17.01.2014 Views

Institut für Allgemeine Elektrotechnik, Uni Rostock - Universität ...

Institut für Allgemeine Elektrotechnik, Uni Rostock - Universität ...

Institut für Allgemeine Elektrotechnik, Uni Rostock - Universität ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Limitations of the Leap-Frog Scheme<br />

Combination of leap-frog scheme and FIT:<br />

• very efficient for simualtion of transient electromagnetic fields<br />

• applicable to wide range of practical problems<br />

Some exceptions are caused by the CFL condition:<br />

• structures with high Q factor<br />

• structures with tiny but not negligible details<br />

• modelling of skin depth<br />

• slowly varying fields<br />

In those cases the explicit time-stepping is practically not applicable<br />

but other schemes such as eigensolver, implicit time stepping, etc.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

1


Limitations of the Leap-Frog Scheme<br />

What is the Q factor?<br />

Q factor plays an important role for resonators, filters, etc.<br />

It gives the relation between stored energy and the power loss in<br />

the walls:<br />

ωW<br />

Q = P<br />

with the stored energy of the time-harmonic field in volume V<br />

v<br />

1 1<br />

W = εr<br />

* dV μr<br />

* dV<br />

2∫<br />

E⋅ E = ⋅<br />

2∫<br />

H H<br />

V<br />

and the power loss, i.e. Ohmic losses by wall currents<br />

1 J⋅<br />

J* 1 ωμ<br />

Pv = dV<br />

t t<br />

* dA<br />

2∫<br />

= ⋅<br />

σ 2 2σ∫H<br />

H<br />

V<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

2


TESLA Cavity<br />

Photo/graphic:<br />

DESY Hamburg<br />

www.linearcollider.org<br />

ILC will use 16,000 superconducting cavities to<br />

accelerate electrons and positrons to 99.9999999998<br />

percent of the speed of light.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

3


Limitations of the Leap-Frog Scheme<br />

1. Structures with high quality factor (resonators, filter, ...):<br />

ω ⋅ Ws<br />

frequency × stored energy<br />

Quality factor Q is defined as Q = =<br />

Pv<br />

losses<br />

⎧long decay time of resonant oscillation<br />

High Q → ⎨<br />

⎩ long rise time<br />

of<br />

the fields<br />

4<br />

Example: resonator with copper walls typically has Q ≈7 ⋅10<br />

Q<br />

4<br />

⇒ only after ≈10 periods the stored energy decayed to<br />

2π<br />

about 37% of it's initial value<br />

For a typical discretization and 20 time<br />

steps per period this means<br />

5<br />

that more than 10 time integrations would be necessary<br />

Long<br />

computation time<br />

in time domain → usually frequency domain<br />

is chosen in such cases<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

4


Limitations of the Leap-Frog Scheme<br />

2. Modelling of small geometrical details:<br />

Functions of the grid: i) sampling the wave in space and time<br />

ii) map the material distribution to discrete space<br />

Difficulty if ratio of wavelength to geometrical detail is large:<br />

over-sampling<br />

of the wave in space and time<br />

Example : Plane wave of 30 MHz (wavelength ≈ 10 m) incident<br />

on perfect conductor with surface details in<br />

mm-range<br />

Δ x = Δ y = Δz ≈ Δt<br />

≈ ⋅<br />

−12<br />

For 1mm we get 2 10 s from CFL<br />

−8<br />

For a period of 3,3 10 s we would need more<br />

T<br />

≈<br />

than 17,000 time steps per period!<br />

This leads to an enormous computational effort why subgrids or<br />

a<br />

conformal approach are used then.<br />

⋅<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

5


Limitations of the Leap-Frog Scheme<br />

3. Skin depth modelling:<br />

Skin depth of good conductors wave length in free space<br />

To sample the exponential field decay inside the conductors<br />

a sufficiently fine grid is needed which in turn leads to extremely<br />

small time steps and thus to a strong loss in efficiency<br />

Solution: special layer models<br />

for skin depth without discretization<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

6


Limitations of the Leap-Frog Scheme<br />

4. Slowly varying fields ("low-frequency fields", Quasistatics):<br />

wavelength<br />

dimension<br />

(e.g. motors or generators at 50 Hz)<br />

i incident field in conductor has to be modelled by discretization<br />

i matei<br />

r als often non-linear<br />

Example: Copper cube of 10 cm side length inside of cubic<br />

grid of d = 1m side length and uniform step size of 5 mm;<br />

7<br />

conductivity 5.8 ⋅10 S/m, applied alternating current of 50 Hz<br />

⇒ skin depth of δ = 2 / ( ωµ<br />

κ)<br />

≈1cm while vacuum wave<br />

6<br />

length is λ = c / f ≈ 6 ⋅10 m 1 m (grid size).<br />

For the time integration of one period T = 0.02 s the maximal<br />

−12 9<br />

stable time step is Δtmax<br />

≈9.6 ⋅10 s affording 2⋅10 t<br />

Solution:<br />

Implicite time integration scheme<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

