<str<strong>on</strong>g>to</str<strong>on</strong>g>r, used for shorter panels<br />

^ Px max-288<br />

C := —= c = 422.944<br />

353.861<br />

b over t < •<br />

Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

^min ~ ^Sin Thickness of Plate, HTS<br />

H = 15.528ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := 1 Assume AR remains less than .5<br />

C := 422.944Ft'^ For HTS, No Set<br />

b<br />


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := k • P<br />

— p = pressure based <strong>on</strong> 1000 psf <strong>on</strong> sp<strong>on</strong>s<strong>on</strong> shell plating<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

"Simply^upported ■ ■ Clamped :=.5<br />

a := 20ft<br />

b<br />

p = 6.944—<br />

. 2<br />

in<br />

*^max_allowable~<br />

40,000<br />

lb<br />

. 2<br />

m<br />

blimit=26.833ir<br />

AR = 18.462<br />

t := .25in<br />

lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> Gei<br />

'^simply_supported • Simply_supported '<br />

'<br />

^_^limit^<br />

^simply_supported<br />

60000-^<br />

. 2<br />

in<br />

^clamped • Clamped ■P- V t J<br />

clamped<br />

40000^<br />

. 2<br />

m<br />

97


structural Analysis for Compartment 2-165-8-V: Ship Shell Plating<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

Perma Ballast® Data<br />

PPerma ■- 200-!^<br />

ft<br />

^"Perma.fill •= ■^'<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

lb<br />

sw<br />

ft"<br />

Compartment 2-165-8-V<br />

Density of Seawater<br />

Volume := 3969ft<br />

Wperma-=2811<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Volume of Compartment<br />

Maximum Weight of Permanent Ballast that can be added in accordance with shell plating<br />

stress calculati<strong>on</strong>s<br />

FR175<br />

FR180<br />

Main Deck<br />

9.83'<br />

2nd Deck<br />

6 Tees, spaced 26" apart (7.5#)<br />

98


FR 165 - FR 180 Transverse Bulkheads<br />

20-4# (-5")<br />

Main Deck<br />

11.5' ><br />

Stringer #6<br />

Girder<br />

Ship<br />

Shell<br />

Plating<br />

30.6# (.75")<br />

2nd Deck<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

Shell<br />

V:=1.2f Vertical<br />

A := O.li Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Inner L<strong>on</strong>gitudinal Bulkhead Plating:<br />

Wpgj^a = 6.294X 10 lb Weight of Perma Ballast®<br />

Fy := V-Wperma<br />

FA ■= AWpenna<br />

Fp:- FWpgj^jjja<br />

% ■- ^A<br />

FY = 7.868X 10 lb<br />

F^ =4.721x 10^ lb<br />

Fp = 2.518x 10^ lb<br />

Fj^=4.721x 10 lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

Normal Force<br />

99


Resulting Pressure <strong>on</strong> Inner L<strong>on</strong>gitudinal Bulkhead Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 60ft<br />

Area := L-Ht<br />

Area<br />

Psw<br />

Ht := 9.8 Jt<br />

Area = 589.8ft^<br />

P = 800.407—<br />

ft^<br />

H = 12.429ft<br />

P = 5.558-1^<br />

. 2<br />

m<br />

Equivalent Head<br />

100


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

b := —ft a := 24an AR := - AR = 0.246<br />

2 a<br />

Wual •= •'^5'" Thickness of Plate, HTS<br />

H = 12.429ft Head of Water<br />

K := 1 For AR = 0.246, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ff^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

b C ■<br />

— < K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

K-VH<br />

H = Head of salt water (feet)<br />

K-y/Hb<br />

t, min" p<br />

Wn = 0-52in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .52 in. The actual<br />

plate thickness is .75 in. Therefore, stiffening of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck inner l<strong>on</strong>gitudinal bulkhead plating is not required.<br />

t min «t_actual<br />

101


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s<br />

'min '■= •'^^'" Thickness of Plate, HTS<br />

H = 12.429ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := 1 Assume AR remains less than .5<br />

C := 400ft'^ For HTS, No Set<br />

b<br />


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

o := kP- -<br />

p = pressure based <strong>on</strong> 95% of maximum ballast additi<strong>on</strong> I AW sp<strong>on</strong>s<strong>on</strong> stress calculati<strong>on</strong>s<br />

^imply_supported<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

"^clamped •<br />

k values are most c<strong>on</strong>servative<br />

a := 20ft<br />

P = 5.558—<br />

. 2<br />

m<br />

lb<br />

^max_allowable= 40,000—<br />

in<br />

b := 58in<br />

based <strong>on</strong> no stiffener additi<strong>on</strong><br />

t := .75in<br />

lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

■^simply_supported • ^imply_supported<br />

simply_supported 24931—<br />

. 2<br />

m<br />

^clamped • Clamped<br />

'^clamped =16621—<br />

. 2<br />

m<br />

Maximum Allowable Stress for HTS is 40,000 psi. The calcuated stresses fall well below that of simply supported and that of<br />

clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating zero stiffness<br />

and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship, structural systems can be<br />

c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural analysis<br />

is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below maximum allowable.<br />

"'clamped<br />

''max_allowabl(<br />

103


structural Analysis for Compartment 2-165-8-V: Transverse Bulkhead<br />

Frames 165,170,175, and 180<br />

Perma Ballast® Data<br />

lb<br />

P Perma :=200-<br />

ft<br />

% Perma fill ■ .9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

sw :=64.4^<br />

ft^<br />

Density of Seawater<br />

Compartment 2-165-8-V<br />

Volume :=3965ft^<br />

Wperma:=2811<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Volume of Compartment<br />

Maximum Weight of Permanent Ballast that can be added in accordance with shell plating stress<br />

calculati<strong>on</strong>s<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f<br />

A := 0.71<br />

F := 0.4<br />

Vertical<br />

Athwartship<br />

Fore/Aft<br />

Loading <strong>on</strong> Transverse Plating:<br />

Wpg^3 = 6.294x lO^lb Weight of Perma Ballast®<br />

Pv^=V.Wp,rma<br />

FA -■= AWperma<br />

FF^=FWpe3<br />

% •- Pp<br />

Fv = 7.868x 10 lb<br />

FA=4.721X 10^ lb<br />

Fp = 2.518x 10^ lb<br />

FN=2.518X 10 lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

Normal Force<br />

104


Main Deck<br />

Shell<br />

FR 165 - FR 180 Transverse Bulkheads<br />

20.4# (.5"<br />

11.5' ><br />

Stringer #S<br />

Girder<br />

Ship<br />

Shell<br />

Plating<br />

30.6# (.75")<br />

10.2 # {.25")<br />

2nd Deck<br />

Shell<br />

Resulting Pressure - <strong>on</strong> Transverse Plating:<br />

Compartment Dimensi<strong>on</strong>s<br />

L:= 11.5ft<br />

Area := .5LHt<br />

Area<br />

'sw<br />

Ht := 9.&m<br />

Area = 56.523ft^<br />

3 lb<br />

p = 4.454x 10 —<br />

ft^<br />

H = 69.168ft<br />

P = 30.934—<br />

. 2<br />

m<br />

Equivalent Head<br />

105


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)|<br />

The transverse plating at Frames 165, 170, 175, and 180 is stiffened by 3 vertical stiffeners and 3 horiz<strong>on</strong>tal stiffeners <str<strong>on</strong>g>to</str<strong>on</strong>g> include<br />

a vertical girder that runs from <str<strong>on</strong>g>the</str<strong>on</strong>g> Main Deck <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shell plating above stringer #6. The largest secti<strong>on</strong> of transverse plating<br />

that is unstiffened is approximately a 24"X34.5" secti<strong>on</strong> of plate. An assumpti<strong>on</strong> was made that all vertical stiffeners are spaced<br />

equally apart. All structural analysis was performed <strong>on</strong> this secti<strong>on</strong> of plate.<br />

b := 24in a := 34.Sn AR := - AR = 0.696<br />

a<br />

Wual •= •^^" Thickness of Plate, HTS<br />

H = 69.168ft Head of Water<br />

K := .94 For AR = 0.696, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft"^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s<br />

t ■ := .Sttn<br />

Thickness of Plate, HTS<br />

H = 69.168ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := .94 Assume AR remains .696<br />

