17.01.2014 Views

Institut für Allgemeine Elektrotechnik, Uni Rostock - Universität ...

Institut für Allgemeine Elektrotechnik, Uni Rostock - Universität ...

Institut für Allgemeine Elektrotechnik, Uni Rostock - Universität ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Limitations of the Leap-Frog Scheme<br />

Combination of leap-frog scheme and FIT:<br />

• very efficient for simualtion of transient electromagnetic fields<br />

• applicable to wide range of practical problems<br />

Some exceptions are caused by the CFL condition:<br />

• structures with high Q factor<br />

• structures with tiny but not negligible details<br />

• modelling of skin depth<br />

• slowly varying fields<br />

In those cases the explicit time-stepping is practically not applicable<br />

but other schemes such as eigensolver, implicit time stepping, etc.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

1


Limitations of the Leap-Frog Scheme<br />

What is the Q factor?<br />

Q factor plays an important role for resonators, filters, etc.<br />

It gives the relation between stored energy and the power loss in<br />

the walls:<br />

ωW<br />

Q = P<br />

with the stored energy of the time-harmonic field in volume V<br />

v<br />

1 1<br />

W = εr<br />

* dV μr<br />

* dV<br />

2∫<br />

E⋅ E = ⋅<br />

2∫<br />

H H<br />

V<br />

and the power loss, i.e. Ohmic losses by wall currents<br />

1 J⋅<br />

J* 1 ωμ<br />

Pv = dV<br />

t t<br />

* dA<br />

2∫<br />

= ⋅<br />

σ 2 2σ∫H<br />

H<br />

V<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

2


TESLA Cavity<br />

Photo/graphic:<br />

DESY Hamburg<br />

www.linearcollider.org<br />

ILC will use 16,000 superconducting cavities to<br />

accelerate electrons and positrons to 99.9999999998<br />

percent of the speed of light.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

3


Limitations of the Leap-Frog Scheme<br />

1. Structures with high quality factor (resonators, filter, ...):<br />

ω ⋅ Ws<br />

frequency × stored energy<br />

Quality factor Q is defined as Q = =<br />

Pv<br />

losses<br />

⎧long decay time of resonant oscillation<br />

High Q → ⎨<br />

⎩ long rise time<br />

of<br />

the fields<br />

4<br />

Example: resonator with copper walls typically has Q ≈7 ⋅10<br />

Q<br />

4<br />

⇒ only after ≈10 periods the stored energy decayed to<br />

2π<br />

about 37% of it's initial value<br />

For a typical discretization and 20 time<br />

steps per period this means<br />

5<br />

that more than 10 time integrations would be necessary<br />

Long<br />

computation time<br />

in time domain → usually frequency domain<br />

is chosen in such cases<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

4


Limitations of the Leap-Frog Scheme<br />

2. Modelling of small geometrical details:<br />

Functions of the grid: i) sampling the wave in space and time<br />

ii) map the material distribution to discrete space<br />

Difficulty if ratio of wavelength to geometrical detail is large:<br />

over-sampling<br />

of the wave in space and time<br />

Example : Plane wave of 30 MHz (wavelength ≈ 10 m) incident<br />

on perfect conductor with surface details in<br />

mm-range<br />

Δ x = Δ y = Δz ≈ Δt<br />

≈ ⋅<br />

−12<br />

For 1mm we get 2 10 s from CFL<br />

−8<br />

For a period of 3,3 10 s we would need more<br />

T<br />

≈<br />

than 17,000 time steps per period!<br />

This leads to an enormous computational effort why subgrids or<br />

a<br />

conformal approach are used then.<br />

⋅<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

5


Limitations of the Leap-Frog Scheme<br />

3. Skin depth modelling:<br />

Skin depth of good conductors wave length in free space<br />

To sample the exponential field decay inside the conductors<br />

a sufficiently fine grid is needed which in turn leads to extremely<br />

small time steps and thus to a strong loss in efficiency<br />

Solution: special layer models<br />

for skin depth without discretization<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

6


Limitations of the Leap-Frog Scheme<br />

4. Slowly varying fields ("low-frequency fields", Quasistatics):<br />

wavelength<br />

dimension<br />

(e.g. motors or generators at 50 Hz)<br />

i incident field in conductor has to be modelled by discretization<br />

i matei<br />

r als often non-linear<br />

Example: Copper cube of 10 cm side length inside of cubic<br />

grid of d = 1m side length and uniform step size of 5 mm;<br />

7<br />

conductivity 5.8 ⋅10 S/m, applied alternating current of 50 Hz<br />

⇒ skin depth of δ = 2 / ( ωµ<br />

κ)<br />

≈1cm while vacuum wave<br />

6<br />

length is λ = c / f ≈ 6 ⋅10 m 1 m (grid size).<br />

For the time integration of one period T = 0.02 s the maximal<br />

−12 9<br />

stable time step is Δtmax<br />

≈9.6 ⋅10 s affording 2⋅10 t<br />

Solution:<br />

Implicite time integration scheme<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