ime steps!<br />

7


Initial Value Problem of Time Domain<br />

For stability studies we regard a single system of differential equations:<br />

d<br />

y= Ay+ q, y( 0 )<br />

= y<br />

t=<br />

t<br />

dt<br />

representing the discrete Faraday's and Ampere's law.<br />

initial value problem of the time domain formulation of FIT with:<br />

<br />

⎛<br />

0<br />

−1<br />

h⎞<br />

⎛ −M<br />

C⎞<br />

µ<br />

solution vector: y= ⎜<br />

⎟, system matrix: A= ⎜ −1 −1<br />

⎝e⎠ ⎟<br />

⎝Mε C<br />

Mε Mσ<br />

⎠<br />

( 0)<br />

source vector:<br />

⎛ 0 ⎞<br />

q= , initial value:<br />

y<br />

⎜ −1<br />

− ⎟<br />

⎝ Mε<br />

jS<br />

⎠<br />

( t = t )<br />

0<br />

= y<br />

( 0)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

8


Properties of the System Matrix<br />

( σ = ⇒ M = )<br />

In the loss-free case 0 0<br />

similarity transformation<br />

A'<br />

−1/2 1/2<br />

⎛ ⎞ ⎛ ⎞<br />

−1 −1<br />

µ µ<br />

= ⎜ ⎟ A ⎜ ⎟<br />

to transform A to the real skew-symmetric matrix A'<br />

⎛<br />

A'<br />

= ⎜<br />

⎜M<br />

⎝<br />

M 0 M 0<br />

⎜ 1/2 ⎟ ⎜ −1/2<br />

⎟<br />

⎝ 0 Mε<br />

⎠ ⎝ 0 Mε<br />

⎠<br />

0 −M CM<br />

−1/2<br />

T 1/2<br />

ε<br />

CM 0<br />

1<br />

µ −<br />

with identical spectrum.<br />

1/2 −1/2<br />

−1<br />

µ ε<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

σ<br />

we may apply the<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

9


Properties of the System Matrix<br />

Properties of the system matrix:<br />

i All eigenvalues of A lie on the imaginary axis.<br />

λ A ,i<br />

They are either 0 or complex-conjugate in pairs.<br />

i A complete basis of eigenvectors exists.<br />

Eigenvectors of different eigenvalues are orthogonal.<br />

A simple estimate for the absolute largest eigenvalue ω<br />

yields ω<br />

max<br />

≤ A' for any arbitrary matrix norm.<br />

= max λ<br />

max A,i<br />

Example: µ ≡ µ , ε ≡ε<br />

, Δ u = Δ v = Δ w = Δ yields :<br />

0 0<br />

1 ⎛0 −C⎞<br />

4c<br />

A' = ⎜ ⎟ ⇒ A' = A'<br />

=<br />

∞ 1<br />

µ<br />

0ε<br />

Δ<br />

0Δ ⎝C 0 ⎠<br />

0<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

10


Properties of the System Matrix<br />

Generally, the following estimate may be used:<br />

Cell i : Δ u ×Δ v ×Δw with ε , µ<br />

ω<br />

max<br />

≤<br />

i ì i i i<br />

2 1 1 1<br />

ωi<br />

= + +<br />

ε µ Δu Δv Δw<br />

max<br />

i<br />

( ω )<br />

i<br />

i<br />

2 2 2<br />

i i i<br />

In the lossy case similar estimates are possible:<br />

{ i}<br />

{ }<br />

− MM ≤ Re ≤0<br />

−1<br />

σ ε<br />

λ<br />

−ω ≤ Im λ ≤ω<br />

max i max<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

11


Recursive Time Integration Method<br />

Formal solution of the initial value problem:<br />

()<br />

( 0)<br />

( ( ) ( ))<br />

y t = y + Ay t' + q t' dt'<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

∫<br />

t<br />

t<br />

0<br />

Exact solution of these large systems (complete decomposition in<br />

eigenvector basis or exponential matrix of A) not possible in<br />

practical applications. Therefore: recursive solution. We distinguish:<br />

i explicite<br />

and implicite recursion, depending on the formula for a<br />

new value: explicite or affording to solve an equation or a system<br />

of equations<br />

i single and multi ple step method s, depending<br />

on the number of<br />

old values taken into account. Linear single step methods may be<br />

( m + 1) ( m ) ( m )<br />

written as y = Gy + q with the recursion matrix G.<br />

12


Stability<br />

Stability is one of the most important properties of a numerical<br />

integration scheme.<br />

( Δt)<br />

The linear recursion operator G depends on Δt.<br />

Several slightly different definitions can be found for the term "stability" ,<br />

