27.01.2014 Views

Alexander MAKAROV - IMP

Alexander MAKAROV - IMP

Alexander MAKAROV - IMP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Late Summer Proteomics<br />

Seminar at <strong>IMP</strong> Vienna<br />

Orbitrap Mass Spectrometry<br />

for Quantitative Analysis<br />

A.Makarov<br />

August 27, 2012


There are different views on this world…<br />

Life<br />

Genomics<br />

…-omics<br />

Proteomics<br />

C.Flammarion (1842—1925)<br />

Instrumentomics<br />

2<br />

http://commons.wikimedia.org/wiki/File:THE_TURTLE_AND_ELEPHANT.jpg


Mass spectrometry for discovery proteomics<br />

Magnetic<br />

sectors<br />

Res. power<br />

Transmission<br />

Mass accuracy<br />

Dynamic range<br />

Speed<br />

Quantitation<br />

All-ion detection<br />

Simplicity<br />

Time-of-flight (oa)<br />

FT ICR<br />

Ion traps<br />

Res. power<br />

Transmission<br />

Mass accuracy<br />

Dynamic range<br />

Speed<br />

Quantitation<br />

All-ion detection<br />

Simplicity<br />

Quadrupoles<br />

3<br />

Res. power<br />

Transmission<br />

Mass accuracy<br />

Dynamic range<br />

Speed<br />

Quantitation<br />

All-ion detection<br />

Simplicity<br />

Trapping<br />

Use of shaped electrodes<br />

Image current detection<br />

Pulsed injection<br />

Electrostatic fields


What is Orbitrap analyzer?<br />

Orbitrap analyzer =<br />

= Orbital<br />

trapping<br />

+ Image current<br />

detection<br />

+ Electrodynamic<br />

squeezing<br />

+ External pulsed<br />

ion source<br />

4


Orbital trapping<br />

“Ideal Kingdon trap”:<br />

Quadro-logarithmic potential<br />

U ( r,<br />

z)<br />

=<br />

k<br />

⋅<br />

2<br />

2 2 2<br />

{ z − r / 2 + R ⋅ln(<br />

r / )}<br />

m<br />

R m<br />

Characteristic frequencies:<br />

• Frequency of rotation ω φ<br />

• Frequency of radial oscillations ω r<br />

• Frequency of axial oscillations ω z<br />

ω ϕ<br />

=<br />

ω z<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

R m<br />

R<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

−1<br />

ω r<br />

= ω z<br />

ω<br />

z<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

R m<br />

R<br />

k<br />

m / q<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

−<br />

2<br />

“Beauty will save the world.”- F.M. Dostoevsky<br />

5<br />

Trapping and quantitation?<br />

Only this frequency does not<br />

depend on energy, angle, etc.<br />

and is used for mass analysis


Detection of Ions in the Orbitrap analyzer<br />

• Frequency of axial oscillations of each ring induces an image current on<br />

split outer electrodes<br />

• Multiple ions in the Orbitrap generate a complex signal with frequencies<br />

determined using a Fourier Transformation<br />

Image current detection<br />

•All-mass detection<br />

•Noise equivalent to


Injection of Ions into the Orbitrap analyzer<br />

• A short ion packet of one m/z<br />

enters the field<br />

• Increasing voltage squeezes<br />

ions<br />

• “Excitation by injection” is<br />

initiated<br />

• Voltage stabilises and ion<br />

trajectories are also stabilized<br />

• Angular spreading forms<br />

ROTATING RINGs bouncing<br />

back and forth<br />

7<br />

I(t)<br />

“Built-in” excitation is<br />

independent of trapping,<br />

hence no limit on linearity


Proof of Principle: Orbitrap with Laser Ion Source<br />

Field compensator<br />

Ion source<br />

0.8 sec<br />

High voltage<br />

amplifier<br />

8 M record length<br />

10 Ms/s (borrowed<br />

LeCroy)<br />

0.8 s transient<br />

f =711 kHz,∆f=2.39 Hz<br />

f/∆f≈ 300000<br />

M/∆M=½ f/∆f ≈ 150000<br />

8<br />

A.A. Makarov, Anal. Chem., v.72 (2000), No.6, p.1156-1162.