ime steps!<br />

7


Initial Value Problem of Time Domain<br />

For stability studies we regard a single system of differential equations:<br />

d<br />

y= Ay+ q, y( 0 )<br />

= y<br />

t=<br />

t<br />

dt<br />

representing the discrete Faraday's and Ampere's law.<br />

initial value problem of the time domain formulation of FIT with:<br />

<br />

⎛<br />

0<br />

−1<br />

h⎞<br />

⎛ −M<br />

C⎞<br />

µ<br />

solution vector: y= ⎜<br />

⎟, system matrix: A= ⎜ −1 −1<br />

⎝e⎠ ⎟<br />

⎝Mε C<br />

Mε Mσ<br />

⎠<br />

( 0)<br />

source vector:<br />

⎛ 0 ⎞<br />

q= , initial value:<br />

y<br />

⎜ −1<br />

− ⎟<br />

⎝ Mε<br />

jS<br />

⎠<br />

( t = t )<br />

0<br />

= y<br />

( 0)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

8


Properties of the System Matrix<br />

( σ = ⇒ M = )<br />

In the loss-free case 0 0<br />

similarity transformation<br />

A'<br />

−1/2 1/2<br />

⎛ ⎞ ⎛ ⎞<br />

−1 −1<br />

µ µ<br />

= ⎜ ⎟ A ⎜ ⎟<br />

to transform A to the real skew-symmetric matrix A'<br />

⎛<br />

A'<br />

= ⎜<br />

⎜M<br />

⎝<br />

M 0 M 0<br />

⎜ 1/2 ⎟ ⎜ −1/2<br />

⎟<br />

⎝ 0 Mε<br />

⎠ ⎝ 0 Mε<br />

⎠<br />

0 −M CM<br />

−1/2<br />

T 1/2<br />

ε<br />

CM 0<br />

1<br />

µ −<br />

with identical spectrum.<br />

1/2 −1/2<br />

−1<br />

µ ε<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

σ<br />

we may apply the<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

9


Properties of the System Matrix<br />

Properties of the system matrix:<br />

i All eigenvalues of A lie on the imaginary axis.<br />

λ A ,i<br />

They are either 0 or complex-conjugate in pairs.<br />

i A complete basis of eigenvectors exists.<br />

Eigenvectors of different eigenvalues are orthogonal.<br />

A simple estimate for the absolute largest eigenvalue ω<br />

yields ω<br />

max<br />

≤ A' for any arbitrary matrix norm.<br />

= max λ<br />

max A,i<br />

Example: µ ≡ µ , ε ≡ε<br />

, Δ u = Δ v = Δ w = Δ yields :<br />

0 0<br />

1 ⎛0 −C⎞<br />

4c<br />

A' = ⎜ ⎟ ⇒ A' = A'<br />

=<br />

∞ 1<br />

µ<br />

0ε<br />

Δ<br />

0Δ ⎝C 0 ⎠<br />

0<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

10


Properties of the System Matrix<br />

Generally, the following estimate may be used:<br />

Cell i : Δ u ×Δ v ×Δw with ε , µ<br />

ω<br />

max<br />

≤<br />

i ì i i i<br />

2 1 1 1<br />

ωi<br />

= + +<br />

ε µ Δu Δv Δw<br />

max<br />

i<br />

( ω )<br />

i<br />

i<br />

2 2 2<br />

i i i<br />

In the lossy case similar estimates are possible:<br />

{ i}<br />

{ }<br />

− MM ≤ Re ≤0<br />

−1<br />

σ ε<br />

λ<br />

−ω ≤ Im λ ≤ω<br />

max i max<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

11


Recursive Time Integration Method<br />

Formal solution of the initial value problem:<br />

()<br />

( 0)<br />

( ( ) ( ))<br />

y t = y + Ay t' + q t' dt'<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

∫<br />

t<br />

t<br />

0<br />

Exact solution of these large systems (complete decomposition in<br />

eigenvector basis or exponential matrix of A) not possible in<br />

practical applications. Therefore: recursive solution. We distinguish:<br />

i explicite<br />

and implicite recursion, depending on the formula for a<br />

new value: explicite or affording to solve an equation or a system<br />

of equations<br />

i single and multi ple step method s, depending<br />

on the number of<br />

old values taken into account. Linear single step methods may be<br />

( m + 1) ( m ) ( m )<br />

written as y = Gy + q with the recursion matrix G.<br />

12


Stability<br />

Stability is one of the most important properties of a numerical<br />

integration scheme.<br />

( Δt)<br />

The linear recursion operator G depends on Δt.<br />

Several slightly different definitions can be found for the term "stability" ,<br />