the following plays an important role in convergence analysis.<br />

Definition by Lax-Richtmeyer:<br />

( m+<br />

)<br />

Δ<br />

(<br />

t0<br />

><br />

) ( m<br />

t<br />

) 1<br />

( t)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

( m)<br />

A recursion y = G Δ y is stable<br />

if a constant C and<br />

a value 0 exist for each (fixed) value T such that<br />

holds.<br />

( ) ( m)<br />

G Δ ≤C<br />

∀m⋅Δt ≤T and Δt < Δt<br />

i.e. G Δt remains bounded for Δt →0 and constant T ( m →∞).<br />

0<br />

13


A sufficient stability<br />

condition is<br />

G<br />

( Δt<br />

) ≤1<br />

( ∀Δt<br />

)<br />

since this also involves<br />

m<br />

( t) G( t)<br />

G Δ ≤ Δ ≤1.<br />

Then, for y<br />

y<br />

Stability<br />

( Δt<br />

) ≤ ( ∀Δt<br />

)<br />

G( Δt<br />

)<br />

A sufficient condition for G 1<br />

λ<br />

G<br />

≤ 1<br />

( m)<br />

m<br />

we get<br />

( m) ( m−1) m ( 0) m ( 0) ( 0)<br />

= Gy = … = G y ≤ G ⋅ y ≤<br />

i.e. the solution norm stays bounded (note: no excitation assumed!)<br />

for all eigenvalues of<br />

different recursion methods w.r.t. their stabilty.<br />

i<br />

y<br />

,<br />

is<br />

. It may be used to study<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

14


Stability of Some Recursion Methods<br />

The three most simple time integration schemes are based on<br />

approximating the time derivative by:<br />

1. forward difference quotient:<br />

2. backward difference quotient:<br />

3. central difference quotient:<br />

(constant time step Δt)<br />

( )<br />

f<br />

t<br />

0<br />

( + Δt ) − f ( t )<br />

0 0<br />

f ( t0)<br />

f t0<br />

f − ( − Δt<br />

)<br />

( t ) ≈<br />

0<br />

( )<br />

f<br />

t<br />

0<br />

f t<br />

≈<br />

f t<br />

≈<br />

Δt<br />

Δt<br />

( + Δt<br />

/2) − f ( t −Δt<br />

/2)<br />

0 0<br />

Δt<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

15


y<br />

⇒<br />

( m+<br />

1) ( m)<br />

− y<br />

Δt<br />

Forward Difference Quotient<br />

( m) ( m)<br />

= Ay + q<br />

( m+<br />

1) ( m) ( m)<br />

( m+<br />

1)<br />

explicite<br />

recursion formula for y :<br />

y =Δ tA+ I y +Δt<br />

q<br />

<br />

G<br />

(no inversion, just matrix-vector multiplications)<br />

In loss-free case ( Mσ =0) A has purely imaginary eigenvalues λ = jω<br />

for it's eigenvectors y ⇒ eigenvalues of G:<br />

( t ) ( Δt⋅ jω<br />

+ )<br />

Gyi = Δ A+ I yi =<br />

i<br />

1 yi.<br />

<br />

Each eigenvalue λ<br />

Ai ,<br />

i<br />

λ<br />

Gi ,<br />

≠ 0 leads to an eigenvalue λ<br />

⇒ independently of Δt, the<br />

forward difference quotient is never stable!<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