Injection of Ions into the Orbitrap analyzer<br />

Lenses<br />

Deflector<br />

C-trap<br />

• Ions are stored and<br />

cooled in a curved RFonly<br />

quadrupole (Ctrap)<br />

• RF is ramped down,<br />

radial DC is applied<br />

• Ions are ejected along<br />

lines converging on the<br />

orbitrap entrance).<br />

• As ions enter orbitrap,<br />

they are picked up and<br />

squeezed by its<br />

electric field<br />

• All ions start simultaneously,<br />

but light<br />

ions enter Orbitrap<br />

analyzer earlier that<br />

heavy ions<br />

9<br />

I(t)<br />

Double trappingand<br />

quantitation?


Could a trapping device be used for quantitation?<br />

Quantitation requires: What a trap needs: Missing:<br />

•High linearity<br />

(signal/input)<br />

•Precise control over<br />

input-dependent effects<br />

(i.e. space-charge effects)<br />

•Linear detection system<br />

Automatic gain<br />

control (AGC),<br />

corrections<br />

•High discriminating<br />

power<br />

•High dynamic range<br />

•High resolution<br />

•High mass accuracy<br />

•High ion capacity<br />

•Concept of “charge budget”<br />

AGC<br />

Intelligent filling<br />

•Low limits of<br />

quantitation (LOQ)<br />

•High transmission<br />

•High sensitivity of<br />

detection<br />

•(UHP)LC-compatible<br />

speed of analysis<br />

10<br />

Help is needed!<br />

•Fast/ultra-fast acquisition<br />

Detectionindep.<br />

filling


Instrumentomics in action: Orbitrap hybrid No. 1<br />

Detect<br />

speed<br />

“Instrument<br />

polymerase”<br />

Speed<br />

of<br />

isolation<br />

Thermo Scientific LTQ Orbitrap LC-MS n<br />

11<br />

Image from:<br />

http://commons.wikimedia.org/w/index.php?title=File:DNA_Repair.jpg&oldid=45779464


LTQ-Orbitrap: All Technologies Come Together<br />

1. Ions are stored in the linear trap of LTQ<br />

2. …are axially ejected<br />

3. …and trapped in the C-trap and<br />

squeezed into a smaller cloud<br />

4. …then a voltage pulse across C-trap<br />

ejects ions towards the Orbitrap<br />

5. …where they are trapped and detected<br />

V<br />

Gas


LTQ Orbitrap for Absolute SILAC experiments<br />

Experiment requires:<br />

Resolving power &<br />

Mass accuracy &<br />

Dynamic Range &<br />

Parallel MS/MS &<br />

Scan Speed &<br />

Sensitivity<br />

Linearity of Quantitation of a Protein<br />

A<br />

Pure Form<br />

B<br />

Background of<br />

Total Cell Lysate<br />

S. Hanke, H. Besir, D. Oesterhelt, M. Mann<br />

J. Proteome Res. 2008, 7 (3), 1118–1130.<br />

0.5 fmol<br />

150 fmol<br />

45,000 fmol<br />

13


Orbitrap Elite instrument<br />

Dual trap<br />

up to 12<br />

scans/sec<br />

“Freedom of<br />

fragmentation”:<br />

CID, HCD, ETD<br />

ETD option<br />

Top-of-the-range<br />

RF-lens interface<br />

Compact high-field<br />

Orbitrap analyzer+ eFT:<br />

up to 8 scans/sec<br />

14


Reporter-based quantitation: MS n for gas-phase purification<br />

MS 1<br />

MS 2<br />

Full MS scan<br />

Precursor ion isolation at m/z p (z>1)<br />

CID in LT<br />

PTR in LT<br />

Isolation at m/z f >m/z p<br />

MS 3 Ting L, Rad R, Gygi SP, Haas W.<br />

HCD of m/z f<br />

(+ CID of precursor)<br />

Reporter ion quantitation<br />

15<br />

Nat Methods. 8 (11) (2011), p. 937-940.<br />

QuantMode<br />

Wenger CD, Lee MV, Hebert AS, McAlister<br />

GC, Phanstiel DH, Westphall MS, Coon JJ.<br />

Nat Methods. 8 (11) (2011), p. 933-935.