the following plays an important role in convergence analysis.<br />

Definition by Lax-Richtmeyer:<br />

( m+<br />

)<br />

Δ<br />

(<br />

t0<br />

><br />

) ( m<br />

t<br />

) 1<br />

( t)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

( m)<br />

A recursion y = G Δ y is stable<br />

if a constant C and<br />

a value 0 exist for each (fixed) value T such that<br />

holds.<br />

( ) ( m)<br />

G Δ ≤C<br />

∀m⋅Δt ≤T and Δt < Δt<br />

i.e. G Δt remains bounded for Δt →0 and constant T ( m →∞).<br />

0<br />

13


A sufficient stability<br />

condition is<br />

G<br />

( Δt<br />

) ≤1<br />

( ∀Δt<br />

)<br />

since this also involves<br />

m<br />

( t) G( t)<br />

G Δ ≤ Δ ≤1.<br />

Then, for y<br />

y<br />

Stability<br />

( Δt<br />

) ≤ ( ∀Δt<br />

)<br />

G( Δt<br />

)<br />

A sufficient condition for G 1<br />

λ<br />

G<br />

≤ 1<br />

( m)<br />

m<br />

we get<br />

( m) ( m−1) m ( 0) m ( 0) ( 0)<br />

= Gy = … = G y ≤ G ⋅ y ≤<br />

i.e. the solution norm stays bounded (note: no excitation assumed!)<br />

for all eigenvalues of<br />

different recursion methods w.r.t. their stabilty.<br />

i<br />

y<br />

,<br />

is<br />

. It may be used to study<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

14


Stability of Some Recursion Methods<br />

The three most simple time integration schemes are based on<br />

approximating the time derivative by:<br />

1. forward difference quotient:<br />

2. backward difference quotient:<br />

3. central difference quotient:<br />

(constant time step Δt)<br />

( )<br />

f<br />

t<br />

0<br />

( + Δt ) − f ( t )<br />

0 0<br />

f ( t0)<br />

f t0<br />

f − ( − Δt<br />

)<br />

( t ) ≈<br />

0<br />

( )<br />

f<br />

t<br />

0<br />

f t<br />

≈<br />

f t<br />

≈<br />

Δt<br />

Δt<br />

( + Δt<br />

/2) − f ( t −Δt<br />

/2)<br />

0 0<br />

Δt<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

15


y<br />

⇒<br />

( m+<br />

1) ( m)<br />

− y<br />

Δt<br />

Forward Difference Quotient<br />

( m) ( m)<br />

= Ay + q<br />

( m+<br />

1) ( m) ( m)<br />

( m+<br />

1)<br />

explicite<br />

recursion formula for y :<br />

y =Δ tA+ I y +Δt<br />

q<br />

<br />

G<br />

(no inversion, just matrix-vector multiplications)<br />

In loss-free case ( Mσ =0) A has purely imaginary eigenvalues λ = jω<br />

for it's eigenvectors y ⇒ eigenvalues of G:<br />

( t ) ( Δt⋅ jω<br />

+ )<br />

Gyi = Δ A+ I yi =<br />

i<br />

1 yi.<br />

<br />

Each eigenvalue λ<br />

Ai ,<br />

i<br />

λ<br />

Gi ,<br />

≠ 0 leads to an eigenvalue λ<br />

⇒ independently of Δt, the<br />

forward difference quotient is never stable!<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