Gi ,<br />

> 1<br />

A,<br />

i<br />

i<br />

16


Forward Difference Quotient<br />

Im<br />

( λ G ) ( ωΔt) max<br />

1<br />

Eigenvalues always lay outside of<br />

the (shaded) stability area with<br />

λ ≤ 1.<br />

G<br />

( ω Δ t) = 0<br />

1<br />

Re<br />

( λ )<br />

G<br />

−<br />

( ωΔt) max<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

17


Backward-Difference Quotient<br />

y<br />

( m+<br />

1) ( m)<br />

− y<br />

Δt<br />

( ) ( )<br />

( m+ 1) ( m+<br />

1)<br />

= Ay + q<br />

( −Δt<br />

A+<br />

I)<br />

( ) ( )<br />

( + t )<br />

m+ 1 m+ 1 − 1 m m+<br />

1<br />

Resolving for y : y = y Δ q<br />

<br />

yields an implicit scheme, i.e. either we need to compute an inverse<br />

or solve a linear system (more efficient if A is sparse).<br />

For the eigenvalues of G we get<br />

−1<br />

1<br />

Gy = ( −Δ t A + I)<br />

y = y<br />

−Δ ⋅ +<br />

<br />

i i i<br />

t λAi<br />

,<br />

jωi<br />

1<br />

⇒ no eigenvalues of G are larger than 1,<br />

i.e. the backward difference quotient is stabl e for any arbitrary Δt.<br />

G<br />

λ<br />

Gi ,<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

18


Backward-Difference Quotient<br />

Im<br />

( λ G ) ( ωΔt) max<br />

1<br />

Eigenvalues always lay inside of<br />

( ω Δ t) = 0<br />

the (shaded) stability area with λ ≤ 1.<br />

( )<br />

1<br />

Yet, accuracy depends Reon<br />

λGΔ<br />

t<br />

why a time step control is necessary.<br />

G<br />

Im<br />

( λ )<br />

G<br />

1<br />

( ωΔ t) max<br />

( ωΔ t) = 0<br />

−( ωΔ t) max<br />

Re( λG)<br />

1<br />

−<br />

( ωΔt) max<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

19


Central Difference Quotient<br />

In the loss-free case ( = <br />

Mσ 0) and allocating h in t + 0<br />

m ⋅Δ t,<br />

⎛ 1 ⎞<br />

e in t0<br />

+ ⎜m+ t the leap-frog scheme results from the central<br />

2<br />

⎟⋅Δ<br />

⎝ ⎠<br />

difference quotient which we will study now as single step scheme:<br />

d ⎛ 0 A12<br />

⎞<br />

y = ⎜ ⎟ y+<br />

q<br />

dt ⎝A21<br />

0 ⎠<br />

−1<br />

with A12 =− M −1<br />

C,<br />

A<br />

µ<br />

21<br />

= Mε<br />

C<br />

<br />

⎛h⎞<br />

⎛ 0 ⎞<br />

and the vectors y = ⎜<br />

⎟, q=⎜ <br />

.<br />

⎜ −1<br />

⎝e⎠ − ⎟<br />

⎝ Mε<br />

jS<br />

⎠<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

20


Leap-Frog Update Equations<br />

<br />

( m<br />

( )<br />

<br />

)<br />

m+ 1 ( m) ⎛<br />

( m+<br />

1/2) ( m)<br />

h ⎞<br />

h = h +Δt⋅ A12e y =⎜ ⎜ ( m+<br />

1/2)<br />

⎟<br />

⎝ e ⎠<br />

( m+ 3/2) ( m+ 1/2) ( m+ 1) <br />

−1<br />

( m+<br />

1)<br />

e = e +Δt⋅A21h −Δt⋅Mε<br />

jS<br />

( )<br />

( ) ( )<br />

<br />

= e +Δ ⋅ A h +Δ ⋅A e −Δ ⋅M j<br />

<br />

<br />

= +Δ ⋅ +Δ ⋅ −Δ ⋅<br />

<br />

−1<br />

( )<br />

( ) ε S<br />

m+ 1/2 m m+ 1/2 m+<br />

1<br />

t<br />

21<br />

t<br />

12<br />

t<br />

( 2 ( m+ 1/2) ( m) − ( 1)<br />

) 1 m+<br />

I t A21A12 e t A21h t Mε<br />

jS<br />

which yields<br />

<br />

( m<br />

⎛ )<br />

0<br />

( m+<br />

1) ( m) ( m) ( m)<br />

h ⎞ ⎛<br />

⎞<br />

( m)<br />

y = G y + q with y = =⎜ ⎜ q<br />

( m+ 1/2)<br />

⎟ ⎜<br />

<br />

−1<br />

( m+<br />

1)<br />

Δt<br />

⎟<br />

⎝ e ⎠ ⎝ Mε<br />

jS<br />

⎠<br />

⎛ I ΔtA<br />

⎞<br />

G = ⎜ ⎟<br />

⎝<br />

⎠<br />

12<br />

and the recursion matrix .<br />

2<br />

Δ tA21 I+Δt<br />