Instrumentomics in action:<br />

Orbitrap hybrid No.2<br />

Detect<br />

speed<br />

“Instrument<br />

polymerase”<br />

Speed<br />

of<br />

isolation<br />

16<br />

Thermo Scientific Q Exactive LC-MS/MS<br />

Image from:<br />

http://commons.wikimedia.org/w/index.php?title=File:DNA_Repair.jpg&oldid=45779464


Q Exactive: ultra-high resolution hybrid on bench-top<br />

• Quadrupole mass filter interfaced to a standard Orbitrap analyzer<br />

• Enhanced Fourier transform (eFT) for Orbitrap data processing<br />

• Parallel filling & detection<br />

• Possibility of multiple fills for spectrum multiplexing<br />

• Common with Orbitrap Velos Pro/Elite:<br />

• Predictive automatic gain control (pAGC: MS/MS on the basis of full MS scan)<br />

• S-lens for higher transmission (like in LTQ) with rugged optic<br />

• C-trap directly interfaced to HCD (like in LTQ Orbitrap Velos)<br />

17<br />

Michalski, A; Damoc, E; Hauschild, JP; Lange, O; Wieghaus, A; Makarov, A; Nagaraj, N; Cox, J;<br />

Mann, M; Horning, S. “Mass Spectrometry-based Proteomics Using Q Exactive, a High-performance<br />

Benchtop Quadrupole Orbitrap Mass Spectrometer”. Mol. Cell Proteomics 10, (2011)


Automatic gain control (AGC) in Orbitrap hybrids<br />

• Linear trap hybrids<br />

• Orbitrap Series: e.g. Elite, Velos Pro, ...<br />

• Two independent detectors (Linear Ion Trap + Orbitrap)<br />

• AGC for the Orbitrap is done via complementary detector<br />

• Inject time is accurately determined in all cases<br />

• Bench-Top systems<br />

• Exactive Series: Exactive, Q Exactive<br />

• Single detector (Orbitrap)<br />

• AGC is done via a prescan with reduced acquisition time<br />

(typ. 20ms)<br />

• Inject time is accurately determined in almost all cases<br />

An exception: The AGC-prescan contains mainly highly<br />

charged species and many peaks below the noise threshold<br />

18<br />

Poster: Th623<br />

Improved analysis of biopharmaceutical samples using an MS-only Orbitrap mass spectrometer<br />

O. Scheibner; E. Damoc; E. Denisov; J.-P. Hauschild; O. Lange; F. Czemper; A. Kholomeev, A. Makarov;<br />

A. Wieghaus; M. Bromirski


Example: HeLa run with incompletely digested proteins<br />

HeLa_LysC_noEM_1e6_1e5_mz350_2000_fm150HCD_1 #18610 RT: 61.67 AV: 1 NL: 4.62E4<br />

