17.01.2014 Views

Hydrogen embrittlement in power plant steels - Indian Academy of ...

Hydrogen embrittlement in power plant steels - Indian Academy of ...

Hydrogen embrittlement in power plant steels - Indian Academy of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

440 R K Dayal and N Parvathavarth<strong>in</strong>i<br />

4.2 <strong>Hydrogen</strong> <strong>embrittlement</strong><br />

The energy absorption ability <strong>of</strong> steel is markedly dim<strong>in</strong>ished <strong>in</strong> the presence <strong>of</strong> hydrogen.<br />

The presence <strong>of</strong> hydrogen <strong>in</strong> steel reduces tensile ductility and causes premature failure under<br />

static load that depends on the stress and time. This phenomenon is known as hydrogen<br />

<strong>embrittlement</strong>.<br />

4.2a <strong>Hydrogen</strong> <strong>in</strong>duced crack<strong>in</strong>g (HIC) <strong>in</strong> steel weldments: Dur<strong>in</strong>g weld<strong>in</strong>g process hydrogen<br />

is absorbed <strong>in</strong>to the molten weld pool. As the weld metal solidifies, solubility <strong>of</strong> hydrogen<br />

decreases because <strong>of</strong> decrease <strong>in</strong> temperature and hydrogen present <strong>in</strong> the weld metal becomes<br />

supersaturated and diffuses away from the weld fusion zone to the heat-affected zone (HAZ)<br />

where hydrogen concentration is lower. In the HAZ, due to heat<strong>in</strong>g and cool<strong>in</strong>g cycles, transformation<br />

products <strong>of</strong> high hardness are produced. This region <strong>of</strong> high hardness and low<br />

ductility is subjected to a relatively high tensile load imposed by the contract<strong>in</strong>g weld fusion<br />

zone result<strong>in</strong>g <strong>in</strong> crack<strong>in</strong>g <strong>in</strong> the presence <strong>of</strong> hydrogen (HIC) with<strong>in</strong> a few hours <strong>of</strong> completion<br />

<strong>of</strong> weld<strong>in</strong>g operation. For hydrogen crack<strong>in</strong>g, three primary <strong>in</strong>dependent conditions<br />

are necessary to be fulfilled: a high hydrogen level, susceptible microstructure and tensile<br />

stress act<strong>in</strong>g on the weld. These conditions are schematically shown <strong>in</strong> figure 12 (Timm<strong>in</strong>s<br />

1997). All arc weld<strong>in</strong>g processes <strong>in</strong>troduce hydrogen <strong>in</strong>to the weld to some extent. <strong>Hydrogen</strong><br />

can orig<strong>in</strong>ate from moisture that exists <strong>in</strong> electrode coat<strong>in</strong>gs or from the surround<strong>in</strong>g<br />

humid atmosphere. <strong>Hydrogen</strong> can also orig<strong>in</strong>ate from hydrocarbons, grease, rust, or other<br />

organic contam<strong>in</strong>ants. In general, only hard HAZ microstructures are susceptible to HIC.<br />

The risk <strong>of</strong> hydrogen crack<strong>in</strong>g <strong>in</strong> the HAZ <strong>in</strong>creases with hardness. Such microstructures<br />

are promoted by steel that has high carbon equivalent as proposed by Yurioka (Yurioka et al<br />

1987).<br />

<strong>Hydrogen</strong> crack<strong>in</strong>g<br />

<strong>Hydrogen</strong><br />

Microstructure<br />

Stress<br />

Weld<strong>in</strong>g<br />

process<br />

<strong>Hydrogen</strong><br />

potential<br />

Proper<br />

use<br />

Clean<br />

Dry<br />

Preheat/<br />

postheat<br />

Applied<br />

Residual<br />

Weld<strong>in</strong>g<br />

sequence<br />

Weld metal<br />

strength<br />

Carbon equivalent<br />

Weld cool<strong>in</strong>g rate<br />

Subsequent thermal treatment<br />

Pipe<br />

material<br />

Fitt<strong>in</strong>g<br />

material<br />

Postweld<br />

heat treatment<br />

Temper<br />

bead<br />

Weld metal<br />

butter<strong>in</strong>g<br />

Weld<strong>in</strong>g parameters<br />

Pipel<strong>in</strong>e operat<strong>in</strong>g conditions<br />

Current<br />

Electrode<br />

size<br />

Voltage<br />

Travel<br />

speed<br />

Preheat<br />

temperature<br />

Pressure<br />

(gas only) Temperature<br />

Ambient<br />

Pipe<br />

surface<br />

Wall<br />

thickness<br />

Flow<br />

rate<br />

Pipel<strong>in</strong>e<br />

contents<br />

Figure 12. Factors <strong>in</strong>fluenc<strong>in</strong>g HIC <strong>in</strong> weldments (Timm<strong>in</strong>s 1997).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!