A21A12<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

21


Central Difference Quotient (Leap Frog)<br />

To determine the eigenvalues of G we first study the<br />

eigenvalue equation of the system matrix A :<br />

<br />

⎛h<br />

⎞<br />

i<br />

Ayi = λA , i<br />

yi with yi<br />

=⎜ ⎜<br />

⎟<br />

⎝ei<br />

⎠<br />

<br />

<br />

→ A e = λ h and A h = λ e<br />

12 i A, i i 21 i A,<br />

i i<br />

<br />

⎛ h ⎞<br />

i<br />

Let y' i<br />

= ⎜ <br />

be an eigenvalue of .<br />

α ⎟<br />

G<br />

⎝ ei<br />

⎠<br />

Multiply inserting the last 2 equations yields<br />

<br />

⎛<br />

i ( 1 α t λA,<br />

i)<br />

⎞<br />

⎛ ⎞<br />

h + Δ ⋅<br />

hi<br />

G<br />

⎜ ⎟<br />

⎜ <br />

1<br />

2<br />

.<br />

−<br />

α ⎟<br />

=<br />

<br />

i α<br />

i ( 1+ α Δt⋅ λA , i<br />

+ ( Δt⋅λ<br />

⎝ e ⎠ ⎜ e<br />

A,<br />

i)<br />

) ⎟<br />

⎝<br />

⎠<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

22


Central Difference Quotient<br />

⇒ y ' is an eigenvalue of G with Gy ' = λ y ' ⇔<br />

i i G,<br />

i i<br />

( )<br />

1+ α Δt⋅ λ = 1 + α Δt⋅ λ + Δt⋅λ holds for α.<br />

− 1<br />

Ai , Ai , Ai ,<br />

λ<br />

G,<br />

i−1<br />

Inserting λG, i= 1+ α Δt<br />

⋅λA , i<br />

⇒ α = Δ t ⋅ λ<br />

yields<br />

( t )<br />

λ − λ 2+Δ ⋅ λ + 1=<br />

0<br />

or<br />

2 2 2<br />

G, i G, i A,<br />

i<br />

( t λ<br />

, )<br />

⎛<br />

Ai ( t λ<br />

Ai , )<br />

2 2<br />

2+ Δ ⋅ 2+ Δ ⋅ ⎞<br />

λ<br />

G,<br />

i<br />

= ± ⎜<br />

⎟ −1<br />

2 ⎜ 2 ⎟<br />

⎝<br />

⎠<br />

describing the relation between the eigenvalues of A and G.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

2<br />

2<br />

Ai ,<br />

23


Central Difference Quotient (Leap Frog)<br />

Regard the loss-free case, i.e. σ = 0, where λ A,i = j ω i :<br />

λ<br />

Gi ,<br />

( t λ<br />

, )<br />

⎛<br />

Ai ( t λ<br />

Ai , )<br />

2 2<br />

2+ Δ ⋅ 2+ Δ ⋅ ⎞<br />

= ± ⎜<br />

⎟ −1<br />

2 ⎜ 2 ⎟<br />

⎝<br />

⎠<br />

( jω<br />

t) ⎛ ( jω<br />

t)<br />

2 2<br />

2+ i<br />

⋅Δ 2+ ⎞<br />

i<br />

⋅Δ<br />

= ± −1<br />

2 ⎜ 2 ⎟<br />

⎝<br />

⎠<br />

2<br />

2<br />

Dependingon thesignwegettwobranchesof theOrtskurve<br />

bothstartingatλ G = 1 which results from ωΔt = 0<br />

Each branch runs in one half of unit circle<br />

ending at λ G = - 1 which corresponds to | ωΔt | = 2<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

24


Central Difference Quotient (Leap Frog)<br />

Im<br />

( λ )<br />

G<br />

1<br />

" + "<br />

ω Δ t =<br />

0<br />

( ω t) max<br />

± Δ<br />

" − "<br />

( ω t) max<br />

± Δ<br />

" + "<br />

1<br />

Re<br />

( λ )<br />

G<br />

ω Δ t =<br />

2<br />

" − "<br />

Dependingon thesignwegettwobranchesof theOrtskurve<br />

•bothstartingatλ G = 1 which results from ωΔt = 0<br />

• each branch runs in one half of unit circle<br />

• ending at λ G = - 1 which corresponds to | ωΔt | = 2<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

25


Central Difference Quotient (Leap Frog)<br />

Im<br />

( λ )<br />

G<br />

1<br />

" + "<br />

ω Δ t =<br />

0<br />

( ω t) max<br />

± Δ<br />

" − "<br />

( ω t) max<br />

± Δ<br />

" + "<br />

1<br />

Re<br />

( λ )<br />

G<br />

ω Δ t =<br />

2<br />

" − "<br />

• λ G is purely real for larger values of ωΔt<br />

• The positive branch approaches zero<br />

• The negative branch approaches -∞<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

