17.01.2014 Views

Atmospheric Thermodynamics - IAP > Microwave Physics

Atmospheric Thermodynamics - IAP > Microwave Physics

Atmospheric Thermodynamics - IAP > Microwave Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

N. Kämpfer<br />

<strong>Atmospheric</strong> <strong>Thermodynamics</strong><br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

N. Kämpfer<br />

Institute of Applied <strong>Physics</strong><br />

University of Bern<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Outline<br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor pressure<br />

Clouds<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds


Aim<br />

A planetary atmosphere consists of different gases hold to<br />

the planet by gravity<br />

The laws of thermodynamics hold<br />

◮ pressure structure<br />

◮ pressure as vertical coordinate<br />

→ some planets have no solid surface<br />

◮ hydrostatic equilibrium<br />

◮ scale height<br />

◮ column density<br />

◮ mean free path<br />

◮ temperature structure<br />

◮ lapse rate<br />

◮ stability<br />

◮ latent heat and condensation → clouds<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

◮ wet lapse rate<br />

N. Kämpfer<br />

Ideal gas law<br />

pV = NkT<br />

N amount of particles<br />

k = 1.381 · 10 −23 J/K is Boltzmann’s constant<br />

n = N/V is the number density, particles per Volume<br />

a mole contains N A = 6.022 · 10 23 particles<br />

a kmole contains N A = 6.022 · 10 26 particles<br />

with q moles of a substance N = qN A and the gas law gets<br />

pV = qN A kT = nRT<br />

where R = kN A<br />

R = 8.314 J mol −1 K −1 resp.<br />

R = 8314 J kmol −1 K −1 is the universal gas constant<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

The mass of a mole of substance is called molar weight:<br />

M water = 18.016 kg/kmol M air = 28.97 kg/kmol


Ideal gas law<br />

mass of q moles is m = qM<br />

density ρ can be expressed as<br />

ρ = m V = qM V<br />

very often gas law is expressed as<br />

or<br />

= Mp<br />

RT<br />

pV = m M RT = m R M T = mR G T<br />

p = ρR G T<br />

R G is the gas constant for the gas under discussion!<br />

for dry air R d = 287 JK −1 kg −1<br />

for water vapor R v = 461 JK −1 kg −1<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Don’t mix up R G and R !!<br />

In the literature often R is written as R ∗ and R G as R!<br />

Partial pressure<br />

An atmosphere is a mixture of gases<br />

Dalton’s law: The total pressure p is the sum of the partial<br />

pressures of each component p j<br />

p = p 1 + p 2 + p 3 + ... = ∑ p j<br />

The partial pressure of water vapor is denoted by e and is<br />

called vapor pressure<br />

For relative amounts of gases it follows<br />

N j<br />

N = V j<br />

V = p j<br />

p<br />

This is the volume mixing ratio, or VMR often expressed in<br />

ppm or ppb or even ppt → trace gases<br />

The mass mixing ratio is defined as<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

MMR = ρ i<br />

ρ = m i<br />

m<br />

in gkg−1


Most abundant gases in planetary atmospheres<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

copied from Y.Yung: Photochemistry of planetary atmospheress<br />

VMR of gases in Earth atmosphere<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds


Mean molecular weight versus height for Earth<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

copied from C.Bohren: <strong>Atmospheric</strong> <strong>Thermodynamics</strong><br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Why this shape of the curve?<br />

→ we have to look in more detail at the pressure behavior<br />

Hydrostatic equilibrium<br />

As a gas is compressible → density falls with altitude<br />

Vertical pressure profile can be predicted by considering<br />

change in overhead force, dF , for a change in altitude dz in<br />

a column of gas with density ρ and area A<br />

dF = −ρgAdz<br />

Pressure and altitude are related by hydrostatic equilibrium<br />

dp = −ρgdz<br />

For an ideal gas at temperature T → ρ = Mp<br />

RT<br />

( ∫ z<br />

)<br />

Mg<br />

p(z) = p(z 0 ) exp −<br />

z 0<br />

RT dz<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

M, g, T depend on the planet and on height


Scale height<br />

Assume T does not vary much and take an average T av<br />

(<br />

p(z) = p 0 exp − Mg )<br />

z<br />

RT av<br />

The quantity RT av<br />

Mg<br />

→ scale height (Skalenhöhe) H<br />

has dimensions of a length<br />

H = RT av<br />

Mg<br />

= R G T av<br />

g<br />

Hydrostatic law expressed with H<br />

(<br />

p = p 0 exp − z )<br />

(<br />

H<br />

n = n 0 exp − z )<br />

(<br />

H<br />

ρ = ρ 0 exp − z )<br />

H<br />

= kT av<br />

mg<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Scale height for different planets<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