C := 40Qft'^ For HTS, No Set<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

b C "<br />

— < K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

K-VH<br />

H = Head of salt water (feet)<br />

''limit-<br />

24in<br />

'•mm j<br />

KH^<br />

''limit = = 25.583in<br />

25.583 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that l<strong>on</strong>gitudinal stiffeners can be located apart and have no deformati<strong>on</strong> occur <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .5 in<br />

plating. The transverse plating at Frame 165 has 3 horiz<strong>on</strong>tal stiffeners and 3 vertical stiffeners. The current horiz<strong>on</strong>tal stiffener<br />

spacing is approximately 24" and within <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting width between stiffeners. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse plating at Frame 165<br />

does not need <str<strong>on</strong>g>to</str<strong>on</strong>g> be stiffened. Frames 170,175 and 180 are similar in design.<br />

107


Stress Calculati<strong>on</strong>s:<br />

b^2<br />

a := k-Pl — I<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

p = pressure based <strong>on</strong> 1000 psf <strong>on</strong> sp<strong>on</strong>s<strong>on</strong> shell plating<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

'Siniply_supported '■= ■'^- "^lamped •= -^ ^ ^^'"^^ ^""^ "1°^' c<strong>on</strong>servative<br />

a := 34.Sn b := 24in based <strong>on</strong> no stiffener additi<strong>on</strong><br />

P = 30.934—<br />

. 2<br />

in<br />

t := .SOn<br />

*^max_allowable~ 40,000— I AW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

2<br />

in<br />

^simply_supported ' *Simply_supported '^l<br />

b^2<br />

'^simply_supported ~ "o<br />

in<br />

2<br />

... b<br />

^clamped " '^clamped<br />

^clamped = 35636-^<br />

in<br />

Maximum Allowable Stress for HTS is 40,000 psi. The calcuated stresses falls between that of simply supported and that of<br />

clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating zero stiffness<br />

and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship, structural systems can be<br />

c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural analysis<br />

is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below maximum allowable.<br />

'^clamped*^'^ ^max_allowabl(<br />

108


structural Analysis for Compartment 2-180-6-V: Shell Plating<br />

Perma Ballast® Data<br />

PPerma^=200-^<br />

ft<br />

^"Perma_fill •= •^-<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

'sw<br />

: 64.4 lb<br />

ft<br />

Compartment 2-180-6-V<br />

Volume := 6272ft^<br />

Wperma==56a<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V := 1.2f Vertical a := asin r n.5<br />

15.13<br />

A := 0.7f<br />

F := 0.4<br />

Athwartship<br />

Fore/Aft<br />

P := asin f 9.83<br />

15.13<br />

a = 49.47 Ideg<br />

P =40.519deg<br />

Loading <strong>on</strong> Shell Plating:<br />

Wperma = ^■254x 10^ lb Weight of Perma Ballast®<br />

Fy := V • Wpgrma<br />

F^ :- A • Wpgj.j^g<br />

Fp := F • Wpgj.jjjg<br />

Fv=1.568x 10 lb<br />

F^ =9.408x 10^ lb<br />

Fp = 5.018x 10^ lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

F^ := Fy • cos(p) + F^ ■ cos(a) Fj^ = 1.803x 10^lb<br />

Normal Force<br />

109


Resulting Pressure <strong>on</strong> Sp<strong>on</strong>s<strong>on</strong> Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L:=96ft Ht:= 15.13ft<br />

Area := L • Ht Area = 1.452x 10^ ft^<br />

p<br />

P := P = 1.242x 10^ — P = 8.622—<br />

Area 2 .2<br />

It m<br />

^95% -"^ %erma_fill' ^ ^95% = ^ •179x 10 — Based <strong>on</strong> 95% Fillable Volume<br />

ft^<br />

^95%<br />

H := H = 18.315ft Equivalent Head<br />

Psw<br />

In accordance with CVN 76 Specs, sp<strong>on</strong>s<strong>on</strong> plating aft of Frame 88 shall be designed for 1000 psf. Therefore, less ballast must<br />

be added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se sp<strong>on</strong>s<strong>on</strong> voids.<br />

1179 psf > 1000 psf<br />

110


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

Panels of plating shall be proporti<strong>on</strong>ed so as not <str<strong>on</strong>g>to</str<strong>on</strong>g> exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> breadth-thickness ratios<br />

found below:<br />

b := 26in a := lidn AR := - AR =: 0.108<br />

a<br />

^actual '•= -251" Thickness of Plate, HTS<br />

H = 18.315ft Head of Water<br />

K := 1 For AR = 0.108, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft'^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

b C ■<br />

— < K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

t K-VH<br />

H = Head of salt water (feet)<br />

l^.^ ■- —12t—'.— Note: The stiffeners are assumed <str<strong>on</strong>g>to</str<strong>on</strong>g> be spaced evenly across<br />

"^imn Q<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>s<strong>on</strong> shell plating with 6 stiffeners spanning 15.13'.<br />

t^„ = 0.278in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .28 in. The actual<br />

plate thickness is .25 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck shell plating must ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be stiffened or have less ballast added. It should be<br />

noted,<br />

however, that some structural margin exists within <str<strong>on</strong>g>the</str<strong>on</strong>g>se calculati<strong>on</strong>s and that .28 is close enough <str<strong>on</strong>g>to</str<strong>on</strong>g> .25 in. As a result, it is<br />

possible that stiffening is not required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck shell sp<strong>on</strong>s<strong>on</strong> plating.<br />

t min > t actual<br />

111


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Maximum Ballast Weight:<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7; Athwartship<br />

F := O.A Fore/Aft<br />

Resulting Pressure <strong>on</strong> Sp<strong>on</strong>s<strong>on</strong> Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L:=9fft Ht:=15.1Jt<br />

P := 1000- —<br />

ft^<br />

Maximum pressure allowed for sp<strong>on</strong>s<strong>on</strong> shell plating lAW CVN 76 Specs<br />