26


Central Difference Quotient (Leap Frog)<br />

Im<br />

( λ )<br />

G<br />

1<br />

" + "<br />

ω Δ t =<br />

0<br />

( ω t) max<br />

± Δ<br />

" − "<br />

( ω t) max<br />

± Δ<br />

" + "<br />

1<br />

Re<br />

( λ )<br />

G<br />

ω Δ t =<br />

2<br />

" − "<br />

Stability conditions demands: max λ ≤ 1<br />

From this one can derive a condition for Δt<br />

which insures<br />

that ω Δt<br />

≤ 2 :<br />

i<br />

2<br />

Δt<br />

≤ Δ t = with ω = max λ<br />

ω<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

Gi ,<br />

max max A,<br />

i<br />

max<br />

27


Central Difference Quotient (Leap Frog)<br />

⎛ 2 1 1 1<br />

Inserting the estimate ωmax<br />

≤ max = max<br />

+ +<br />

⎜<br />

⎝ ε u v w<br />

iµ<br />

Δ Δ Δ<br />

i<br />

for the absolute largest eigenvalue yields again<br />

⎧<br />

⎫<br />

1<br />

⎪<br />

⎪<br />

Δt ≤Δt max<br />

≈min ⎨ εi µ<br />

i<br />

⋅<br />

,<br />

i<br />

1 1 1<br />

⎬<br />

⎪<br />

+ + ⎪<br />

2 2 2<br />

⎪⎩<br />

Δui Δvi Δwi<br />

⎪⎭<br />

i.e. the Courant-Friedrichs-Levy condition.<br />

( ωi<br />

) ⎜<br />

2 2 2<br />

i i i<br />

⎞<br />

⎟<br />

⎠<br />

ω<br />

max<br />

can also be determined numerically, yielding an<br />

exact stability limit for the leap-frog scheme.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

28


Central Difference Quotient (Leap Frog)<br />

The stability limit has to be kept strictly:<br />

exceeding the limit by 1% only, the instable portion per iteration step<br />

increases by the factor of f = 1+ 8 ⋅ 1/ 100 = 1.28<br />

100 10<br />

(this is f ≈5.3 ⋅10<br />

after 100 steps)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

29


Example<br />

<br />

4<br />

b 1<br />

1<br />

4<br />

<br />

b<br />

2<br />

<br />

e <br />

<br />

b 2<br />

b 3<br />

e 1<br />

−9<br />

0<br />

-2<br />

-4<br />

Δ t = 4⋅10<br />

Δ t = 110 ⋅<br />

−9<br />

Δ t = 2⋅10<br />

−9<br />

Δ t = 3⋅10<br />

−9<br />

t<br />

stability limit for time step: Δt ≤ Δt max<br />

≈3.3356 ⋅10<br />

(experimentally found)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

−9<br />

Let’s regard again our small example with a computational domain built<br />

out of four cells only, with equidistant Cartesian grid of N u<br />

x N v<br />

x N ω<br />

= 3 x 3<br />

x 2 (Δ u<br />

=Δ v<br />

=Δ ω=<br />

Δ) lines.<br />

We assumed ideal electric boundaries such that only the field components<br />

displayed in the sketch are non-vanishing (indices are chosen different<br />

from usual).<br />

Experimentally, the stability limit given above could be found..<br />

30


Central Difference Quotient - Example<br />

<br />

b<br />

<br />

4<br />

b 1<br />

e 1<br />

<br />

b 2<br />

<br />

b 3<br />

system matrix<br />

A<br />

⎛<br />

1 ⎞<br />

⎜<br />

µ<br />

0Δ<br />

⎟<br />

⎜<br />

⎟<br />

⎜<br />

1 ⎟<br />

⎜<br />

− ⎟<br />

⎜<br />

µ<br />

0Δ<br />

⎟<br />

⎜<br />

1 ⎟<br />

= ⎜ 0<br />

− ⎟<br />

⎜<br />

µ<br />

0Δ<br />

⎟<br />

⎜<br />

1 ⎟<br />

⎜<br />

⎟<br />

⎜<br />

µ<br />

0Δ<br />

⎟<br />

⎜ 1 1 1 1 ⎟<br />

⎜<br />

−<br />

− 0<br />

ε0 ε0 ε0 ε<br />

⎟<br />

⎝ Δ Δ Δ<br />

0Δ<br />

⎠<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

Here, the system matrix for that simple example.<br />

31


Central Difference Quotient - Example<br />

(absolute) largest eigenvalue (dimensionless):<br />

<br />

± 2 j ± 2 jc0<br />

9<br />

b<br />

<br />

4<br />

λAmax<br />

,<br />

= = = ± j ⋅0.59958 ⋅10<br />

<br />

µ<br />

0ε<br />

Δ<br />

0Δ<br />

e 1<br />

b 3<br />

⇒ maximal time step :<br />

<br />

2 Δ<br />

−9<br />

b Δ tmax<br />

= = = 3.33564 ⋅10<br />

2<br />

λ c<br />

Amax ,<br />

0<br />

(Identical to experimentally found value)<br />

Yet, CFL condition yields only the estimate<br />

Δ<br />

Δt max<br />

≈<br />

3 c0<br />

which, in this case, is a limit too small by a factor of 3 ≈ 1.792<br />

b 1<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

The largest absolute eigenvalue can be computed and is given above.<br />

From that, the maximal time step can be computed as well.<br />

It coincides with the value which was experimentally found.<br />

Comparing that value with the estimate given by the CFL condition we see<br />

that the CFL condition asks for a maximal time step which is smaller by a<br />

factor of 1.792.<br />

Generally, the CFL asks for too small limits but guarentees stabilty.<br />

In realistic cases (much more than just 4 grid cells) the CFL stimate is very<br />

close to the actual stability limit!<br />

32


Properties of Explicite Leap Frog Scheme<br />

In realistic applications, the limit determined by the CFL condition is<br />

not too small but close to the stability limit.<br />

i The leap frog recursion scheme is suitable to compute loss-free<br />

systems.<br />

i The time step is limited for stability reasons.<br />

i The numerical effort per step is one matrix-vector-multiplication.<br />

i The integration with time steps fulfilling the CFL condition is<br />

sufficiently accurate. (Generally, spatial and time discretization error<br />

are equal.)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

33


CST Microwave Studio ®<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

34


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

35


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

36


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

37


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

38


Example: Rectangular Waveguide - Junction<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

