27.12.2013 Views

Etudes et évaluation de processus océaniques par des hiérarchies ...

Etudes et évaluation de processus océaniques par des hiérarchies ...

Etudes et évaluation de processus océaniques par des hiérarchies ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.6. ESTIMATION OF FRICTION PARAMETERS AND LAWS IN 1.5D SHALLOW-WATER GRAVI<br />

Ocean Dynamics<br />

tel-00545911, version 1 - 13 Dec 2010<br />

the bottom friction of a gravity current on the Coriolis<br />

platform, a variable that has so far eva<strong>de</strong>d direct<br />

measurement. The complexity of the estimation of the<br />

friction <strong>par</strong>am<strong>et</strong>ers in the real ocean <strong>de</strong>pends on the<br />

spatial variability of the roughness of the ocean floor.<br />

Finally, we would like to emphasise that this research<br />

actually goes beyond the technical problem of estimating<br />

<strong>par</strong>am<strong>et</strong>ers. By allowing the assimilation scheme to<br />

choose b<strong>et</strong>ween different <strong>par</strong>am<strong>et</strong>risations, as shown<br />

above, we actually answer the scientific question about<br />

the nature of the un<strong>de</strong>rlying physical process. Param<strong>et</strong>er<br />

estimation can in this way choose b<strong>et</strong>ween different<br />

<strong>par</strong>am<strong>et</strong>risations and help discriminate the physical<br />

laws of nature by estimating the coefficients presented<br />

in such <strong>par</strong>am<strong>et</strong>risations.<br />

Acknowledgements Comments from and discussions with<br />

Jean-Michele Brankart and Emmanuel Cosme were key in writing<br />

this paper. We are grateful to Bernard Barnier, Yves Morel<br />

and Joel Sommeria for their remarks and to Pago<strong>de</strong> du Baron for<br />

discussion. This work is <strong>par</strong>t of the COUGAR project fun<strong>de</strong>d by<br />

ANR-06-JCJC-0031-01 and by LEFE/INSU/CNRS.<br />

References<br />

Baringer MO, Price JF (1997) Momentum and energy balance of<br />

the Mediterranean outflow. Phys J Oceanogr 27:1678–1692<br />

Brusdal K, Brankart JM, Halberstadt G, Evensen G, Brasseur P,<br />

van Leeuwen PJ, Dombrowsky E, Verron J (2003) A <strong>de</strong>monstration<br />

of ensemble-based assimilation m<strong>et</strong>hods with a layered<br />

OGCM from the perspective of operational ocean forecasting<br />

systems Marine. J Syst 40–41:253–289<br />

Burgers G, van Leeuwen P, Evensen G (1998) Analysis scheme<br />

in the ensemble Kalman filter. Mon Weather Rev 126:1719–<br />

1724<br />

DYNAMO Group (1997) Dynamics of North Atlantic mo<strong>de</strong>ls:<br />

simulation and assimilation with high resolution mo<strong>de</strong>ls. Ber<br />

Inst Meereskd Kiel 294:333<br />

Emms PW (1998) Stream-tube mo<strong>de</strong>ls of gravity currents in the<br />

ocean. Deep-Sea Res 44:1575–1610<br />

Evensen G (1994) Sequential data assimilation with a nonlinear<br />

quasi-geostrophic mo<strong>de</strong>l using Monte Carlo m<strong>et</strong>hods to<br />

forecast error statistics. Geophys J Res 99:10143–10162<br />

Evensen G, Dee DP, Schröter J (1998) Param<strong>et</strong>er estimation<br />

in dynamical mo<strong>de</strong>ls. In: Chassign<strong>et</strong> EP, Verron J (eds)<br />

Ocean mo<strong>de</strong>ling and <strong>par</strong>am<strong>et</strong>rization NATO sciences series.<br />

