29.12.2013 Views

The Present and Future Use of High- Energy X-rays for Industrial ...

The Present and Future Use of High- Energy X-rays for Industrial ...

The Present and Future Use of High- Energy X-rays for Industrial ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Present</strong> <strong>and</strong> <strong>Future</strong> <strong>Use</strong> <strong>of</strong> <strong>High</strong>-<br />

<strong>Energy</strong><br />

X-<strong>rays</strong> <strong>for</strong> <strong>Industrial</strong> Materials<br />

Research<br />

Yan Gao<br />

GE Global Research Center<br />

Niskayuna, NY 12309<br />

Workshop on “Science with <strong>High</strong>-<strong>Energy</strong> X-<strong>rays</strong>”<br />

August 9, 2004, Advanced Photon Source, ANL


Acknowledgem<br />

ent<br />

Beamlines XOR 1-ID-C, 5-BM-D<br />

Ulrich Lienert (APS)<br />

Jon Almer (APS)<br />

Peter Lee (APS)<br />

Dean Haeffner (APS)<br />

Peter Chupas (ANL)<br />

Qing Ma (DND-CAT)<br />

Beamlines X17B1, X15A<br />

Zhong Zhong (NSLS)<br />

Bill Carter (GE)<br />

Jim Ruud (GE)<br />

Tom Angeliu (GE)<br />

Kan Kump (GEMS)


Outlin<br />

e<br />

!GE <strong>and</strong> GE Global Research<br />

!<strong>The</strong> <strong>Present</strong><br />

•Residual stress measurement<br />

•Characterization <strong>of</strong> TBC<br />

•<strong>High</strong> throughput XRD <strong>and</strong> SAXS<br />

•Hg XRF at 83 keV<br />

•Pr EXAFS at 42 keV<br />

•Other applications with HE X-<strong>rays</strong><br />

!<strong>The</strong> <strong>Future</strong><br />

•Cutting-edge capability<br />

•Advanced characterization<br />

•A friendly user facility


GE <strong>and</strong> GE Global Research<br />

Niskayuna, NY<br />

India China Germany


GE Global Research: Hub <strong>for</strong><br />

innovation<br />

<strong>The</strong>n…<br />

And Now…<br />

Cutting-edge research<br />

• Nanotechnology & functional<br />

materials<br />

• Hydrogen storage materials<br />

• Solid Oxide Fuel Cell<br />

• Photovoltaics<br />

Discovery <strong>of</strong> synchrotron<br />

radiation at GE Research<br />

Center (1947)


Why is GE interested in HE X-<br />

<strong>rays</strong><br />

• Unique capability (penetrating power. intensity)<br />

• Superior data quality (S/N, angular resolution)<br />

• Productivity (simpler sample prep, fast data collection)<br />

Low-energy X-<strong>rays</strong><br />

<strong>High</strong>-energy X-<strong>rays</strong><br />

Research on many metals, alloys, <strong>and</strong> ceramics


Residual stress measurement<br />

Incident X-ray<br />

2Θ<br />

Diffracted X-<br />

ray<br />

Obtain depth pr<strong>of</strong>ile by layer<br />

removal<br />

Synchrotron X-<strong>rays</strong><br />

• Small beam size<br />

• <strong>High</strong> intensity<br />

• <strong>High</strong> accuracy<br />

• Non-destructive with HE X-<strong>rays</strong><br />

In-house X-ray source<br />

• Large beam footprint<br />

• Low intensity <strong>for</strong> high-angle peaks<br />

• Low accuracy<br />

• Layer-removal <strong>for</strong> depth pr<strong>of</strong>ile<br />

Incident X-<br />

ray<br />

Obtain depth pr<strong>of</strong>ile by moving<br />

sample<br />

Diffracted X-<br />

ray<br />

2Θ<br />

Residual Stress Determination Is Very Important <strong>for</strong> Industry


Non-destructive residual stress measurement<br />

•Shot-peening effect was measured as a function <strong>of</strong> depth<br />

•Sample stage was used to bring more grains to diffraction<br />

Obtaining triaxial strain<br />

tensor<br />

Hoop<br />

Radial<br />

Rotation: 2 rps<br />

Axial<br />

Translation: 4 mm/s<br />

Diffraction data were collected at<br />

various χ, φ <strong>and</strong> t (depth up to 1.3 mm)<br />

352 images were taken in 6 hours per<br />

sample in automated operation<br />

XOR 1-ID-C (U. Lienert)