Gi ,<br />

> 1<br />

A,<br />

i<br />

i<br />

16


Forward Difference Quotient<br />

Im<br />

( λ G ) ( ωΔt) max<br />

1<br />

Eigenvalues always lay outside of<br />

the (shaded) stability area with<br />

λ ≤ 1.<br />

G<br />

( ω Δ t) = 0<br />

1<br />

Re<br />

( λ )<br />

G<br />

−<br />

( ωΔt) max<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

17


Backward-Difference Quotient<br />

y<br />

( m+<br />

1) ( m)<br />

− y<br />

Δt<br />

( ) ( )<br />

( m+ 1) ( m+<br />

1)<br />

= Ay + q<br />

( −Δt<br />

A+<br />

I)<br />

( ) ( )<br />

( + t )<br />

m+ 1 m+ 1 − 1 m m+<br />

1<br />

Resolving for y : y = y Δ q<br />

<br />

yields an implicit scheme, i.e. either we need to compute an inverse<br />

or solve a linear system (more efficient if A is sparse).<br />

For the eigenvalues of G we get<br />

−1<br />

1<br />

Gy = ( −Δ t A + I)<br />

y = y<br />

−Δ ⋅ +<br />

<br />

i i i<br />

t λAi<br />

,<br />

jωi<br />

1<br />

⇒ no eigenvalues of G are larger than 1,<br />

i.e. the backward difference quotient is stabl e for any arbitrary Δt.<br />

G<br />

λ<br />

Gi ,<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

18


Backward-Difference Quotient<br />

Im<br />

( λ G ) ( ωΔt) max<br />

1<br />

Eigenvalues always lay inside of<br />

( ω Δ t) = 0<br />

the (shaded) stability area with λ ≤ 1.<br />

( )<br />

1<br />

Yet, accuracy depends Reon<br />

λGΔ<br />

t<br />

why a time step control is necessary.<br />

G<br />

Im<br />

( λ )<br />

G<br />

1<br />

( ωΔ t) max<br />

( ωΔ t) = 0<br />

−( ωΔ t) max<br />

Re( λG)<br />

1<br />

−<br />

( ωΔt) max<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

19


Central Difference Quotient<br />

In the loss-free case ( = <br />

Mσ 0) and allocating h in t + 0<br />

m ⋅Δ t,<br />

⎛ 1 ⎞<br />

e in t0<br />

+ ⎜m+ t the leap-frog scheme results from the central<br />

2<br />

⎟⋅Δ<br />

⎝ ⎠<br />

difference quotient which we will study now as single step scheme:<br />

d ⎛ 0 A12<br />

⎞<br />

y = ⎜ ⎟ y+<br />

q<br />

dt ⎝A21<br />

0 ⎠<br />

−1<br />

with A12 =− M −1<br />

C,<br />

A<br />

µ<br />

21<br />

= Mε<br />

C<br />

<br />

⎛h⎞<br />

⎛ 0 ⎞<br />

and the vectors y = ⎜<br />

⎟, q=⎜ <br />

.<br />

⎜ −1<br />

⎝e⎠ − ⎟<br />

⎝ Mε<br />

jS<br />

⎠<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

20


Leap-Frog Update Equations<br />

<br />

( m<br />

( )<br />

<br />

)<br />

m+ 1 ( m) ⎛<br />

( m+<br />

1/2) ( m)<br />

h ⎞<br />

h = h +Δt⋅ A12e y =⎜ ⎜ ( m+<br />

1/2)<br />

⎟<br />

⎝ e ⎠<br />

( m+ 3/2) ( m+ 1/2) ( m+ 1) <br />

−1<br />

( m+<br />

1)<br />

e = e +Δt⋅A21h −Δt⋅Mε<br />

jS<br />

( )<br />

( ) ( )<br />

<br />

= e +Δ ⋅ A h +Δ ⋅A e −Δ ⋅M j<br />

<br />

<br />

= +Δ ⋅ +Δ ⋅ −Δ ⋅<br />

<br />

−1<br />

( )<br />

( ) ε S<br />

m+ 1/2 m m+ 1/2 m+<br />

1<br />

t<br />

21<br />

t<br />

12<br />

t<br />

( 2 ( m+ 1/2) ( m) − ( 1)<br />

) 1 m+<br />

I t A21A12 e t A21h t Mε<br />

jS<br />

which yields<br />

<br />

( m<br />

⎛ )<br />

0<br />

( m+<br />

1) ( m) ( m) ( m)<br />

h ⎞ ⎛<br />

⎞<br />

( m)<br />

y = G y + q with y = =⎜ ⎜ q<br />

( m+ 1/2)<br />

⎟ ⎜<br />

<br />

−1<br />

( m+<br />

1)<br />

Δt<br />

⎟<br />

⎝ e ⎠ ⎝ Mε<br />

jS<br />

⎠<br />

⎛ I ΔtA<br />

⎞<br />

G = ⎜ ⎟<br />

⎝<br />

⎠<br />

12<br />

and the recursion matrix .<br />

2<br />

Δ tA21 I+Δt<br />

A21A12<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

21


Central Difference Quotient (Leap Frog)<br />

To determine the eigenvalues of G we first study the<br />

eigenvalue equation of the system matrix A :<br />

<br />

⎛h<br />

⎞<br />

i<br />

Ayi = λA , i<br />

yi with yi<br />

=⎜ ⎜<br />

⎟<br />

⎝ei<br />

⎠<br />

<br />

<br />

→ A e = λ h and A h = λ e<br />

12 i A, i i 21 i A,<br />

i i<br />

<br />

⎛ h ⎞<br />

i<br />

Let y' i<br />

= ⎜ <br />

be an eigenvalue of .<br />

α ⎟<br />

G<br />

⎝ ei<br />

⎠<br />

Multiply inserting the last 2 equations yields<br />

<br />

⎛<br />

i ( 1 α t λA,<br />

i)<br />

⎞<br />

⎛ ⎞<br />

h + Δ ⋅<br />

hi<br />