from Y.Yung<br />

Physical properties of planetary atmospheres at 1 bar


Discussion of hydrostatic law<br />

How well do these expressions fit with reality?<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

from Y.Yung<br />

Discussion of scale height<br />

Discussion:<br />

◮ pressure decreases with height faster for lower T<br />

◮ as T ≠ const also H will change<br />

◮ H depends on mass → each constituent would have its<br />

own scale height → own pressure distribution → VMR<br />

of unreactive gases would depend on altitude<br />

but this is not observed!<br />

at least the lower parts of atmospheres behave as they<br />

were built up of a single species with a mean molar mass<br />

Earth: 28.8, Venus and Mars: 44, Jupiter 2.2<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Homogeneity of lower atmospheres is a consequence of<br />

mixing due to fluid motions


Homosphere - Turbosphere<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Homosphere - Turbosphere<br />

Mixing on a macroscale by<br />

◮ convection<br />

◮ turbulence<br />

◮ small eddies<br />

does not discriminate according molecular mass<br />

Relative importance of molecular and bulk motions depends<br />

on relative distances moved between transport events<br />

For bulk motions → mixing length<br />

For molecular motion → mean free path: λ m<br />

λ m ≈ 1<br />

nσ ≈ 1 kT<br />

σ p<br />

Collision cross section σ of air molecule: ≈ 3 · 10 −15 cm −2<br />

At sea level number density n ≈ 3 · 10 19 cm −3<br />

Average separation between molecules d = n −1/3 ≈ 3.4nm<br />

Mean free path λ m ≈ 0.1µm, i.e. ≈ 30d<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds


Homosphere - Turbosphere<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Transition region in an atmosphere<br />

from turbulent mixing to diffusion is<br />

known as the turbopause or<br />

homopause<br />

For the Earth both lengths are approx. equal at 100-120 km<br />

Well mixed region below turbopause: homosphere<br />

Gravitationally separated region above: heterospehre<br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Column density<br />

The total content in a column of unit cross section of an<br />

atmosphere with a constant scale height is given by the<br />

column density<br />

N c =<br />

∫ ∞<br />

0<br />

ndz = n 0 exp<br />

(<br />

− z )<br />

dz = n 0 H = p 0<br />

H<br />

mg 0<br />

Column density in its general form is also used for particle<br />

distributions that do not obey the exponential law<br />

Total mass of a planetary atmosphere can be expressed by<br />

( ) p<br />

M atm = 4πR0<br />

2 g<br />

s<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

where s is at the surface (whatever this is ☹)


Temperature profile of Earth<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

from Jacobson: <strong>Atmospheric</strong> modeling<br />

Thermal structure<br />

The thermal structure of an atmosphere is the result of an<br />

interaction between radiation, composition and dynamics<br />

Equation that governs the thermal structure (without proof)<br />

dT<br />

ρc p<br />

dt + dΦ c<br />

dz<br />

+ dΦ k<br />

dz<br />

= q<br />

C p = heat capacity per unit mass at constant pressure<br />

q = net heating rate = rate of heating - rate of cooling<br />

Φ c = conduction heat flux<br />

Φ k = convection heat flux<br />

Φ c = −K dT<br />

dz<br />

Φ k = −K H ρc p<br />

( dT<br />

dz − g c p<br />

)<br />

K=thermal conductivity and K H =eddy diffusivity<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds


Thermal structure<br />

dT<br />

ρc p<br />

dt + dΦ c<br />

dz<br />

+ dΦ k<br />

dz<br />

= q<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

◮ First term only important for modeling diurnal variations<br />

◮ Third term (convection) dominates in the troposphere<br />

◮ Fourth term dominates in the middle atmosphere<br />

◮ Second term (conduction) balances the fourth term in<br />

the thermosphere<br />

Thermal structure of a planetary atmosphere depends on the<br />

chemical composition<br />

Chemical composition may be affected by<br />

◮ temperature through temperature dependent reactions<br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