T: FTMS + p NSI Full ms [350.00-2000.00]<br />

Relative Abundance<br />

Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

19<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

497.00040<br />

R=36500<br />

z=?<br />

10 15 20 25 30 35 40 45 50 55 60 65 70<br />

Time (min)<br />

636.95868<br />

R=41204<br />

z=3<br />

19.43<br />

722.46362<br />

R=33202<br />

z=?<br />

19.47<br />

29.90<br />

29.59<br />

25.98 29.96<br />

28.32 31.79<br />

18.23<br />

22.59<br />

15.67 32.74<br />

13.23 37.11<br />

40.93<br />

34.07 42.77<br />

44.39 50.03<br />

Suspiciously empty end of elution…<br />

827.94812<br />

R=33700<br />

z=?<br />

921.32239<br />

R=31906<br />

z=6 1125.25989<br />

998.30304<br />

R=27506<br />

z=4<br />

R=26906<br />

z=6<br />

1294.64734<br />

R=23002<br />

z=?<br />

1350.11121<br />

R=25406<br />

z=5<br />

1381.47974<br />

R=24406<br />

z=4<br />

1549.78955<br />

R=21506<br />

z=6<br />

1697.28662<br />

R=14800<br />

z=?<br />

54.10 57.65 59.30 60.86 64.90 71.68<br />

55 60 65 70<br />

1824.30591<br />

R=16600<br />

z=?<br />

1977.32275<br />

R=19600<br />

z=?<br />

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000<br />

m/z<br />

HeLa_LysC_noEM_1e6_1e5_mz350_2000_fm150HCD_1 #19027-19394 RT: 65.00-68.00 AV: 293 NL: 4.71E3<br />

T: FTMS + p NSI Full ms [350.00-2000.00]<br />

946.55941<br />

R=33317<br />

z=3<br />

445.12314<br />

R=51912<br />

z=?<br />

615.96752<br />

R=32939<br />

z=1<br />

713.40758<br />

R=37751<br />

z=?<br />

912.85357<br />

R=34397<br />

z=3<br />

1034.52732<br />

R=31884<br />

z=3<br />

1101.56294<br />

R=30690<br />

z=5<br />

1318.66850<br />

R=19466<br />

z=1<br />

1481.74376<br />

R=16917<br />

z=1<br />

1 spectrum<br />

1542.77453<br />

R=26371<br />

z=2<br />

1693.91682<br />

R=20607<br />

z=?<br />

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000<br />

m/z<br />

54.33<br />

55.27<br />

57.65<br />

57.69<br />

1866.41480<br />

R=24006<br />

z=6<br />

59.56<br />

60.30<br />

60.86<br />

1976.16243<br />

R=14206<br />

z=1<br />

x25<br />

64.90 67.76<br />

71.68<br />

71.78<br />

NL: 1.82E9<br />

Base Peak F: ms<br />

MS<br />

HeLa_LysC_noEM<br />

_1e6_1e5_mz350_<br />

2000_fm150HCD_<br />

1<br />

Σ


C-Trap Charge Detection (CTCD)<br />

TIC CTCD : every 5-10 sec<br />

TIC CTCD /TIC Orbitrap is used to<br />

adjust the inject time, if needed<br />

TIC Orbitrap<br />

20<br />

I(t)