G<br />

⎜ ⎟<br />

⎜ <br />

1<br />

2<br />

.<br />

−<br />

α ⎟<br />

=<br />

<br />

i α<br />

i ( 1+ α Δt⋅ λA , i<br />

+ ( Δt⋅λ<br />

⎝ e ⎠ ⎜ e<br />

A,<br />

i)<br />

) ⎟<br />

⎝<br />

⎠<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

22


Central Difference Quotient<br />

⇒ y ' is an eigenvalue of G with Gy ' = λ y ' ⇔<br />

i i G,<br />

i i<br />

( )<br />

1+ α Δt⋅ λ = 1 + α Δt⋅ λ + Δt⋅λ holds for α.<br />

− 1<br />

Ai , Ai , Ai ,<br />

λ<br />

G,<br />

i−1<br />

Inserting λG, i= 1+ α Δt<br />

⋅λA , i<br />

⇒ α = Δ t ⋅ λ<br />

yields<br />

( t )<br />

λ − λ 2+Δ ⋅ λ + 1=<br />

0<br />

or<br />

2 2 2<br />

G, i G, i A,<br />

i<br />

( t λ<br />

, )<br />

⎛<br />

Ai ( t λ<br />

Ai , )<br />

2 2<br />

2+ Δ ⋅ 2+ Δ ⋅ ⎞<br />

λ<br />

G,<br />

i<br />

= ± ⎜<br />

⎟ −1<br />

2 ⎜ 2 ⎟<br />

⎝<br />

⎠<br />

describing the relation between the eigenvalues of A and G.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

2<br />

2<br />

Ai ,<br />

23


Central Difference Quotient (Leap Frog)<br />

Regard the loss-free case, i.e. σ = 0, where λ A,i = j ω i :<br />

λ<br />

Gi ,<br />

( t λ<br />

, )<br />

⎛<br />

Ai ( t λ<br />

Ai , )<br />

2 2<br />

2+ Δ ⋅ 2+ Δ ⋅ ⎞<br />

= ± ⎜<br />

⎟ −1<br />

2 ⎜ 2 ⎟<br />

⎝<br />

⎠<br />

( jω<br />

t) ⎛ ( jω<br />

t)<br />

2 2<br />

2+ i<br />

⋅Δ 2+ ⎞<br />

i<br />

⋅Δ<br />

= ± −1<br />

2 ⎜ 2 ⎟<br />

⎝<br />

⎠<br />

2<br />

2<br />

Dependingon thesignwegettwobranchesof theOrtskurve<br />

bothstartingatλ G = 1 which results from ωΔt = 0<br />

Each branch runs in one half of unit circle<br />

ending at λ G = - 1 which corresponds to | ωΔt | = 2<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

24


Central Difference Quotient (Leap Frog)<br />

Im<br />

( λ )<br />

G<br />

1<br />

" + "<br />

ω Δ t =<br />

0<br />

( ω t) max<br />

± Δ<br />

" − "<br />

( ω t) max<br />

± Δ<br />

" + "<br />

1<br />

Re<br />

( λ )<br />

G<br />

ω Δ t =<br />

2<br />

" − "<br />

Dependingon thesignwegettwobranchesof theOrtskurve<br />

•bothstartingatλ G = 1 which results from ωΔt = 0<br />

• each branch runs in one half of unit circle<br />

• ending at λ G = - 1 which corresponds to | ωΔt | = 2<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

25


Central Difference Quotient (Leap Frog)<br />

Im<br />

( λ )<br />

G<br />

1<br />

" + "<br />

ω Δ t =<br />

0<br />

( ω t) max<br />

± Δ<br />

" − "<br />

( ω t) max<br />

± Δ<br />

" + "<br />

1<br />

Re<br />

( λ )<br />

G<br />

ω Δ t =<br />

2<br />

" − "<br />

• λ G is purely real for larger values of ωΔt<br />

• The positive branch approaches zero<br />

• The negative branch approaches -∞<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

26


Central Difference Quotient (Leap Frog)<br />

Im<br />

( λ )<br />

G<br />

1<br />

" + "<br />

ω Δ t =<br />

0<br />

( ω t) max<br />

± Δ<br />

" − "<br />

( ω t) max<br />

± Δ<br />

" + "<br />

1<br />

Re<br />

( λ )<br />

G<br />

ω Δ t =<br />

2<br />

" − "<br />

Stability conditions demands: max λ ≤ 1<br />

From this one can derive a condition for Δt<br />

which insures<br />

that ω Δt<br />

≤ 2 :<br />

i<br />

2<br />

Δt<br />

≤ Δ t = with ω = max λ<br />

ω<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

Gi ,<br />

max max A,<br />

i<br />

max<br />

27


Central Difference Quotient (Leap Frog)<br />

⎛ 2 1 1 1<br />

Inserting the estimate ωmax<br />

≤ max = max<br />

+ +<br />

⎜<br />

⎝ ε u v w<br />

iµ<br />

Δ Δ Δ<br />

i<br />

for the absolute largest eigenvalue yields again<br />

⎧<br />

⎫<br />

1<br />

⎪<br />

⎪<br />

Δt ≤Δt max<br />

≈min ⎨ εi µ<br />

i<br />

⋅<br />

,<br />

i<br />

1 1 1<br />

⎬<br />

⎪<br />

+ + ⎪<br />

2 2 2<br />

⎪⎩<br />

Δui Δvi Δwi<br />

⎪⎭<br />

i.e. the Courant-Friedrichs-Levy condition.<br />

( ωi<br />

) ⎜<br />

2 2 2<br />

i i i<br />

⎞<br />

⎟<br />

⎠<br />

ω<br />

max<br />

can also be determined numerically, yielding an<br />

exact stability limit for the leap-frog scheme.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