Area := L • Ht<br />

Area = 1.452x 10^ ft^<br />

%_new ■■= P • Area F^^gw = 1 •452x 10^ lb<br />

P<br />

H := H = 15.528ft New Equivalent Head<br />

Psw<br />

Loading <strong>on</strong> Shell Plating:<br />

f 11.5<br />

a := asin 1 ■ a = 49.47 Ideg<br />

U5.13J<br />

3:=asin^- P=40.519deg<br />

%_new = Fv_new ' cos(p) + F^_„g^ • cos (a)<br />

^V_new = ^ ■ ^Perma Vertical Load (Downward)<br />

'^Ajew - A ■ ^Perma Athwartship Load (Port)<br />

%_new = V • Wperma • cos(3) + A • Wpg^ia " cos (a)<br />

N_new<br />

P^^^^(v.cos(p) + A.cos(a))<br />

^Perma ~ ^^ ^ ■0471<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

Weight of Perma Ballast® that cannot be exceeded<br />

112


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:!<br />

25in<br />

■^min"<br />

H = 15.528ft<br />

K:=l<br />

C := 400ff^<br />

Thickness of Plate, HTS<br />

Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

Assume AR remains less than .5<br />

For HTS, No Set<br />

b<br />

— <<br />

K<br />

yfU<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

limit ■<br />

min'<br />

b = 26in<br />

- = Bin<br />

2<br />

blimit = 25.377in<br />

K • H<br />

25.377 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners can be apart and have no plastic deformati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existing .25 in plating.<br />

The current stiffeners are located 26 in apart. It is recommended that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners be placed less than maximum distance apart.<br />

Therefore, adding a vertical stiffener in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing stiffener <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shell sp<strong>on</strong>s<strong>on</strong> plating will put b at 13 in and<br />

meet <str<strong>on</strong>g>the</str<strong>on</strong>g> 25.377 in requirement.<br />

Results<br />

A combinati<strong>on</strong> of Lesser Weight Additi<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> meet <str<strong>on</strong>g>the</str<strong>on</strong>g> lOOOpsf limit al<strong>on</strong>g with adding a stiffener in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing<br />

stiffener will alleviate any structural c<strong>on</strong>cerns.<br />

113


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := k • P • — p = pressure based <strong>on</strong> 1000 psf <strong>on</strong> sp<strong>on</strong>s<strong>on</strong> shell plating<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

'^imply_supported •= •'^- K;laniped •= -^ ^ ^^'"^^ ^""^ ""o^t c<strong>on</strong>servative<br />

a := 20ft b := 13in based <strong>on</strong> 13 in separati<strong>on</strong> between stiffeners<br />

P = 6.944—<br />

. 2<br />

in<br />

t := .25in<br />

°max_allowable'= 40,000— lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

in<br />

"'simply_supported •" 'Simply_supported ' '^ ' I T I<br />

^simply_supported ~ 14083—<br />

in<br />

'^clamped • "^clamped ' ^ ' '<br />

^clamped =9389-!^<br />

in<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding stiffeners at 13 in, <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below that of simply<br />

supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support<br />

illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship,<br />

structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below maximum allowable.<br />

''clamped^^^max.allowabU<br />

114


structural Analysis for Compartment 4-165-4-V; Deck Plating<br />

Perma Ballast® Data<br />

Pperma<br />

200^<br />

3<br />

ft"<br />

^^Perma fill :=.9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

sw ■ 64.4^<br />

ft^<br />

Compartment 4-165-4-V<br />

Volume :=700ft^<br />

Wpenna==621<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

3rd Deck<br />

FR 170 Transverse Bulkhead<br />

20.M{.5")<br />

8'8"<br />

4th Deck Plating<br />

20.4# (.5")<br />

4th Deck<br />

FR 165 Transverse Bulkhead<br />

HB#3 4-4'- BB#2 20.4#(-5")<br />

40.8#(1.0") 25.5#{.625")<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Deck Plating:<br />

Wperma = 1-389x10'lb Weight of Perma Ballast®<br />

Fv^=V.Wp,^3<br />

FA ■■= AWpenna<br />

Fp := FWp^j^g<br />

Fy=1.736x lo'lb<br />

F^ = 1.042x lo'lb<br />

Fp = 5.555x lo'^lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

% •= Fv Fi>j = 1.736x lo'lb<br />

Normal Force<br />

115


Resulting Pressure <strong>on</strong> Deck Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 20ft W := 4ft<br />

Area := LW<br />

Area = 80ft^<br />

P:=^ P.ZnxlO^i^ P = 15.06^<br />

Area ^2 .2<br />

It m<br />

^^95% '-"^ ^"Perma.fiir^ ^95% = ^^O^x lo'^— Based <strong>on</strong> 95% Fillable Volume<br />

m<br />

^95%<br />

H := H = 32.011ft Equivalent Head<br />

Psw<br />

The actual head for flooding of <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 6" above <str<strong>on</strong>g>the</str<strong>on</strong>g> 2nd deck (DC Deck) will result in a head of 27.7'. This value is<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g> head calculated above of 32'. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating must be stiffened.<br />

32 ft > 27.7 ft<br />

116


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

b := 48in a := 48in AR:=^ AR =1<br />

^actual<br />

H := 27.7ft<br />

K := .78<br />

.5<br />

C := 35Qft<br />

- .5Qiii Thickness of Plate, OS<br />

Maximum Head of Water for 4th Deck (which really implies permanent set and may still not be c<strong>on</strong>servative<br />

enough)<br />

For AR = 1, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

For OS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />

— <<br />

K-VH<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

min"<br />

K-VHb<br />

tmin = 0-563in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .563 in. The actual<br />

plate thickness is .5 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck shell plating must ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be stiffened or have less ballast added.<br />

t_min »t_actual<br />

117


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Maximum Ballast Weight:]<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A :- 0.11 Atiiwartship<br />

F := O.A Fore/Aft<br />

Resulting Pressure <strong>on</strong> Deck Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 20ft W := 4ft<br />

Area := L-W<br />

Area = 80ft^<br />

H = 27.7ft Based <strong>on</strong> Maximum Equivalent Head or Design Load<br />

^new '■' ^'Psw ^new ~ 12.388—<br />

in<br />

%_new ■" ^new'^^^<br />

pN_new = 1-427x10^ lb<br />

Loading <strong>on</strong> Deck Plating:<br />

F — F<br />

N_new ~ ^V_new<br />

^V new ~ ^"^Perma<br />

Vertical Load (Downward)<br />

N_new<br />

^Perma '■-<br />

V<br />

^Perma ~ 50.9681<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

Weight of Perma Ballast® that cannot be exceeded<br />

118


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

tjni„:=.5in Thickness of Plate, OS<br />

H = 27.7ft Head of Water<br />

K - .78 Assume AR remains 1<br />

C := 350ft'^<br />

b<br />

— < •<br />

K-VH<br />

For OS, No Set<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

limit • ^min"<br />

KH<br />

^limit''<br />

■■ 42.629in<br />

42.629" is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffeners can be apart and have no elastic deformati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .5 in plating. The current<br />

stiffeners are located 40 in apart. Therefore, according <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy Formula, adding a stiffener <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating will not be<br />

required IF 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns or less of ballast is added.<br />

Results<br />

Ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r less ballast must be added <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck tanks OR stiffening of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating must occur <str<strong>on</strong>g>to</str<strong>on</strong>g> be less than design load.<br />

The design load is <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated head of water for that deck. Similarly, adding a stiffener down <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck plating<br />

would alleviate any structural c<strong>on</strong>cerns. Adding a stiffener cannot, however, be d<strong>on</strong>e due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong>ing of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating.<br />