39


Example: Rectangular Waveguide - Junction<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

40


Example: Rectangular Waveguide - Junction<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

41


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

42


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

43


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

44


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

45


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

46


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

47


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

48


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

49


Example: Circular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

50


Example: Circular Waveguide<br />

TE11, both polarizations<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

51


Example: Circular Waveguide<br />

TM01<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

52


Example: Circular Waveguide<br />

TE21, both polarizations<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

53


Waveguide Junction<br />

CST-Demo<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

54


Waveguide Junction<br />

CST-Demo<br />

Port 1<br />

Port 3<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

55


The Human Body Model HUGO in MWS TM<br />

HUGO:<br />

• based on Visible Human Data Set of<br />

the National Library of Medicine,<br />

Maryland<br />

• 40 tissues<br />

• 7 detail level: min/max-voxel size<br />

• 1x1x1 mm (361 MB)<br />

• 8x8x8 mm ( 0,7 MB)<br />

• C/C++ programming interface<br />

• convertable in STL format<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

56


HUGO and RF-Waves of a WLAN-Card<br />

Magnetic field<br />

Magnetic field<br />

Magnetic<br />

energy density<br />

Magnetic energy density<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

V.Motrescu, G.Pöplau, UvR<br />

57


Examples for Parameter Extraction<br />

PCB<br />

RJ45 connection<br />

CST-Demo<br />

isolator<br />

ε = 2,1; μ = 1<br />

r<br />

r<br />

transmission lines<br />

ε = 2, 4 ; μ = 1<br />

r<br />

r<br />

connector<br />

PEC PCB, socket & connector<br />

ε = 2, 2 ; μ = 1<br />

r<br />

r<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

58


RJ45 Connector<br />

Extraction of some SPICE-compatible network model based on<br />

the computation of S-parameters :<br />

• Definition of excitation sources:<br />

• all wires are terminated with discrete ports<br />

• the ports are excited sequentially with a Gaussian pulse<br />

• yields broadband results for all wires<br />

46.464 mesh points<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST-Demo<br />

59


RJ45 Connector<br />

Ports 1 and 6<br />

CST-Demo<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

60


IC Package<br />

ε<br />

r<br />

=<br />

Box<br />

4<br />

104 ports,<br />

190.333 mesh points<br />

Substrat<br />

Silicon<br />

ε = 12,3<br />

PEC wires and traces<br />

r<br />

ε = 9, 2<br />

r<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST-Demo<br />

61


IC Package<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST-Demo<br />

62


Parasitic Effects in IC‘s<br />

Current density of an IC at 5 GHz<br />

T. Wittig, I. Munteanu, T. Weiland, TU Darmstadt<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

63


Patch-Antenna<br />

Patch-Antenna<br />

Constante energy<br />

flux density<br />

Coaxial line<br />

Planes of constant field amplitude<br />

T.Weiland et al.<br />

CST<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

64


Patch-Antenna<br />

„Folded“ Patch-Antenna<br />

Electric field of the<br />

excited modes<br />

Two- and three-dimensional<br />

farfield representation<br />

T.Weiland et al.<br />

CST<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

65


Horn Antenna<br />

Horn antenna with dielectric cone, coaxially loaded<br />

E y<br />

Antenna with<br />

farfield<br />

T.Weiland et al.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST<br />

66


Horn Antenna<br />

Rillenhornstrahler<br />

Versorgung by<br />

Dielectrically filled<br />

waveguide<br />

Electric field strength<br />

(nearfield)<br />

T.Weiland et al.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST<br />

67


Mobile Communication<br />

CAD-Data<br />

(STL-Format)<br />

modelled<br />

Diskretization<br />

Electric field strebgth<br />

T.Weiland et al.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST<br />

68


Magneto-Quasistatics (MQS)<br />

max<br />

r∈R<br />

∂D<br />

∂t<br />


Magneto-Quasistatics (MQS)<br />

Harmonic Time-Dependence:<br />

rot<br />

rot<br />

div<br />

E = −iωB<br />

H<br />

D<br />

=<br />

=<br />

J<br />

ρ<br />

div B = 0<br />

rot H=<br />

J<br />

div B=<br />

0<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

70


MQS: Position Sensor<br />

Electrical position sensor<br />

(BOSCH)<br />

- f = 10 kHz<br />

- Position S of shielding ring<br />

by measurement of<br />

coil inductivity L<br />

H-field<br />

L<br />

Shielding ring<br />

(Copper)<br />

s<br />

J<br />

Excitation coil<br />

Iron<br />

Simulation: M. Clemens, TU Darmstadt<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