28


Central Difference Quotient (Leap Frog)<br />

The stability limit has to be kept strictly:<br />

exceeding the limit by 1% only, the instable portion per iteration step<br />

increases by the factor of f = 1+ 8 ⋅ 1/ 100 = 1.28<br />

100 10<br />

(this is f ≈5.3 ⋅10<br />

after 100 steps)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

29


Example<br />

<br />

4<br />

b 1<br />

1<br />

4<br />

<br />

b<br />

2<br />

<br />

e <br />

<br />

b 2<br />

b 3<br />

e 1<br />

−9<br />

0<br />

-2<br />

-4<br />

Δ t = 4⋅10<br />

Δ t = 110 ⋅<br />

−9<br />

Δ t = 2⋅10<br />

−9<br />

Δ t = 3⋅10<br />

−9<br />

t<br />

stability limit for time step: Δt ≤ Δt max<br />

≈3.3356 ⋅10<br />

(experimentally found)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

−9<br />

Let’s regard again our small example with a computational domain built<br />

out of four cells only, with equidistant Cartesian grid of N u<br />

x N v<br />

x N ω<br />

= 3 x 3<br />

x 2 (Δ u<br />

=Δ v<br />

=Δ ω=<br />

Δ) lines.<br />

We assumed ideal electric boundaries such that only the field components<br />

displayed in the sketch are non-vanishing (indices are chosen different<br />

from usual).<br />

Experimentally, the stability limit given above could be found..<br />

30


Central Difference Quotient - Example<br />

<br />

b<br />

<br />

4<br />

b 1<br />

e 1<br />

<br />

b 2<br />

<br />

b 3<br />

system matrix<br />

A<br />

⎛<br />

1 ⎞<br />

⎜<br />

µ<br />

0Δ<br />

⎟<br />

⎜<br />

⎟<br />

⎜<br />

1 ⎟<br />

⎜<br />

− ⎟<br />

⎜<br />

µ<br />

0Δ<br />

⎟<br />

⎜<br />

1 ⎟<br />

= ⎜ 0<br />

− ⎟<br />

⎜<br />

µ<br />

0Δ<br />

⎟<br />

⎜<br />

1 ⎟<br />

⎜<br />

⎟<br />

⎜<br />

µ<br />

0Δ<br />

⎟<br />

⎜ 1 1 1 1 ⎟<br />

⎜<br />

−<br />

− 0<br />

ε0 ε0 ε0 ε<br />

⎟<br />

⎝ Δ Δ Δ<br />

0Δ<br />

⎠<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

Here, the system matrix for that simple example.<br />

31


Central Difference Quotient - Example<br />

(absolute) largest eigenvalue (dimensionless):<br />

<br />

± 2 j ± 2 jc0<br />

9<br />

b<br />

<br />

4<br />

λAmax<br />

,<br />

= = = ± j ⋅0.59958 ⋅10<br />

<br />

µ<br />

0ε<br />

Δ<br />

0Δ<br />

e 1<br />

b 3<br />

⇒ maximal time step :<br />

<br />

2 Δ<br />

−9<br />

b Δ tmax<br />

= = = 3.33564 ⋅10<br />

2<br />

λ c<br />

Amax ,<br />

0<br />

(Identical to experimentally found value)<br />

Yet, CFL condition yields only the estimate<br />

Δ<br />

Δt max<br />

≈<br />

3 c0<br />

which, in this case, is a limit too small by a factor of 3 ≈ 1.792<br />

b 1<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

The largest absolute eigenvalue can be computed and is given above.<br />

From that, the maximal time step can be computed as well.<br />

It coincides with the value which was experimentally found.<br />

Comparing that value with the estimate given by the CFL condition we see<br />

that the CFL condition asks for a maximal time step which is smaller by a<br />

factor of 1.792.<br />

Generally, the CFL asks for too small limits but guarentees stabilty.<br />

In realistic cases (much more than just 4 grid cells) the CFL stimate is very<br />

close to the actual stability limit!<br />

32


Properties of Explicite Leap Frog Scheme<br />

In realistic applications, the limit determined by the CFL condition is<br />

not too small but close to the stability limit.<br />

i The leap frog recursion scheme is suitable to compute loss-free<br />

systems.<br />

i The time step is limited for stability reasons.<br />

i The numerical effort per step is one matrix-vector-multiplication.<br />

i The integration with time steps fulfilling the CFL condition is<br />

sufficiently accurate. (Generally, spatial and time discretization error<br />

are equal.)<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

33


CST Microwave Studio ®<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

34


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

35


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

36


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

37


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

38


Example: Rectangular Waveguide - Junction<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