Welding would be required <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m deck plating and a watch would need <str<strong>on</strong>g>to</str<strong>on</strong>g> be stati<strong>on</strong>ed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck. The<br />

tank below this 4th deck tank is foam filled and a fire watch cannot be stati<strong>on</strong>ed. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th Deck is no l<strong>on</strong>ger an opti<strong>on</strong><br />

unless <str<strong>on</strong>g>the</str<strong>on</strong>g> ballast weight <str<strong>on</strong>g>to</str<strong>on</strong>g> be added be decreased <str<strong>on</strong>g>to</str<strong>on</strong>g> less than 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns.<br />

119


Stress Calculati<strong>on</strong>s: No Stiffening<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

CT := kP- -<br />

p = pressure based <strong>on</strong> 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast additi<strong>on</strong><br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

'^imply_supported ■" ■'-<br />

a := 20ft<br />

Pnew = 12-388-!^<br />

in<br />

'^lamped " " ^ values are most c<strong>on</strong>servative<br />

b :- 48in based <strong>on</strong> no stiffener additi<strong>on</strong><br />

t := .5in<br />

"niax_allowable= 28,000—<br />

in<br />

*^simply_supported ' "Simply.supported '^new<br />

U<br />

I AW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

/i<br />

,2<br />

^simply_supported ~ 85626—<br />

in<br />

^clamped • '^clamped'^newi<br />

j<br />

«^clamped= 57084- Jb_<br />

. 2<br />

in<br />

Maximum Allowable Stress for OS is 28,000 psi. If no stiffeners are added, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated stress is much greater than maximum<br />

allowable stress. As a result, stiffeners must still be added <str<strong>on</strong>g>to</str<strong>on</strong>g> be less than <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum allowable stress (even with less ballast<br />

added and based off design load using maximum head of water).<br />

^clamped'^^^max_allowabl<<br />

120


Stress Calculati<strong>on</strong>s: Stiffening<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := kP, new<br />

p = pressure based <strong>on</strong> 50 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast additi<strong>on</strong><br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

k . , _^ j •= 7' k_i j •= .5 k values are most c<strong>on</strong>servative<br />

Nimply_supported • ■'- "^jlamped<br />

a .- 20ft b :- 24ir based <strong>on</strong> adding a stiffener down <str<strong>on</strong>g>the</str<strong>on</strong>g> nviddle of <str<strong>on</strong>g>the</str<strong>on</strong>g> deck<br />

Pnew = 12.388^ t := .5in<br />

in<br />

lb<br />

a<br />

max_allowable<br />

II ui = 28<br />

-^"'""^<br />

000—<br />

^<br />

lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs<br />

t-<br />

(Secti<strong>on</strong><br />

v<br />

100)<br />

^<br />

in<br />

^simply_supported • 'Simply_supported '^newl ^<br />

^simply_supported = 21407—<br />

. 2<br />

in<br />

^clamped • Clamped newl ^<br />

clamped 14271 lb<br />

m<br />

Maximum Allowable Stress for OS is 28,000 psi. By adding stiffeners at 24 in AND with <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of less ballast, <str<strong>on</strong>g>the</str<strong>on</strong>g> stress<br />

falls below that of simply supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of<br />

structural member support illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural<br />

system. On board ship, structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness<br />

between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress should be well below<br />

maximum allowable. As menti<strong>on</strong>ed previously, however, adding ballast <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck is not feasible due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inability <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

stiffen <str<strong>on</strong>g>the</str<strong>on</strong>g> 4th deck.<br />

^clamped<br />

^max_allowabl(<br />

121


structural Analysis for Compartment 8-225-6-V; Shell Plating<br />

Perma Ballast® Data<br />

PPerma:=2{)0-!^<br />

ft<br />

^''Perma_fill •= ■^~<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

lb<br />

sw 64.4-<br />

ft"<br />

Compartment 8-225-6-V<br />

Volume := 28 l^t^<br />

Wperma '■= 2511<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4)<br />

14.024# (.343")<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

/ (L<strong>on</strong>gitudinal Bulkhead #3)<br />

'^ 17.85# (.437")<br />

FR 230 Transverse Bulkhead<br />

12.75# (.3125")<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7i Athwartship<br />

F := 0.4 Fore/Aft<br />

leading <strong>on</strong> Shell Plating:<br />

FR 225 Transverse Bulkhead<br />

15.3# (.375")<br />

\A^s -^ ^stringer #14<br />

^Stringer #11<br />

^Perma = 5.622x 10^ lb Weight of Perma Ballast®<br />

Plating<br />

(.75")<br />

Pv^=V.Wp,^3<br />

FA==A-Wp,^3<br />

Fv = 7.028x 10 lb<br />

F^ =4.217x 10^ lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fp := FWp^^g<br />

R • ("27<br />

p := asm<br />

U23.<br />

a := 90deg - P<br />

Fi^:=Fvcos(p) + F^-cos(a)<br />

Fp=2.249x 10^ lb<br />

P = 12.68deg<br />

a = 77.32deg<br />

Fore/Aft Load<br />

Fj^j = 7.782x lO^lb Normal Force<br />

122


Resulting Pressure <strong>on</strong> Shell Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L := 20ft Ht := 12Sn<br />

Area := L-Hl<br />

Area = 205ft^<br />

% 3 lb lb<br />

P :=:: —^ P = 3.796X 10 — P = 26.363—<br />

Area .2 . 2<br />

ft m<br />

^95% ■= ^"Perma.fiir'f' ^95% " ^-^^^^ ^^ — ^^^^^ °" ^^^^ ^^^^^^^^ Volume<br />

ft^<br />

- It-<br />

^9'5%<br />

H := —^ H = 56ft Equivalent Head<br />

Psw<br />

123


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

b:=41in a := 24an AR := - AR =0.171<br />

a<br />

'actual :=-^Sin Thickness of Plate, HTS<br />

H = 56ft Head of Water<br />

K := 1 For AR = 0.171, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft' For HTS, No Se, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)t<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

— ^ = K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

t KVH<br />

H = Head of salt water (feet)<br />

'min •<br />

K-VHb<br />

C<br />

t„i„ = 0.767in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .767 in. The actual<br />

plate thickness is .75 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck shell plating must ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be stiffened or have less ballast added.<br />

t_min »t actual<br />

124


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:!<br />

t ■ -.75in<br />

Thickness of Plate, HTS<br />

H = 56ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := 1 Assume AR remains less than .5<br />

C := 400ft'^ For HTS, No Set<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

b C ■<br />

_ < K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

K-y/H<br />

H = Head of salt water (feet)<br />

"limit • ^min<br />

C<br />

KH<br />

blimit = 40-08911,<br />

40.089 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that l<strong>on</strong>gitudinal stiffeners can be located apart and have no deformati<strong>on</strong> occur <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .75 in<br />

plating. The shell plating has 2 l<strong>on</strong>gitudinal stiffeners or stringers located apporoximately 41 in apart. Therefore, stiffening of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> existing shell plating will be required for 251 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast.<br />

125


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Maximum Ballast Weight without stiffening:<br />

trnin min := .75in<br />

b|jjjjjj := 41in<br />

Thickness of Plate, HTS<br />

Short Dimensi<strong>on</strong> of Panel<br />

K := 1 Assume AR remains less than .5<br />

.5<br />

C := 400ft' For HTS, No Set<br />

b<br />

— <<br />

t<br />

K>/H<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t - thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