71


Ind uctivity Re(L)/mH<br />

Prof.D FrTr<br />

Im1.5 xL1.<br />

0. +measur Sim - r.UrsulavanRi ansien frequen implicit Solution Curl-Cu 5T 0Tcoil periods ulation:M tCom ement inte timeint enen,<strong>Uni</strong>versit imeinte distan cydomain (1T= oftime equatio MQS: rl cyDom .Clemen gration ät<strong>Rostock</strong>,Fak putatio egratio cex/mm -harmo ainSo s,TUDa 40Δt) ultät<strong>für</strong>InformatikundElektr nic lution rmstadt Posit ion otechnik(IEF),I Sen nstitut<strong>für</strong>AlgemeineElektrot sor echnik(IAE)<br />

72


MQS: Magnet Head in Hard Disc<br />

SRC hard disc magnet head<br />

Simulation: M. Clemens, TU Darmstadt<br />

(Benchmark problem of Storage Research Consortiums (SRC))<br />

148 μm<br />

Air gap (0.4μm)<br />

Copper coils<br />

Permalloy<br />

Transient problem<br />

(Magneto-Quasistatics)<br />

1.2 Mio. Unknowns<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

73


Sim Prof.D Io01024680.801.0.80.20.41.2-F -e0M ComputeB infEx (with 260 =52 Imp (Tra 40t =2 r.UrsulavanRi xcitati plicitLe .0timesteps :45hon DTD DiTD<br />

rontof Scaled-li nsientMag 3:09hon licitimeintegr QS:M ulation:M zin70 apFrog( enen,<strong>Uni</strong>versit on<br />

airgap<br />

ghtsped- psfor1 SUNUltra2<br />

neto-Qua .Clemen ag for10 ät<strong>Rostock</strong>,Fak FDTD) aproach)<br />

ation(F sistatics) 0ns 2<br />

nm s,TUDa net ultät<strong>für</strong>InformatikundElektr ns<br />

DITD) rmstadt Hea din otechnik(IEF),I Hard nstitut<strong>für</strong>AlgemeineElektrot Dis c echnik(IAE)<br />

74


Sim Prof.D MQS:M Fin Ri Dis 2 (c r.UrsulavanRi cretep .7Mio a.72h ergeom Coil Num ngcoil coper ulation:M enen,<strong>Uni</strong>versit etryres berofgrid roblemwith .unkn simulat aproxim.Clemen ag ät<strong>Rostock</strong>,Fak oltion: points: ion) ation:ringowns<br />

s,TUDa net ultät<strong>für</strong>InformatikundElektr s~90,0<br />

rmstadt Hea din otechnik(IEF),I Hard nstitut<strong>für</strong>AlgemeineElektrot Dis c echnik(IAE)<br />

75


Sim Prof.D Qum/ v15 ,.,0=Eis -joc BeStr<br />

LWS 0sr.UrsulavanRi en hwegte omsp B-Modelder FDI LaMQS PrMagneto vel ulation:M asistat ule stime Schie SABWabc enen,<strong>Uni</strong>versit oblem TDwit ionary project ocities: .Clemen ne ät<strong>Rostock</strong>,Fak hMovi step oftra edin-Qua motion s,TUDa withm 1D-m ultät<strong>für</strong>InformatikundElektr solutio nsien sistati<br />

ng-Co directiormstadt<br />

ovin ninmovingm rdinate nofm tcs<br />

gc otechnik(IEF),I Schema(„Upw otion ond nstitut<strong>für</strong>AlgemeineElektrot ateriaucto sl<br />

ind“-s rs<br />

cheme) echnik(IAE)<br />

:<br />

76


Sim Prof.D •M Moving-<br />

v Eis -joc BeStr<br />

ElBr ScInZu r.UrsulavanRi oving<br />

wegte emse hiene SyMQS omsp =0m/ samenarb =10m/s ektromagne ulation:M steme Cor HoheG ohneSt Syme ulen nfahrz enen,<strong>Uni</strong>versit Schie <strong>für</strong> eitmitM.Wilke .Clemen dinate trieder ät<strong>Rostock</strong>,Fak abilität tische eschwi ne euge bleibte s,TUDa withm ultät<strong>für</strong>InformatikundElektr rhalte -Ansa sprobl algebr ndigke rmstadt ovin tz: iten aische eme gc otechnik(IEF),I ond nstitut<strong>für</strong>AlgemeineElektrot ucto rs echnik(IAE)<br />

77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!