39


Example: Rectangular Waveguide - Junction<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

40


Example: Rectangular Waveguide - Junction<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

41


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

42


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

43


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

44


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

45


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

46


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

47


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

48


Example: Rectangular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

49


Example: Circular Waveguide<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

50


Example: Circular Waveguide<br />

TE11, both polarizations<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

51


Example: Circular Waveguide<br />

TM01<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

52


Example: Circular Waveguide<br />

TE21, both polarizations<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

53


Waveguide Junction<br />

CST-Demo<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

54


Waveguide Junction<br />

CST-Demo<br />

Port 1<br />

Port 3<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

55


The Human Body Model HUGO in MWS TM<br />

HUGO:<br />

• based on Visible Human Data Set of<br />

the National Library of Medicine,<br />

Maryland<br />

• 40 tissues<br />

• 7 detail level: min/max-voxel size<br />

• 1x1x1 mm (361 MB)<br />

• 8x8x8 mm ( 0,7 MB)<br />

• C/C++ programming interface<br />

• convertable in STL format<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

56


HUGO and RF-Waves of a WLAN-Card<br />

Magnetic field<br />

Magnetic field<br />

Magnetic<br />

energy density<br />

Magnetic energy density<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

V.Motrescu, G.Pöplau, UvR<br />

57


Examples for Parameter Extraction<br />

PCB<br />

RJ45 connection<br />

CST-Demo<br />

isolator<br />

ε = 2,1; μ = 1<br />

r<br />

r<br />

transmission lines<br />

ε = 2, 4 ; μ = 1<br />

r<br />

r<br />

connector<br />

PEC PCB, socket & connector<br />

ε = 2, 2 ; μ = 1<br />

r<br />

r<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

58


RJ45 Connector<br />

Extraction of some SPICE-compatible network model based on<br />

the computation of S-parameters :<br />

• Definition of excitation sources:<br />

• all wires are terminated with discrete ports<br />

• the ports are excited sequentially with a Gaussian pulse<br />

• yields broadband results for all wires<br />

46.464 mesh points<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST-Demo<br />

59


RJ45 Connector<br />

Ports 1 and 6<br />

CST-Demo<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

60


IC Package<br />

ε<br />

r<br />

=<br />

Box<br />

4<br />

104 ports,<br />

190.333 mesh points<br />

Substrat<br />

Silicon<br />

ε = 12,3<br />

PEC wires and traces<br />

r<br />

ε = 9, 2<br />

r<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST-Demo<br />

61


IC Package<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST-Demo<br />

62


Parasitic Effects in IC‘s<br />

Current density of an IC at 5 GHz<br />

T. Wittig, I. Munteanu, T. Weiland, TU Darmstadt<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

63


Patch-Antenna<br />

Patch-Antenna<br />

Constante energy<br />

flux density<br />

Coaxial line<br />

Planes of constant field amplitude<br />

T.Weiland et al.<br />

CST<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

64


Patch-Antenna<br />

„Folded“ Patch-Antenna<br />

Electric field of the<br />

excited modes<br />

Two- and three-dimensional<br />

farfield representation<br />

T.Weiland et al.<br />

CST<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

65


Horn Antenna<br />

Horn antenna with dielectric cone, coaxially loaded<br />

E y<br />

Antenna with<br />

farfield<br />

T.Weiland et al.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST<br />

66


Horn Antenna<br />

Rillenhornstrahler<br />

Versorgung by<br />

Dielectrically filled<br />

waveguide<br />

Electric field strength<br />

(nearfield)<br />

T.Weiland et al.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST<br />

67


Mobile Communication<br />

CAD-Data<br />

(STL-Format)<br />

modelled<br />

Diskretization<br />

Electric field strebgth<br />

T.Weiland et al.<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

CST<br />

68


Magneto-Quasistatics (MQS)<br />

max<br />

r∈R<br />

∂D<br />

∂t<br />


Magneto-Quasistatics (MQS)<br />

Harmonic Time-Dependence:<br />

rot<br />

rot<br />

div<br />

E = −iωB<br />

H<br />

D<br />

=<br />

=<br />

J<br />

ρ<br />

div B = 0<br />

rot H=<br />

J<br />

div B=<br />

0<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

70


MQS: Position Sensor<br />

Electrical position sensor<br />

(BOSCH)<br />

- f = 10 kHz<br />

- Position S of shielding ring<br />

by measurement of<br />

coil inductivity L<br />

H-field<br />

L<br />

Shielding ring<br />

(Copper)<br />

s<br />

J<br />

Excitation coil<br />

Iron<br />

Simulation: M. Clemens, TU Darmstadt<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