Non-destructive residual stress measurement<br />

•Triaxial stress components determined<br />

•Affected depth up to 400 µm.<br />

Stress [MPa]<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

-500<br />

-600<br />

hoop<br />

axial<br />

radial<br />

0.00 0.20 0.40 0.60 0.80 1.00<br />

Depth [mm]


<strong>High</strong>-energy X-ray powder diffraction<br />

Combined with MarCCD <strong>and</strong> an auto sampler, high<br />

throughput measurements can be per<strong>for</strong>med .<br />

Sagittal focusing monochromator<br />

Sample (3 mm)<br />

Stage movement<br />

• Providing 10 11 ph/s at 67 keV<br />

by focusing horizontal beam<br />

from 40 mm to 0.5 mm, which<br />

is an flux increase by 2 order<br />

<strong>of</strong> magnitude.<br />

• Vertical divergence is between<br />

10-30 micro-radians good<br />

angular resolution<br />

X17B1 (Z. Zhong)


Applications to <strong>The</strong>rmal Barrier Coatings (TBC)<br />

• Polymorphs: tetragonal, cubic <strong>and</strong><br />

monoclinic<br />

• Separation <strong>of</strong> tetragonal <strong>and</strong> cubic peaks<br />

• Determination <strong>of</strong> lattice parameters <strong>and</strong><br />

c/a’: trans<strong>for</strong>mable (t) <strong>and</strong> nontrans<strong>for</strong>mable<br />

(t’)<br />

• Texture: difficult with conventional XRD.<br />

7-8YSZ<br />

YS<br />

Z<br />

Bond coat<br />

Superalloy substrate


Applications to <strong>The</strong>rmal Barrier Coatings (TBC)<br />

TBC analyses may involve large<br />

number <strong>of</strong> measurements<br />

or<br />

Time<br />

Per<strong>for</strong>mance DOE<br />

Temperature<br />

x x x<br />

x x x<br />

x x x<br />

x x x<br />

x x x<br />

• Tetra = 49.9 wt%<br />

• Cubic = 47.9 wt%<br />

• Mono = 2.2 wt%<br />

• Tetra c/a’ = 1.0154 → t’<br />

• Tetra c/a’ → 4.4 mol% YO 1.5<br />

• Tetra c/a’ → thermal history<br />

• Cubic a → 14.0 mol% YO 1.5<br />

• Peak width → micro-strain<br />

• Peak position → macro-strain


Applications to cast ODS alloys<br />

Oxide Dispersion Strengthened A<br />

Fe, Ni or Cu Nano-sized oxide<br />

(less than 1 wt%)<br />

Conventional analyses<br />

•XRD phase analysis<br />

•TEM sample: from a tiny<br />

area<br />

•SAXS sample: thin <strong>and</strong><br />

small<br />

TEM micrograph


Applications to cast ODS alloys<br />

Scan sample<br />

Transmission HE-XRD<br />

• Phase identification<br />

• Oxide dispersion in macro scale<br />

100<br />

mm<br />

Cross-section <strong>of</strong> ingot<br />

A few mm thick<br />

HE-SAXS<br />

• Oxide dispersion in micro scale<br />

• Oxide size <strong>and</strong> size distribution<br />

AlYO 3 <strong>and</strong> Al 5 Y 3 O 12


Applications to cast ODS alloys<br />

HE-SAXS<br />

• Oxide dispersion in micro scale<br />

• Oxide size <strong>and</strong> size distribution<br />

Igor + SAS macro (J. Ilavsky)<br />

Size <strong>and</strong> size distribution<br />

XOR 1-ID-C (J. Almer)


<strong>High</strong>-energy X-ray<br />

fluorescence<br />

Example: Hg K-edge<br />

Binding <strong>Energy</strong> (keV) at K edge<br />

36.0<br />

•Low Hg<br />

concentration (a<br />

few mg)<br />

•Many commonly used elements, including RE elements •Non-destructive<br />

•Excitation beyond the energy <strong>of</strong> in-house XRF •Hg vapor pressure<br />