◮ condensation of chemical species<br />

Temperature profile of inner planets<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds


Temperature profile of outer planets<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Lapse rate<br />

Radiative transfer tends to produce highest temperatures at<br />

the lowest altitudes<br />

→ hot, lighter air lies under cold, heavier air<br />

→ one would guess that convection would arise, BUT<br />

gases are compressible and pressure decreases with height<br />

→ rising air parcel will expand, will do work on the<br />

environment<br />

→ air is cooled<br />

Consequence:<br />

Temperature drop from expansion can exceed decrease in<br />

temperature of surrounding atmosphere<br />

→ in that case convection will not occur!<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

What is the decrease in temperature with altitude?<br />

What is the lapse rate?


Lapse rate<br />

Consider air parcel thermally insulated from environment<br />

Air parcel can move up and down under adiabatic conditions<br />

First law of Th.D.<br />

Enthalpy<br />

dU = dq + dW = dU − pdV<br />

dH = dU + pdV + Vdp<br />

For our case → dH = Vdp<br />

Heat capacity at constant pressure C p = (dH/dT ) p<br />

C p dT = Vdp<br />

dp = −ρgdz from hydrostatic equilibrium<br />

C p dT = −V ρgdz<br />

For a unit mass of gas (c p ) we get<br />

− dT<br />

dz = g c p<br />

= Γ d<br />

Γ d is called the dry adiabatic lapse rate<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Lapse rate for different planets<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

from Y.Yung<br />

Physical properties of planetary atmospheres at 1 bar<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds


Stability<br />

Actual temperature gradient of atmosphere: Γ = − dT<br />

dz<br />

◮ Γ < Γ d<br />

→ any attempt of an air packet to rise is counteracted<br />

by cooling → packet gets colder and denser, it sinks<br />

→ any attempt of an air packet to sink is counteracted<br />

by warming → packet gets warmer and lighter, it rises<br />

→ atmosphere is stable<br />

◮ Γ > Γ d<br />

→ any attempt of an air packet to rise is enforced by<br />

warming → packet gets warmer and lighter, it continues<br />

to rise<br />

→ any attempt of an air packet to sink is enforced by<br />

cooling → packet gets colder and denser, it continues<br />

to sink<br />

→ convection is working → atmosphere is unstable<br />

Actual Γ rarely exceed Γ d by more than a very small amount<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Stability<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

DALR=dry adiabatic lapse rate


Condensation<br />

However: Presence of condensable vapors in atmospheric<br />

gases complicates matters!<br />

◮ Condensation to liquid or solid releases latent heat to<br />

the air parcel<br />

◮ For a saturated vapor, every decrease in temperature is<br />

accompanied by additional condensation<br />

◮ Saturated adiabatic lapse rate, Γ s , must be smaller<br />

than Γ d<br />

◮ Clouds can form<br />

◮ Clouds are mainly made of H 2 O for the Earth, but not<br />

alone, e.g. PSC are HNO 3<br />

◮ Clouds on giant planets made from NH3 , H 2 S, CH 4<br />

◮ Clouds on Mars from CO2 and on Venus from H 2 SO 4<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