Hn^ lew •<br />

f Ct ■ \<br />

min<br />

^^^■''limity<br />

H„e^= 53.54ft<br />

Pnew ■= HnewPsw ^new = 23.944^<br />

in<br />

N new ■•= • Pnp,.,Area<br />

*^new<br />

F, N new =7.068x 10 lb<br />

%_new = Fv_new-'^°s(p) + F^jg^-cosCa)<br />

'^V new ~ ^'^Perma<br />

'^A.new ~ ^'^Perma<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

%_new = VWpern,aCos(p) + A-Wpern,a-cos(a)<br />

W<br />

Perma<br />

N_new<br />

(Vcos(p) + A-cos(a))<br />

Wperma=227.9741<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Weight of Perma Ballast® that cannot be exceeded so that stiffening of <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck shell plating will not be required.<br />

126


Stress Calculati<strong>on</strong>s for 227 I<str<strong>on</strong>g>to</str<strong>on</strong>g>ns of ballast:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

P ._ y^.p -I — I p = pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

new , j<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

1c . , _ j •= 7' L.1 „ j •= .5 k values are most c<strong>on</strong>servative<br />

•^imply.supported • •'- "xlamped<br />

a := 20ft b := 41in based <strong>on</strong> 41 in separati<strong>on</strong> between stiffeners<br />

Pnew=23.944i^ t := .75ii,<br />

in<br />

^max allowable= ^^' ^^— ^^^ ^'^'^ *^ General Specs (Secti<strong>on</strong> 100)<br />

in<br />

b^^<br />

'^simply_supported • 'Simply_supported '^newl j.<br />

'^simply_supported -53667 ^<br />

in<br />

^clamped ■<br />

,b^2<br />

clamped new"! ^<br />

f^clamped = 35778—<br />

in<br />

Maximum Allowable Stress for HTS is 40,000 psi. Without any stiffener additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated stress falls between that of<br />

simply supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member<br />

support illustrating zero stiffness and infinite stiffhess, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board<br />

ship, structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls below maximum allowable.<br />

^clamped*^ ''max_allowabl<<br />

127


structural Analysis for Compartment 8-225-6-V: Inner L<strong>on</strong>gitudinal<br />

Bulkhead Plating<br />

Perma Ballast® Data<br />

PP, erma<br />

lb<br />

:= 200-<br />

ft"<br />

hernia filb^^-<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

lb<br />

sw 64.4-<br />

ft<br />

Compartment 8-225-6-V<br />

Volume := 281'tft"'<br />

Wperma '■= 2271<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast based off limiting shell calculati<strong>on</strong>s<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4)<br />

14.024# (.343<br />

20<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

A (L<strong>on</strong>gitudinal Bulkhead #3)<br />

^ 17.85# (.437")<br />

FR 230 Transverse Bulkhead<br />

12.75# (.3125")<br />

FR 225 Transverse Bulkhead<br />

15.3# (.375"<br />

-Stringer #14<br />

Z_c Stringer #11<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Inner L<strong>on</strong>gitudinal Bulkhead Plating:<br />

^Perma = 5.085x 10^ lb Weight of Perma Ballast®<br />

Fv^^VWp^^^<br />

FA -■= AWperma<br />

FP ■■= FWpenna<br />

FY=:6.356X 10 lb<br />

F^ =3.814x 10^ lb<br />

Fp = 2.034x 10^ lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

r^j: Fi^=3.814x 10 lb Normal Force<br />

128


Resulting Pressure <strong>on</strong> Inner L<strong>on</strong>gitudinal Bulkhead Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

L:=20ft Ht:=114n<br />

Area := L-Ht<br />

Area = 190ft^<br />

% 3 lb lb<br />

P •= —^ P = 2.007X 10 — P = 13.939—<br />

Area ^2 .2<br />

p<br />

H := —— H = 31.167ft Equivalent Head<br />

Psw<br />

129


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

b := 48in a := 114)n AR := — AR = 0.421<br />

a<br />

^actual :=-34311 Thickness of Plate, HTS<br />

H = 31.167ft Head of Water<br />

K := 1 For AR = 0.421,1 AW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft' For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />

— < •<br />

K-VH<br />

K-VH-b<br />

t„:„ := — mm"<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

^min = 0-67in<br />

The 8th deck inner l<strong>on</strong>gitudinal bulkhead (Shaft Alley Bulkhead #4) currently has 4 vertical stiffeners spaced 4 ft apart. The<br />

minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .67 in. The actual plate<br />

thickness is .343 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck inner l<strong>on</strong>gitudinal bulkhead plating must be stiffened.<br />

t_min »t actual<br />

130


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

tj„i„:= .34311<br />

H = 31.167ft<br />

K:= 1<br />

C := 400ft'^<br />

i


Stress Calculati<strong>on</strong>s:<br />

a := kPl -<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

p - pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

Simply_supported '■" •^a<br />

:= 114in b := 24-in<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

''clamped •" -^ ^ values are most c<strong>on</strong>servative<br />

based <strong>on</strong> 24 in separati<strong>on</strong> between stiffeners<br />

P = 13.939^ t := .343in<br />

. 2<br />

in<br />

lb<br />

^max_allowable= 40,000— lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

in<br />

,2<br />

^simply_supported •:= k.;. '^simply_supported .P.i^<br />

lb<br />

*'simply_supported 51182 . 2<br />

m<br />

■'clamped ■ "Clamped'"I<br />

I<br />

clamped<br />

34121-!^<br />

. 2<br />

m<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding vertical stiffeners at 24 in, this stress falls between that of simply<br />

supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support<br />

illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship,<br />

structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below maximum allowable.<br />

1


structural Analysis for Compartment 8-225-6-V; Outer L<strong>on</strong>gitudinal Bulkhead Plating<br />

Perma Ballast® Data<br />

lb<br />

PP, 'erma ■ 200-<br />

ft<br />

% Pema fill • 9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

sw 64.4^^<br />

ft^<br />

Compartment 8-225-6-V<br />

Volume := 2814Ft^<br />

Wperma:=2271<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4}<br />

14.024# (.343")<br />

20<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

(L<strong>on</strong>gitudinal Bulkhead #3)<br />

17.8S# (.437")<br />

FR 230 Transverse Bulkhead<br />

12.7^ (.3125")<br />

Shell Plating<br />

30.6#(.751<br />

FR 225 Transverse Bulkhead<br />

^.. 15.3#{.3751<br />

-Stnnger #14<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=1.2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Outer L<strong>on</strong>gitudinal Bulkhead Plating:<br />

Wpg,^a = 5.085x lO^lb Weight of Perma Ballast®<br />

Fv:=V.Wp,^3<br />

F^ := AWpg^a<br />

Fp := F-Wpg^a<br />

^N<br />

Fv = 6.356x 10 lb<br />

F^ =3.814x 10^ lb<br />

Fp = 2.034x 10^ lb<br />

F^ = 3.814X 10 lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

Normal Force<br />

133


Compartment Dimensi<strong>on</strong>s:<br />

L := 20ft Ht := 87in<br />

Area := L-Ht<br />

Area = 145ft^<br />

Area<br />

H:= ^<br />

Psw<br />

P-2.63x10^'^<br />

H = 40.84ft<br />

P= 18.264"'<br />

. 2<br />

m<br />

Equivalent Head<br />

134


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)|<br />

b := 48in a := 87in AR := - AR = 0.552<br />

a<br />

^actual :=-43'^n Thickness of Plate, HTS<br />

H = 40.84ft Head of Water<br />

K := .9S For AR = 0.552, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft"^ For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