Kluwer, Dordrecht, pp 373–398<br />

Evensen G (2003) The ensemble Kalman filter: theor<strong>et</strong>ical formulation<br />

and practical implementation. Ocean Dyn 53:343–<br />

367<br />

Ezer T (2005) Entrainment, diapycnal mixing and transport in<br />

three-dimensional bottom gravity current simulations using<br />

the Mellor-Yamada turbulence scheme. Ocean Mod 9:151–<br />

168<br />

Gill AE (1982) Atmosphere and ocean dynamics, International<br />

Geophysics series. Aca<strong>de</strong>mic, London<br />

Griffiths RW (1986) Gravity currents in rotating systems. Ann<br />

Rev Fluid Mech 18:59–89<br />

IPCC Fourth Assessment Report, Climate Change (2007) The<br />

physical science basis, Chapter 1.5.1<br />

Killworth PD (1977) Mixing on the Wed<strong>de</strong>ll Sea continental<br />

slope. Deep-Sea Res 24:427–448<br />

Killworth PD (2001) On the rate of <strong>de</strong>scent of overflows.<br />

Geophys J Res 106:22267–22275<br />

Killworth PD, Edwards NR (1999) A turbulent bottom boundary<br />

layer co<strong>de</strong> for use in numerical ocean mo<strong>de</strong>ls. Phys J<br />

Oceanogr 29:1221–1238<br />

Legg S, Hallberg RW, Girton JB (2006) Com<strong>par</strong>ison of entrainment<br />

in overflows simulated by z-coordinate, isopycnal and<br />

non-hydrostatic mo<strong>de</strong>ls. Ocean Mod 11:69–97<br />

Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-<br />

dimensionally equidistributed uniform pseudorandom number<br />

generator. ACM Trans Mo<strong>de</strong>l Comput Simul 8:3–30<br />

Moonn W, Tang R (1984) Ocean bottom friction study from numerical<br />

mo<strong>de</strong>lling of sea surface height and SEASAT-ALT<br />

data. Mar Geophys Res 7:73–76<br />

Price JF, Baringer MO (1994) Outflows and <strong>de</strong>ep water production<br />

by marginal seas. Prog Oceanogr 33:161–200<br />

<strong>de</strong> Saint Venant B (1871) Théorie du mouvement non permamnent<br />

<strong>de</strong>s eaux, avec application aux crues <strong>de</strong>s rivières <strong>et</strong> à<br />

l’introduction <strong>de</strong>s marées dans leur lit. C.R. A.S. 73:147–154<br />

Schlichting H, Gertsen K (2000) Boundary-layer theory.<br />

Springer, Hei<strong>de</strong>lberg<br />

Shapiro GI, Hill AE (1997) Dynamics of <strong>de</strong>nse water casca<strong>de</strong>s at<br />

the shelf edge. Phys J Oceanogr 27:2381–2394<br />

Smith PC (1975) A stream tube mo<strong>de</strong>l for bottom boundary<br />

currents in the ocean. Deep-Sea Res 22:853–873<br />

Smith PC (1977) Experiments with viscous source flows in rotating<br />

systems. Dyn Atmos Ocean 1:241–272<br />

Stevensen B, Duan J, McWilliams JC, Münnich M, Neelin JD<br />

(2002) Entrainment, Rayleigh friction, and boundary layer<br />

winds over the tropical Pacific. J Climate 15:30–44<br />

Sutherland BR, Nault J, Yewchuk K, Swaters GE (2004) Rotating<br />

<strong>de</strong>nse currents on a slope. Part 1. Stability. Fluid J Mech<br />

508:241–264<br />

Whitehead JA, Stern ME, Flierl GR, Klinger BA (1990) Experimental<br />

observations of baroclinic eddies on a sloping<br />

bottom. Geophys J Res 95:9585–9610<br />

Willebrand J, Barnier B, Böning C, Di<strong>et</strong>erich C, Killworth P,<br />

Le Provost C, Jia Y, Molines JM, New AL (2001) Circulation<br />

characteristics in three eddy-permitting mo<strong>de</strong>ls of the North<br />

Atlantic. Prog J Oceanogr 48:123–162<br />

Wirth A (2004) A non-hydrostatic flat-bottom ocean mo<strong>de</strong>l entirely<br />

based on Fourier expansion. Ocean Mod 9:71–87<br />

Wirth A, Barnier (2006) Tilted convective plumes in numerical<br />

experiments. Ocean Mod 12:101–111<br />

Wirth A, Barnier (2008) Tilted convective plumes in numerical<br />

experiments. Phys J Oceanogr 38:803–816<br />

Xu X, Chang YS, P<strong>et</strong>ers H, Özgökmen TM, Chassign<strong>et</strong> EP (2006)<br />

Param<strong>et</strong>rization of Gravity current entrainment for ocean<br />

circulation mo<strong>de</strong>ls using a high-or<strong>de</strong>r 3D nonhydrostatic<br />

spectral element mo<strong>de</strong>l. Ocean Mod 14:19–44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!