•Greater fluorescence yield at K-edge<br />

vs. temperature<br />

•<strong>Use</strong>ful <strong>for</strong> non-destructive detection<br />

90.5


Non-destructive detection <strong>of</strong> Hg vapor in F-lamps<br />

Setup at NSLS X26A <strong>and</strong> X17B1<br />

10000<br />

Kr Kα<br />

Kr Kβ/Sr Kα<br />

Glass wall: 0.8<br />

mm<br />

Diameter: 1.5”<br />

1000<br />

100<br />

Hg Lβ<br />

Sr Kβ<br />

Ag Kα<br />

Hg Lα Zn Kβ Zn Kα<br />

Hg L α & L β lines<br />

X26A: L edge<br />

Fluorescence intensity<br />

Ar Kα<br />

Ca Kα<br />

Fe Kα<br />

Cu Kα<br />

Hg<br />

Detecto<br />

r<br />

Incident X-ray<br />

K edge = 83.1<br />

keV<br />

L 3<br />

edge = 12.3<br />

keV<br />

<strong>The</strong> lamp was wrapped with<br />

heating tape <strong>for</strong> temperaturedependent<br />

measurement<br />

Intensity<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0 5 10 15 20 25<br />

Hg K α & K β<br />

lines<br />

Hg K α2<br />

Hg K α1<br />

<strong>Energy</strong> (keV)<br />

Pb K α2<br />

T55a<br />

T90a<br />

T123a<br />

T150a<br />

T150b<br />

66 68 70 72 74 76 78 80 82<br />

<strong>Energy</strong> (keV)<br />

X17: K edge<br />

Hg K β<br />

Pb K α1


X-ray absorption spectroscopy using HE X-<strong>rays</strong><br />

Motivation: Underst<strong>and</strong> the role <strong>of</strong> Pr doping in Quantum Splitting Ph<br />

Pr<br />

• Pr L-edge not possible due<br />

to La<br />

• Pr K-edge not possible at<br />

NSLS due to low flux at high<br />

energy<br />

Pr-<br />

O<br />

Pr-<br />

P<br />

Pr-<br />

La<br />

LaPO4:Pr<br />

K-edge data from APS 5-BM-D


Quantitative phase analysis using HE X-<strong>rays</strong><br />

0.5 mm<br />

Carbon<br />

WC/W 2<br />

C<br />

W<br />

Objective: Quantify W, WC <strong>and</strong> W 2<br />

C<br />

Tungsten absorption is too severe <strong>for</strong><br />

in-house conventional X-<strong>rays</strong><br />

Solution: <strong>High</strong>-energy XRD at 67 keV!


Non-destructive XRD using HE X-<strong>rays</strong><br />

QuPipe<br />

How does it work <strong>and</strong> why?<br />

<strong>The</strong> pipe is claimed to have<br />

several layers, <strong>and</strong> work only<br />

when it is sealed, there<strong>for</strong>e<br />

HE-XRD is the chosen<br />

technique to investigate the<br />

interior chemistry <strong>and</strong> crystal<br />

structure.<br />

Cu<br />

67 KeV X-ray in transmission mode


<strong>The</strong><br />

<strong>Future</strong><br />

Cutting-edge capability<br />

•A turnkey facility <strong>for</strong> MicroXRD <strong>and</strong> microXRF<br />

•Fast time-resolved in-situ diffraction<br />

Advanced characterization<br />

•Non-destructive residual stress<br />

•<strong>High</strong>-throughput materials screening (XRD, XRF<br />

<strong>and</strong> SAXS)<br />

A friendly user (including industrial users)<br />

facility<br />

•Dedicated instrumentation <strong>for</strong> frequently used<br />

techniques<br />

•Quick access <strong>and</strong>/or remote access<br />

•Commercialized analytical services


Microdiffraction with high spatial resolution<br />

Cross-section <strong>of</strong> a SOFC<br />

part:<br />

Consisting cathode,<br />

anode, electrolytes,<br />

interconnect, seal glass,<br />

etc.<br />

While elemental in<strong>for</strong>mation may be<br />

obtained by SEM-EDS, it’s very<br />

important to obtain crystal structure<br />

in<strong>for</strong>mation from region <strong>of</strong> interest as<br />

marked.<br />

50 µm<br />

Optical micrograph


A turnkey microdiffraction station: aim <strong>and</strong><br />

shoot<br />

Monochromatic<br />

beam <strong>for</strong><br />

polycrystalline area<br />

Sample<br />

A wavelength dispersive XRF detector can be added<br />

Interchangeable,<br />

focused white <strong>and</strong><br />

monochromatic beam <strong>of</strong><br />

a few µm across<br />

CCD Camera<br />

White beam <strong>for</strong><br />

single crystal<br />

grains<br />

2D<br />

detector<br />

Crystal structure


Fast time-resolved XRD<br />

Time resolution can be essential <strong>for</strong> mechanistic underst<strong>and</strong>ing!<br />

