29.12.2013 Views

Ensaios Econômicos - Sistema de Bibliotecas da FGV - Fundação ...

Ensaios Econômicos - Sistema de Bibliotecas da FGV - Fundação ...

Ensaios Econômicos - Sistema de Bibliotecas da FGV - Fundação ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

one dimension vanishes, e.g., as 11 ! 0, we are able to compute its limit as:<br />

lim M (t 1; t 2 ) M 2 (t 1 ; t 2 ) = exp<br />

t 1 1 + t 2 2 + 1 <br />

11 !0 2 t2 2 22 :<br />

From Levi’s Continuity Theorem, the …rst two moments of the limiting distribution can be<br />

<strong>de</strong>termined respectively by:<br />

"<br />

# " #<br />

d<br />

dt M t=0<br />

1<br />

1<br />

2 (0; 0) = M 2 (t 1 ; t 2 )<br />

=<br />

( 2 + t 2 22 )<br />

2<br />

"<br />

# "<br />

#<br />

d 2<br />

dt 2 M 2 1 1 ( 2 + t 2 22 ) t=0<br />

2 1 1 2<br />

2 (0; 0) = M 2 (t 1 ; t 2 )<br />

1 ( 2 + t 2 22 ) 22 + ( 2 + t 2 22 ) 2 =<br />

1 2 22 + 2 ;<br />

2<br />

" !<br />

!#<br />

1 0 0<br />

implying that the distribution converges in law to the <strong>de</strong>generate Normal N ;<br />

.<br />

2 0 22<br />

By the Disintegration Theorem, a <strong>de</strong>nsity can be <strong>de</strong>…ned for such distribution on a restriction<br />

of (" the original # " 2-dimensional " Lebesgue measure " to the a¢ ne subspace<br />

x 1<br />

=<br />

x 2<br />

#<br />

1<br />

+<br />

2<br />

f (x 1 ; x 2 ) =<br />

=<br />

=<br />

# "<br />

0 0<br />

0 22<br />

#<br />

v 1<br />

:<br />

v 2<br />

(<br />

1<br />

p exp 222<br />

(<br />

1<br />

p exp 222<br />

(<br />

1<br />

p exp 222<br />

#<br />

v 1<br />

2 R<br />

). 2 It is given by:<br />

v 2<br />

"<br />

1<br />

2 [x 1 1 ; x 2 2 ]<br />

1<br />

2 [x 1 1 ; x 2 2 ]<br />

)<br />

1 [x 2 2 ] 2<br />

;<br />

2 22<br />

"<br />

# + "<br />

0 0<br />

0 22<br />

0 0<br />

0 1<br />

22<br />

# "<br />

#)<br />

x 1 1<br />

x 2 2<br />

#)<br />

x 1 1<br />

x 2 2<br />

" # + " #<br />

0 0<br />

0 0<br />

where<br />

is the Moore-Penrose (pseudo or generalized) inverse matrix of<br />

,<br />

0 22 0 22<br />

which pseudo-inverse <strong>de</strong>terminant 5 is given by 22 . As the last line makes clear, this is the <strong>de</strong>nsity<br />

of univariate random variable N [ 2 ; 22 ]. A symmetric result applies when 22 ! 0.<br />

Therefore, <strong>de</strong>generating the bivariate Normal distribution in one dimension does not a¤ect either<br />

the mean or the variance of the other dimension, allowing to <strong>de</strong>termine exactly what the remaining<br />

univariate distribution will be. As expected, the covariance will vanish as well, since the covariance<br />

of a constant with a random variable should be zero.<br />

The result in Proposition 1 allows performing counter-factual exercises when we shut out either<br />

permanent or transitory shocks. As it becomes clear in the next section, we evaluate the welfare<br />

5 See Magnus and Neu<strong>de</strong>cker (1988) for the <strong>de</strong>…nition and properties of pseudo-inverse matrices and <strong>de</strong>terminants.<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!