^<<br />

t<br />

'min'<br />

K-A/H<br />

K>/Hb<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

Wn = 0-759in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .759 in. The actual<br />

plate thickness is .437 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck outer l<strong>on</strong>gitudinal bulkhead plating must be stiffened.<br />

t min »t actual<br />

135


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

^min '"^ -^^^n<br />

Thickness of Plate, HTS<br />

H = 40.84ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K := .9 Assume AR remains less than .552<br />

C:= 400ft-^<br />

For HTS, No Set<br />

b<br />

— <<br />

K-y/H<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

C h<br />

^limit ■= ^min J" b = 48in - = 24in<br />

blimit=30.392in<br />

2<br />

KH<br />

30.392 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that stiffeners can be located apart and have no deformati<strong>on</strong> occur <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .437 in plating. The<br />

outer l<strong>on</strong>gitudinal bulkhead plating currently has 4 vertical stiffeners spaced 4 ft apart. It is recommended that a vertical stiffener<br />

be placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of each existing stiffener <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer l<strong>on</strong>gitudinal bulkhead. Therefore, adding a <str<strong>on</strong>g>to</str<strong>on</strong>g>tal of 5 stiffeners <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> outer l<strong>on</strong>gitudinal bulkhead will put b at approximately 24 in and meet <str<strong>on</strong>g>the</str<strong>on</strong>g> 30.392 in requirement.<br />

136


Stress Calculati<strong>on</strong>s<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

o := kP-<br />

p = pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

'Simply_supported ■<br />

a := 20ft b := 24in<br />

IK<br />

P = 18.264— t := .437in<br />

. 2<br />

in<br />

lb<br />

^max_allowable= 40,000—<br />

in<br />

b = panel width<br />

a = panel length<br />

t := plate thickness<br />

h^<br />

^simply_supported • Simply_supported '^'\ ^<br />

k<br />

Clamped<br />

, j •=<br />

•<br />

5 k values are most c<strong>on</strong>servative<br />

based <strong>on</strong> 24 in separati<strong>on</strong> between stiffeners<br />

lAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

O^;<br />

simply_supported<br />

41317—<br />

. 2<br />

in<br />

^clamped • Clamped I .<br />

clamped<br />

:27544- Ib<br />

in<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding vertical stiffeners at 24 in, this stress falls below that of simply<br />

supported and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support<br />

illustrating zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship,<br />

structural systems can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Navy structural analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below maximum allowable.<br />

'^clamped'^^ ''max_allowabl(<br />

137


structural Analysis for Compartment 8-225-6-V; Transverse Bulkhead Frame 225<br />

Perma Ballast® Data<br />

Pp. erma<br />

200J^<br />

ft^<br />

^"Perma.fill •= ■^-<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n := 224ab<br />

Psw ■■= 64-4-^<br />

ft<br />

Compartment 8-225-6-V<br />

Volume := 2814^1^<br />

Wperma ■= 2271<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Sea water<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

{Shaft Alley Bulkhead #4)<br />

14.024# (.343 .<br />

20<br />

Outer L<strong>on</strong>gitudinal Bulkhead<br />

/ (L<strong>on</strong>gitudinal Bulkhead #3)<br />

'^ 17.85#(.437")<br />

FR 230 Transverse Bulkhead<br />

12.75# (.3125")<br />

Shell Plating<br />

30.6# (.75")<br />

FR 225 Transverse Bulkhead<br />

15.3# (.375")<br />

-Stringer #14<br />

^Stringer #11<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V := 1.2f Vertical<br />

A := O.lt Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Transverse Bulkhead Plating<br />

Wpg^3 = 5.085x 10^ lb Weight of Perma Ballast®<br />

Fv^=V.Wp,^3 Fv = 6.356x 10^ lb Vertical Load (Downward)<br />

FA ■■= AWpen„3 F^=3.814x 10^ lb Athwartship Load (Port)<br />

FF:=FWP,^3 Fp=2.034x 10^ lb Fore/Aft Load<br />

FN := Fp FN=2.034X 10^ lb Normal Force<br />

138


Resulting Pressure <strong>on</strong> Transverse Bulkhead Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

Ht:=lMn Width := 120in Dimensi<strong>on</strong>s of rectangular secti<strong>on</strong><br />

P := asinf""^"^"^! P = 12.68deg<br />

base := 120in Dimensi<strong>on</strong>s of small triangle<br />

ht := sin(p)-base ht = 26.341in<br />

Area := Ht-Width - (.5-base -ht)<br />

4 2<br />

Area = 1.21x 10 in<br />

P:=<br />

Area<br />

P<br />

H:=<br />

Psw<br />

P = 2.421x 10''—<br />

ft^<br />

H = 37.587ft<br />

P := 16.81 ^^<br />

. 2<br />

m<br />

Equivalent Head<br />

139


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

The transverse bulkhead is trapezoidal in shape with 3 vertical stiffeners at Frames 225 and 230 respectively. The transverse<br />

bulkhead is evenly divided in<str<strong>on</strong>g>to</str<strong>on</strong>g> 4 rectangular panels so that a cylindrical plate bending analysis can be performed<br />

<strong>on</strong> each panel.<br />

base := 30in Dimensi<strong>on</strong>s of small triangle<br />

ht=26.341in ht := sin(p)-base<br />

b := 3{)in a^ := 114in AR^ := — AR^ = 0.263<br />

^A<br />

aB:=114in-ht ag = 107.415iii ARg := — ARg = 0.279<br />

aQ-a^-ht ac = 100.82CHn ARp :=— ARp = 0.298<br />

^D '•'= ^C ~^^ ^D = 94.244in AR^ := — AR^ =0.318<br />

^D<br />

^actual -^ •^^^" Thickness of Plate, HTS<br />

H = 37.587ft Head of Water<br />

K := 1 For AR < 0.5, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

C := 400ft' For HTS, No Set, I AW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

b<br />

— /Hb<br />

Vin = 0.46in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .46 in. The actual<br />

plate thickness is .375 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck transverse plating at Frame 225 must be stiffened.<br />

t_min »t actual<br />

140


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

tj^„:= .37511<br />

H = 37.587ft<br />

K:= 1<br />

C := 400ft'^<br />

b<br />

— <<br />

K-VH<br />

Thickness of Plate, HTS<br />

Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

Assume AR remains less than .5<br />

For HTS, No Set<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

*'limit • min<br />

b = 30in<br />

^=15in<br />

2<br />

KH<br />

■'limit'' 24.466in<br />

24.466 in is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum distance that vertical stiffeners can be located apart and have no deformati<strong>on</strong> occur <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> .375 in<br />

plating. The transverse bulkhead plating has 3 vertical stiffeners It is recommended that a stiffener be placed between <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

existing vertical stiffeners. Therefore, adding 4 stiffeners <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse bulkhead plating will put b at approximately 15 in and<br />

meet <str<strong>on</strong>g>the</str<strong>on</strong>g> 24.466 in requirement^ ^<br />

141


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

o := k-P- —<br />

p = pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

•Simply.supported -^ •'^- K;lamped •= -^ ^ ^''''"^^ ^""^ "1°^' c<strong>on</strong>servative<br />

a := 114Jn b := 15-in based <strong>on</strong> 15 in separati<strong>on</strong> between stiffeners<br />