71


Ind uctivity Re(L)/mH<br />

Prof.D FrTr<br />

Im1.5 xL1.<br />

0. +measur Sim - r.UrsulavanRi ansien frequen implicit Solution Curl-Cu 5T 0Tcoil periods ulation:M tCom ement inte timeint enen,<strong>Uni</strong>versit imeinte distan cydomain (1T= oftime equatio MQS: rl cyDom .Clemen gration ät<strong>Rostock</strong>,Fak putatio egratio cex/mm -harmo ainSo s,TUDa 40Δt) ultät<strong>für</strong>InformatikundElektr nic lution rmstadt Posit ion otechnik(IEF),I Sen nstitut<strong>für</strong>AlgemeineElektrot sor echnik(IAE)<br />

72


MQS: Magnet Head in Hard Disc<br />

SRC hard disc magnet head<br />

Simulation: M. Clemens, TU Darmstadt<br />

(Benchmark problem of Storage Research Consortiums (SRC))<br />

148 μm<br />

Air gap (0.4μm)<br />

Copper coils<br />

Permalloy<br />

Transient problem<br />

(Magneto-Quasistatics)<br />

1.2 Mio. Unknowns<br />

Prof. Dr. Ursula van Rienen, <strong>Uni</strong>versität <strong>Rostock</strong>, Fakultät <strong>für</strong> Informatik und <strong>Elektrotechnik</strong> (IEF), <strong>Institut</strong> <strong>für</strong> <strong>Allgemeine</strong> <strong>Elektrotechnik</strong> (IAE)<br />

73


Sim Prof.D Io01024680.801.0.80.20.41.2-F -e0M ComputeB infEx (with 260 =52 Imp (Tra 40t =2 r.UrsulavanRi xcitati plicitLe .0timesteps :45hon DTD DiTD<br />

rontof Scaled-li nsientMag 3:09hon licitimeintegr QS:M ulation:M zin70 apFrog( enen,<strong>Uni</strong>versit on<br />

airgap<br />

ghtsped- psfor1 SUNUltra2<br />

neto-Qua .Clemen ag for10 ät<strong>Rostock</strong>,Fak FDTD) aproach)<br />

ation(F sistatics) 0ns 2<br />

nm s,TUDa net ultät<strong>für</strong>InformatikundElektr ns<br />

DITD) rmstadt Hea din otechnik(IEF),I Hard nstitut<strong>für</strong>AlgemeineElektrot Dis c echnik(IAE)<br />

74


Sim Prof.D MQS:M Fin Ri Dis 2 (c r.UrsulavanRi cretep .7Mio a.72h ergeom Coil Num ngcoil coper ulation:M enen,<strong>Uni</strong>versit etryres berofgrid roblemwith .unkn simulat aproxim.Clemen ag ät<strong>Rostock</strong>,Fak oltion: points: ion) ation:ringowns<br />

s,TUDa net ultät<strong>für</strong>InformatikundElektr s~90,0<br />

rmstadt Hea din otechnik(IEF),I Hard nstitut<strong>für</strong>AlgemeineElektrot Dis c echnik(IAE)<br />

75


Sim Prof.D Qum/ v15 ,.,0=Eis -joc BeStr<br />

LWS 0sr.UrsulavanRi en hwegte omsp B-Modelder FDI LaMQS PrMagneto vel ulation:M asistat ule stime Schie SABWabc enen,<strong>Uni</strong>versit oblem TDwit ionary project ocities: .Clemen ne ät<strong>Rostock</strong>,Fak hMovi step oftra edin-Qua motion s,TUDa withm 1D-m ultät<strong>für</strong>InformatikundElektr solutio nsien sistati<br />

ng-Co directiormstadt<br />

ovin ninmovingm rdinate nofm tcs<br />

gc otechnik(IEF),I Schema(„Upw otion ond nstitut<strong>für</strong>AlgemeineElektrot ateriaucto sl<br />

ind“-s rs<br />

cheme) echnik(IAE)<br />

:<br />

76


Sim Prof.D •M Moving-<br />

v Eis -joc BeStr<br />

ElBr ScInZu r.UrsulavanRi oving<br />

wegte emse hiene SyMQS omsp =0m/ samenarb =10m/s ektromagne ulation:M steme Cor HoheG ohneSt Syme ulen nfahrz enen,<strong>Uni</strong>versit Schie <strong>für</strong> eitmitM.Wilke .Clemen dinate trieder ät<strong>Rostock</strong>,Fak abilität tische eschwi ne euge bleibte s,TUDa withm ultät<strong>für</strong>InformatikundElektr rhalte -Ansa sprobl algebr ndigke rmstadt ovin tz: iten aische eme gc otechnik(IEF),I ond nstitut<strong>für</strong>AlgemeineElektrot ucto rs echnik(IAE)<br />

77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!