17.01.2014 Views

Vibrational resonance in the Morse oscillator - Indian Academy of ...

Vibrational resonance in the Morse oscillator - Indian Academy of ...

Vibrational resonance in the Morse oscillator - Indian Academy of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

K Abirami, S Rajasekar and M A F Sanjuan<br />

For <strong>the</strong> Duff<strong>in</strong>g and qu<strong>in</strong>tic <strong>oscillator</strong>s [3,5,11,25] V (x) (as well as <strong>the</strong> effective<br />

potential) →∞as x →±∞. In this case <strong>the</strong> resonant frequency diverges after a<br />

few oscillations and thus Q decays to zero for large values <strong>of</strong> g.<br />

3. Resonance with a square-wave signal<br />

In this section we show that vibrational <strong>resonance</strong> can be realized <strong>in</strong> <strong>the</strong> <strong>Morse</strong> <strong>oscillator</strong><br />

when <strong>the</strong> external signal is a square-wave and <strong>the</strong> <strong>the</strong>oretical analysis employed <strong>in</strong> <strong>the</strong><br />

previous section for s<strong>in</strong>usoidal force can be applied to this case also.<br />

In system (2), <strong>in</strong> place <strong>of</strong> F 1 = f cos ωt + g cos t, we consider three o<strong>the</strong>r forms <strong>of</strong><br />

external force given by<br />

F 2 (t) = f cos ωt + g sgn(cos t), (16)<br />

F 3 (t) = f sgn(cos ωt) + g cos t, (17)<br />

F 4 (t) = f sgn(cos ωt) + g sgn(cos t), (18)<br />

where sgn|u| denotes sign <strong>of</strong> u. In <strong>the</strong> <strong>the</strong>oretical analysis we use a Fourier series expansion<br />

for <strong>the</strong> square-wave signal. For <strong>the</strong> <strong>Morse</strong> <strong>oscillator</strong> driven by <strong>the</strong> periodic force<br />

F 2 (t) <strong>the</strong> solution <strong>of</strong> slow motion is Y 2 = Q 2 f cos(ωt + φ 2 ) where<br />

Q 2 =<br />

1<br />

√(ω 2 r,2 − ω2 ) 2 + d 2 ω 2 , (19a)<br />

where<br />

∫ 2π<br />

ωr,2 2 = βU 2 (μ)<br />

U(2μ) , U(μ) = 1<br />

2π 0<br />

e −ψ 2<br />

dτ,<br />

(19b)<br />

ψ 2 = 4μ ∞∑ (−1) n+1 cos(2n + 1)τ<br />

.<br />

π (2n + 1) 3 n=0<br />

(19c)<br />

For <strong>the</strong> system driven by <strong>the</strong> force F 3 , <strong>the</strong> solution Y 3 is<br />

Y 3 = 4 f ∞∑ (−1) n<br />

cos[(2n + 1)ωt + φ 3 ]<br />

π (2n + 1) [(ω 2 n=0<br />

r,3 − (2n + 1)2 ω 2 ) 2 + (2n + 1) 2 d 2 ω 2 ] , 1/2 (20a)<br />

where<br />

ωr,3 2 = β I 0 2(μ)<br />

I 0 (2μ) .<br />

(20b)<br />

The solution Y 3 has frequencies ω and odd <strong>in</strong>teger multiples <strong>of</strong> it. The response amplitude<br />

Q 3 correspond<strong>in</strong>g to <strong>the</strong> fundamental frequency ω is<br />

Q 3 = 4 1<br />

.<br />

π<br />

√(ωr,3 2 − ω2 ) 2 + d 2 ω 2 (21)<br />

When <strong>the</strong> biharmonic force is chosen as F 4 given by eq. (18) <strong>the</strong>n <strong>the</strong> expression for <strong>the</strong><br />

solution Y 4 is <strong>the</strong> same as Y 3 except that now ωr,3 2 is replaced by ω2 r,4 where<br />

ωr,4 2 = βU 2 (μ)<br />

U(2μ) . (22)<br />

134 Pramana – J. Phys., Vol. 81, No. 1, July 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!