P = 16.81— t := .375n<br />

. 2<br />

m<br />

^max allowable" 40,000— JAW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

. 2<br />

m<br />

"'simply.supported • "Simply.supported '^i<br />

bV<br />

*^siniply_supported - 20172<br />

. 2<br />

m<br />

''clamped • "^clamped'" I<br />

I<br />

lb<br />

"clamped = 13448—<br />

. 2<br />

m<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding stiffeners at 15 in, this stress falls below that of simply supported<br />

and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating<br />

zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship, structural systems<br />

can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural<br />

analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below maximum allowable.<br />

"clamped*^*^ "max_allowabl(<br />

142


structural Analysis for Compartment 8-225-6-V: Transverse Bulkhead Frame 230<br />

Perma Ballast® Data<br />

lb<br />

Pp, erma<br />

:= 200-<br />

ft<br />

% Perma fill<br />

:=.9f<br />

C<strong>on</strong>versi<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n :== 224ab<br />

lb<br />

Psw ~ 64.4—<br />

ft<br />

Compartment 8-225-6-V<br />

Volume := 2814Ft^<br />

Wperma-=2271<str<strong>on</strong>g>to</str<strong>on</strong>g>n<br />

Density of Perma Ballast®<br />

Based <strong>on</strong> 95% Fillable Volume<br />

Density of Seawater<br />

Volume of Compartment<br />

Weight of Permanent Ballast<br />

Inner L<strong>on</strong>gitudinal Bulkhead<br />

(Shaft Alley Bulkhead #4)<br />

14.024# (.343'<br />

20'<br />

— Outer L<strong>on</strong>gitudinal Bulkhead<br />

/ (L<strong>on</strong>gitudinal Bulkhead #3)<br />

^ 17.85# (.437')<br />

FR 230 Transverse Bulkhead<br />

12.75# (.3125")<br />

Ship Moti<strong>on</strong> Fac<str<strong>on</strong>g>to</str<strong>on</strong>g>rs:<br />

V:=L2f Vertical<br />

A := 0.7f Athwartship<br />

F := 0.4 Fore/Aft<br />

Loading <strong>on</strong> Transverse Bulkhead Plating:<br />

Shell Plating<br />

30.6# (.75")<br />

FR 225 Transverse Bulkhead<br />

15.3#(.375l<br />

Stnnger #14<br />

7 '^stringer #11<br />

Wpgjjjjg = 5.085X 10^ lb Weight of Perma Ballast®<br />

Fy := VWp^^g<br />

PA •= ^•'^Perma<br />

Fp := FWpgrma<br />

^N'<br />

Fv = 6.356x 10 lb<br />

F^ =3.814x 10^ lb<br />

Fp=2.034x 10^ lb<br />

Fjsj = 2.034X 10 lb<br />

Vertical Load (Downward)<br />

Athwartship Load (Port)<br />

Fore/Aft Load<br />

Normal Force<br />

143


Resulting Pressure <strong>on</strong> Transverse Bulkhead Plating:<br />

Compartment Dimensi<strong>on</strong>s:<br />

Ht := 114in Dimensi<strong>on</strong>s of rectangular secti<strong>on</strong><br />

Width := 12an<br />

P := asm<br />

p = 12.68deg<br />

base := 120in Dimensi<strong>on</strong>sof small triangle<br />

ht := sin(p)-base ht = 26.341in<br />

Area := Ht-Width - (.5-base ht)<br />

Area =1.21x 10* in^<br />

P:=— P = 2.421x10^-!^ P = 16.81—<br />

Area 2 .2<br />

It m<br />

P<br />

H := H = 37.587ft Equivalent Head<br />

Psw<br />

144


Design of Plating for Surface Ships, lAW General Specs (Secti<strong>on</strong> 100)<br />

The transverse bulkhead is trapezoidal in shape with 3 vertical stiffeners at Frames 225 and 230 respectively. The transverse<br />

bulkhead is evenly divided in<str<strong>on</strong>g>to</str<strong>on</strong>g> 4 rectangular panels so that a cylindrical plate bending analysis can be performed<br />

<strong>on</strong> each panel.<br />

base := 30in Dimensi<strong>on</strong>s of small triangle<br />

ht = 26.341in ht := sin(p)-base<br />

b := 30in a^ :- 114in<br />

ARA<br />

b<br />

ARA = 0.263<br />

^B = 114in-ht<br />

^<br />

= ag - ht<br />

ag = 107.415in<br />

a^ = 100.829in<br />

ARB<br />

ARQ<br />

b<br />

^B<br />

b<br />

ARB = = 0.279<br />

ARc = = 0.298<br />

^D := ac - ht<br />

aj) = 94.244in<br />

ARD<br />

b<br />

^D<br />

ARD = 0.318<br />

tactual := -31251<br />

H = 37.587ft<br />

K:=l<br />

C:= = 400ft'^<br />

Thickness of Plate, HTS<br />

Head of Water<br />

For AR < 0.5, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

For HTS, No Set, lAW with Table I of <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

t<br />

c ■<br />

K-VH<br />

b = short dimensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel (inches)<br />

t = thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (inches)<br />

C = Coefficient that is a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating material and <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> plating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ship<br />

K = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel<br />

H = Head of salt water (feet)<br />

TTun<br />

K^Hb<br />

C<br />

^min = 0.46in<br />

The minimum thickness calculated for this secti<strong>on</strong> of plate <str<strong>on</strong>g>to</str<strong>on</strong>g> meet Navy Structural Standards with no set is .46 in. The actual<br />

plate thickness is .3125 in. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th deck transverse plating at Frame 230 must be stiffened.<br />

t min »t_actual<br />

145


Calculati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> Determine Strength Correcti<strong>on</strong>s:<br />

t^jp := .3125n Thickness of Plate, HTS<br />

H = 37.587ft Head of Water (With new head of water calculated using maximum allowable ballast additi<strong>on</strong>)<br />

K :- 1 Assume AR remains less than .5<br />

C := 400ft'^ For HTS, No Set<br />

b c •<br />


Stress Calculati<strong>on</strong>s:<br />

k = coefficient that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate edge c<strong>on</strong>diti<strong>on</strong>s,<br />

aspect ratio (AR) of <str<strong>on</strong>g>the</str<strong>on</strong>g> panel, and positi<strong>on</strong> of point being c<strong>on</strong>sidered<br />

a := kP- -<br />

p = pressure based <strong>on</strong> limiting ballast add for shell plating calculati<strong>on</strong>s<br />

'^imply_supported •<br />

a := 114in b :- 15-in<br />

lb<br />

P ^ 16.81- t := .3125n<br />

. 2<br />

in<br />

lb<br />

"max allowable= 40,000-<br />

m<br />

b = panel width<br />

a = panel length<br />

t = plate thickness<br />

^simply_supported ■ 'Simply_supported<br />

Ic , j •= 5 k values are most c<strong>on</strong>servative<br />

*t;lamped •<br />

based <strong>on</strong> 15 in separati<strong>on</strong> between stiffeners<br />

I AW with <str<strong>on</strong>g>the</str<strong>on</strong>g> General Specs (Secti<strong>on</strong> 100)<br />