NaAlH 4 1/3 Na 3 AlH 6 + 2/3 Al + H 2<br />

~70 sec, 21 measurements<br />

Phase Fraction (arb. units<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NaAlH4<br />

Al<br />

Na3AlH6<br />

Na amorphous<br />

Al amorphous<br />

0<br />

-50<br />

0 50 100 150 200 250 300<br />

Time (seconds)<br />

XOR 1-ID-C using GE 2D detector (P. Chupas <strong>and</strong> P. Lee)


Fast time-resolved XRD with GE<br />

Detector<br />

GE detector at work at XOR 1-ID-C<br />

Photons<br />

Cesium Iodide (CsI)<br />

Light<br />

Amorphous Silicon Panel<br />

(Photodiode/Transistor Array)<br />

Electrons<br />

• Area: 41 cm x 41 cm<br />

• Pixel size: 200 µm<br />

• Readout: 41 ms <strong>for</strong> 2k x 2k (Angio)<br />

• Dynamic range: 14 bits<br />

Read Out Electronics<br />

Digital Data<br />

Contact: Ken Kump, GE Medical Systems, Ph: 262-548-4549


Advanced Characterization<br />

<strong>High</strong> throughput XRD measurements<br />

X-ray<br />

With automated sample stage, 2D detector, high-energy X-<strong>rays</strong>, superb<br />

synchrotron intensity, <strong>and</strong> dedicated data analysis s<strong>of</strong>tware, large number<br />

<strong>of</strong> samples can be preloaded <strong>and</strong> measured unattended or remotely. <strong>High</strong>energy<br />

X-<strong>rays</strong> in transmission mode is particularly useful <strong>for</strong> many<br />

inorganic or metallic materials.<br />

Same approach, combined with micro-focused beam, can also be<br />

used <strong>for</strong> automated diffraction mapping with monochromatic beam,<br />

or elemental mapping with white beam.


Advanced Characterization<br />

• Residual stress <strong>and</strong> plastic<br />

de<strong>for</strong>mation are very important <strong>for</strong><br />

industrial applications<br />

• Actual samples involves complex<br />

geometry, <strong>and</strong> small beam <strong>and</strong> high<br />

intensity are essential <strong>for</strong> obtaining<br />

accurate data<br />

• Non-destructive with HE X-<strong>rays</strong><br />

• Consider dedicated instrumentation<br />

<strong>and</strong> commercialize the analyses<br />

through a third party.<br />

Stress [MPa]<br />

Residual stress<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

hoop<br />

-300<br />

axial<br />

-400<br />

radial<br />

-500<br />

-600<br />

0.00 0.20 0.40 0.60 0.80 1.00<br />

Depth [mm]<br />

Plastic de<strong>for</strong>mation<br />

FWHM vs. Distance from Damaged Surface<br />

0.050<br />

0.045<br />

0.040<br />

0.035<br />

FWHM (°)<br />

0.030<br />

0.025<br />

0.020<br />

0.015<br />

0.010<br />

0.005<br />

0.000<br />

0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00<br />

Distance from surface (mm)


<strong>The</strong><br />

<strong>Future</strong><br />

A friendly user (including industrial users)<br />

facility<br />

•Dedicated instrumentation <strong>for</strong> frequently used<br />

techniques<br />

Such as powder diffraction with 2D detector <strong>for</strong><br />

normal or high throughput applications<br />

•Quick access <strong>and</strong>/or remote access<br />

Linked with dedicated instrument to minimize<br />

setup time; web-based remote access <strong>for</strong> users<br />

running experiment from home institution<br />

•Commercialized analytical services<br />

Powder diffraction <strong>and</strong> residual stress<br />

measurement may be two key areas to promote<br />

fee-based analytical services

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!