For the derivation of Γ s we need Clausius -Clapeyron<br />

equation<br />

Humidity<br />

Different ways to express humidity in the atmosphere:<br />

Mixing ratio g/kg<br />

w ≡ m v<br />

m d<br />

= ρ v<br />

ρ d<br />

= M v<br />

M d<br />

e<br />

p − e<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

where e is the partial pressure of water vapor<br />

As p ≫ e and with M v<br />

M d<br />

= ε = 0.622:<br />

w ≈ 0.622 e p<br />

As long there is no condensation or evaporation the mixing<br />

ratio is conserved!<br />

Specific humidity is defined as<br />

s = ρ v<br />

ρ =<br />

ρ v<br />

ρ d + ρ v<br />

=<br />

eε<br />

p − (1 − ε)e<br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds


Saturation vapor pressure<br />

Equilibrium between condensation and evaporation<br />

→ saturation vapor pressure e s<br />

→ is valid for other gases than water vapor<br />

Relation between saturation pressure and temperature is<br />

given by equation of Clausius and Clapeyron<br />

de s<br />

dT = 1 T<br />

L v<br />

V v − V l<br />

= 1 T<br />

1<br />

ρ v<br />

l v<br />

− 1 ρ l<br />

where: L v = enthalpy of vaporization<br />

V v resp. V l are volumina of vapor and liquid phases<br />

for H 2 O: l v = 2.5 · 10 6 J/kg<br />

e s ≈ Ce<br />

“ ”<br />

− l v<br />

Rv T<br />

= Ce ( − m v lv<br />

kT )<br />

numerator: energy required to break a water molecule free<br />

from its neighbors<br />

denominator: average molecular kinetic energy available<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Saturation vapor pressure<br />

Useful approximation for water vapor:<br />

e s<br />

ln<br />

6.11mb = LM (<br />

v 1<br />

R 273 − 1 )<br />

T<br />

Saturation mixing ratio<br />

w s ≈ 0.622 e s<br />

p<br />

= 19.83 − 5417<br />

T<br />

Relative humidity, RH RH = 100 w w s<br />

= 100 e e s<br />

Dew point is the temperature where RH = 100%<br />

Lapse rate for saturated conditions, Γ s , can be shown to be<br />

Γ s = − dT<br />

dz = g c p<br />

1 + l v w s /RT<br />

1 + l 2 v w s /c p R v T 2<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

In case of Earth: Γ s ≈ 5K/km in contrast to Γ d ≈ 10K/km


Saturation vapor pressure for water vapor<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Clouds, a few facts<br />

◮ Clouds can form on all planets with condensable gases<br />

◮ Temperature must drop below the condensation or<br />

freezing temperature of such gases<br />

◮ Cloud condensation nuclei must be present<br />

◮ Most terrestrial clouds consist of water droplets and ice<br />

crystals but other cloud particles are possible, eg.<br />

HNO 3·2H 2 O or H 2 SO 4 /H 2 O in PSCs<br />

◮ On ♀ exist H 2 SO 4 clouds<br />

◮ On ♂ exist water ice clouds<br />

◮ On titan clouds of CH 4 are expected<br />

◮ NH 3 - ice may form on ♃ and ♄<br />

◮ H 2 S-ice may form on ♅ and and also CH 4 -ice<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

◮ Clouds are often related to precipitation<br />

◮ Clouds are extremely important for radiation budget<br />

→ often little is known


Polar stratospheric clouds<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

photo from H.Berg, Karlsruhe<br />

Polar stratospheric clouds<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds


Clouds on Mars<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

photo from NASA<br />

Clouds on Venus<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

photo from NASA


Level of cloud formation<br />

The lifting condensation level, LCL, is the level to which a<br />

parcel of air would have to be lifted dry adiabatically to<br />

reach a RH of 100% → base of clouds<br />

Height of LCL is a function of T and humidity resp.<br />

condensable matter<br />

If a parcel with T 0 is lifted from z 0 to height z then<br />

For the dew point at any z<br />

T (z) = T 0 − Γ d (z − z 0 )<br />

T d (z) = T d0 − Γ dew (z − z 0 )<br />

z LCL is reached when both are equal<br />

z LCL = z 0 + T 0 − T do<br />

where Γ dew = − dT d<br />

Γ d − Γ dew dz<br />

= g Td<br />

2<br />

ɛl v T<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

→ Rule of thumb: z LCL − z 0 = (T 0 − T d0 )/8 in km-units<br />

Ceilometer at <strong>IAP</strong> for cloud base measurements<br />

N. Kämpfer<br />

<strong>Atmospheric</strong><br />

<strong>Thermodynamics</strong><br />

Aim<br />

Gas law<br />

Pressure<br />

Hydrostatic<br />

equilibrium<br />

Scale height<br />

Mixing<br />

Column density<br />

Temperature<br />

Lapse rate<br />

Stability<br />

Condensation<br />

Humidity<br />

Saturation vapor<br />

pressure<br />

Clouds<br />

Laser-ceilometer<br />

from M.Schneebeli<br />

Cloud base as determined with a ceilometer

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!