I ^<br />

>2<br />

Jb_<br />

simply_supported 29048-<br />

. 2<br />

in<br />

'clamped • Clamped<br />

I ^<br />

'clamped<br />

Jb_<br />

19365-<br />

. 2<br />

m<br />

Maximum Allowable Stress for HTS is 40,000 psi. By adding stiffeners at 15 in, this stress falls below that of simply supported<br />

and that of clamped. Simply supported and clamped structural cases are idealizati<strong>on</strong>s of structural member support illustrating<br />

zero stiffness and infinite stiffness, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r of which exists in any real-world structural system. On board ship, structural systems<br />

can be c<strong>on</strong>veniently approximated by <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, but in fact have stiffness between <strong>on</strong>e or <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Navy structural<br />

analysis is based off clamped ends, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> stress falls well below maximum allowable.<br />

clamped ^«a, "max_allowabl<<br />

147


Appendix F: Final POSSE Modeling Results<br />

148


__ — __ — """ " *c;<br />

1— ai S<br />

s<br />

<br />

CO<br />

s<br />

r-. f-><br />

ai<br />


Appendix G: Final Cost Estimati<strong>on</strong> Data and Worksheets<br />

Provided by Norfolk Naval Shipyard Structural Engineering and Planning Office (Code 256)<br />

150


o<br />

ON H<br />

00<br />

^<br />

^<br />

o<br />

><br />

o<br />

-o<br />

B<br />

u<br />

H<br />

r^ 00<br />

r-H 1—H<br />

ON 1—1<br />

^ s?<br />

u Si<br />

M o<br />


MATERIAL WORK SHEET<br />

PERMA BALLAST® INSTALLATION •<br />

(This work sheet was created for <str<strong>on</strong>g>the</str<strong>on</strong>g> final costing estimati<strong>on</strong> due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lesser<br />

I<str<strong>on</strong>g>to</str<strong>on</strong>g>n additi<strong>on</strong> for each Z"'' deck void, thus requiring compartment 2-250-4-V tO|<br />

be utilized)<br />

SHOP PC# MATERIAL STOCK NO. QTY SS/PUR COST<br />

SPONSON STIFFENING:<br />

2-250-4-V<br />

llSl 003 5" X 4" ANGLE (7.5#LF) 9520-00-277-5978 225 $6.46/FT $1,454<br />

71AA 004 PAINT $1,200<br />

74YY N/A BLAST AND PAINT FACILITY $4,500<br />

ALL N/A CONSUMABLES $2,217<br />

TOTAL MATERIAL COSTS: $9,371<br />

TOTAL MATERIAL WEIGHT:<br />

4,470 #'S<br />

152


MATERIAL WORK SHEET<br />

PERMA BALLAST® INSTALLATION<br />

(This work sheet was created for <str<strong>on</strong>g>the</str<strong>on</strong>g> final costing estimati<strong>on</strong> due <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stiffening required for <str<strong>on</strong>g>the</str<strong>on</strong>g> 8^^ deck and is not reflected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous<br />

estimate page)<br />

SHOP PC# MATERIAL STOCK NO. QTY SS/PUR COST<br />

BHD STIFFENING: 8"" DECK<br />

llSl 001 5" X 4" ANGLE (7.5#LF) 9520-00-277-5978 120 $6.46/FT $775<br />

71AA 002 PAINT $1,000<br />

74YY N/A BLAST AND PAINT FACILITY $2,400<br />

ALL N/A CONSUMABLES $250<br />

TOTAL MATERIAL COSTS: $4,425<br />

TOTAL MATERIAL WEIGHT:<br />

900 #'S<br />

153


o<br />

><br />

u<br />

Ed<br />

O<br />

N<br />

*<br />

so<br />

«5<br />

5<br />

1 o<br />

i<br />

i<br />

as o o<br />

0 o<br />

d<br />

z ><br />

I<br />

00 i<br />

I<br />

><br />

o<br />

M<br />

I 1<br />

r» d<br />

oa<br />

u<br />

Q<br />

00<br />

1/1<br />

*<br />

ON<br />

00<br />

VJ «ft ©<br />

Ift<br />

00<br />

00<br />

Q<br />

O<br />

CL,<br />

00<br />

I-l<br />

El<br />

oa<br />

o<br />

oa<br />

o<br />

o<br />

H<br />

Z<br />

a<br />

u<br />

1<br />

© ©<br />

H 0<br />

d<br />

o<br />

in<br />

d<br />

o<br />

d<br />

o<br />

Ift<br />

d<br />

o<br />

Ift<br />

d<br />

0 o<br />

Ift<br />

d<br />

o<br />

Ift<br />

d<br />

0<br />

Ift<br />

d<br />

o<br />

Ift<br />

d<br />

0<br />

Ift<br />

d<br />

z ■<br />

o<br />

•<br />

00 ■<br />

00<br />

><br />

o<br />

i-i<br />

•ft<br />

1^<br />

1<br />

00<br />

><br />

1<br />

00<br />

00<br />

><br />

6<br />

rH<br />

1<br />

00<br />

><br />

■<br />

Ift<br />

r^<br />

■<br />

00<br />

><br />

Ift<br />

1<br />

00<br />

><br />

■<br />

00<br />

><br />

■<br />

2<br />

><br />

I<br />

SO<br />

1<br />

00<br />

><br />

•<br />

00<br />

•<br />

•<br />

00 i


*• en<br />

* 5fc<br />

M<br />

S<br />

00 00<br />

* yj c« 1/3 CO<br />

H * 3fc * *<br />

-


00 in<br />

*<br />

00<br />

4t<br />

H<br />


CO<br />

5t<br />

CO 00<br />

en<br />

St<br />

0\<br />

CO<br />

5t<br />

o<br />

©<br />

St<br />

o<br />

o<br />

3t<br />

c« W3<br />

St:<br />

ON<br />

CO<br />

*<br />

o<br />

©<br />

NO<br />

H<br />

00<br />

VO<br />

o<br />

H<br />

>/5<br />

©<br />

■se-<br />

Q<br />

O<br />

PM<br />

o<br />

H<br />

Q<br />

O<br />

VO<br />

00 00<br />

rH<br />

rH~<br />

00<br />

rH^ rH<br />

rH^ rH 1-H rH<br />

NO<br />

00<br />

rH<br />

rn"<br />

»S<br />

s<br />

00<br />

•<br />

o<br />

r-l<br />

o&<br />

00<br />

rH<br />

00<br />

><br />

6<br />

rH<br />

>A<br />

rH<br />

00<br />

>■<br />

00<br />

00<br />

><br />

6<br />

00<br />

><br />

I<br />

00<br />

><br />

I<br />

00<br />

><br />

f<br />

o<br />

00<br />

NO<br />

o<br />

GO<br />

><br />

NO ■<br />

00<br />

><br />

I<br />

00<br />

00<br />

CO


*<br />

H<br />

-) HJ .J NJ .J<br />

o o © © o © ©<br />

C/l<br />

■ ■<br />

00 >-]<br />

VO<br />

■<br />

o<br />

00<br />

1<br />

O 1-H TH r«<br />

p!« ><br />

■<br />

o > ><br />

1 © 1 6 > > > > 2<br />

l-H 00<br />

i<br />

1^ 00 1-H<br />

"? 00 TT VO VO *?<br />

o «o tn © © m m © © in in<br />

1-^ 1-H 1-H (S


* CO<br />

*<br />

*<br />

vT 00<br />

*<br />

in<br />

r4~ vT<br />

* cr C/l [/) C/l C/1 t/i t/i 1/5 t/l C/3 cr c«<br />

H * * * * * * * * * * * ©<br />

V) in VI v> V) V) V5 VI<br />

r» «s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!