Removal of signal suppression by C-Trap Charge Detection<br />

Relative Abundance<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

p [ ]<br />

497.00040<br />

R=36500<br />

z=?<br />

636.95868<br />

R=41204<br />

z=3<br />

722.46362<br />

R=33202<br />

z=?<br />

827.94812<br />

R=33700<br />

z=?<br />

921.32239<br />

R=31906<br />

z=6 1125.25989<br />

998.30304<br />

R=27506<br />

z=4<br />

R=26906<br />

z=6<br />

1294.64734<br />

R=23002<br />

z=?<br />

1350.11121<br />

R=25406<br />

z=5<br />

1381.47974<br />

R=24406<br />

z=4<br />

1549.78955<br />

R=21506<br />

z=6<br />

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000<br />

m/z<br />

50.93<br />

54.33<br />

10 15 20 25 30 35 40 45 50 55 60 65 70<br />

55.27<br />

1697.28662<br />

R=14800<br />

z=?<br />

57.65<br />

57.69<br />

59.56<br />

NL=4.6e4<br />

1824.30591<br />

R=16600<br />

z=?<br />

60.30<br />

60.86<br />

1977.32275<br />

R=19600<br />

z=?<br />

64.90 67.76<br />

71.68<br />

CTCD<br />

OFF<br />

NL: 1.82E9<br />

Base Peak F: ms<br />

MS<br />

HeLa_LysC_noEM<br />

_1e6_1e5_mz350_<br />

2000_fm150HCD_<br />

1<br />

Relative Abundance<br />

4<br />

3<br />

2<br />

1<br />

53.96<br />

58.94<br />

54.38<br />

59.36<br />

62.14<br />

70.36<br />

70.33<br />

62.28 66.97<br />

64.10<br />

NL: 1.53E9<br />

Base Peak F: ms<br />

MS<br />

hela_lysc_wem_3e<br />

6_1e5_mz350_20<br />

00_fm150hcd_1<br />

0<br />

21<br />

10 15 20 25 30 35 40 45 50 55 60 65 70<br />

445.11856 536.16394<br />

Time (min)<br />

R=52407 R=47707<br />

z=1 z=1<br />

Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

674.55774<br />

R=39206<br />

z=5<br />

825.46289<br />

R=36104<br />

z=3<br />

950.84613<br />

R=32206<br />

z=3<br />

1056.53552<br />

R=31307<br />

z=2<br />

1191.24426<br />

R=28006<br />

z=3 1322.64648 1478.22644 1577.42529 1694.47510 1826.72253<br />

R=22204 R=20002 R=19902 R=18700 R=20702<br />

z=2<br />

z=? z=? z=? z=?<br />

NL=2.7e6<br />

1972.63916<br />

R=16902<br />

z=?<br />

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000<br />

m/z<br />

CTCD<br />

ON


Spectral acquisition speed with predictive AGC and<br />

parallel filling/detection<br />

AGC<br />

Orbitrap acquisition<br />

Orbitrap acquisition<br />

Orbitrap acquisition<br />

Inject to C-trap<br />

Inject to C-trap<br />

Inject to C-trap<br />

14<br />

12<br />

90%<br />

80%<br />

Scan speed does<br />

not change until fill<br />

time reaches 50 ms<br />

Resolving power<br />

setting: 17,500<br />

(fastest rate)<br />

At higher R, ion<br />

fill times and<br />

duty cycles<br />

increase further!<br />

Scans per second, Hz<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Duty cycle of ion filling, %<br />

Scan speed<br />

Duty cycle<br />

Up to 65% of the<br />

total time could be<br />

spent meanwhile on<br />

accumulating ions!<br />

0 20 40 60 80 100<br />

22<br />

Ion fill time, ms


Concept of “charge budget” in ion trap world<br />

• Any trapping device has a limit on the<br />

number of stored ions- “charge budget”<br />

• Typically, this budget is spent as a<br />

“blanket investment”, all peaks large and<br />

small accumulated for the same time. This<br />

limits dynamic range of analysis.<br />

• But the presence of a beam-type mass<br />

filter allows to break this rule and<br />

accumulate intelligently:<br />

• Peaks of interest only- in any desired<br />

combination<br />

• Enhancing certain m/z ranges by “focused<br />

investment”<br />

Q<br />

23


„Charge budget“ concept in targeted analysis<br />

• Sensitivity gain 5 – 10x with SIM<br />

mode<br />

• The gain will be higher in more<br />

complex matrices<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

195.0876<br />

N=248402.81<br />

195.0877<br />

N=20741.58<br />

Full MS<br />

S/N = 745<br />

IT= 0.245 ms<br />

SIM (10amu)<br />

For the same target:<br />

S/N = 5400<br />

IT= 1.321 ms<br />

NL: 1.94E8<br />

[150.00-2000.00]<br />

Lowest signal<br />

250330<br />

NL: 1.12E8<br />

[190.10-200.10]<br />

Lowest signal<br />

28240<br />

0<br />

Gain in sensitivity (7x)<br />

6000<br />

In Orbitrap instruments, SIM could<br />

become MRM without any<br />

noticeable time overhead!<br />

S/N (spectrum)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Caffeine<br />

24<br />

0<br />

195.082 195.084 195.086 195.088 195.09 195.092 195.094<br />

S/N (FMS) S/N (SIM10)


Alprazolam quantitation experiment<br />

50 ppt – 10 ppb<br />

250 fg oc - 50 pg oc<br />

Full MS in matrix<br />

6000000<br />

5000000<br />

10 ppt – 10 ppb<br />

50 fg oc - 50 pg oc<br />

SIM<br />

Area<br />

4000000<br />

3000000<br />

2000000<br />

1000000<br />

0<br />

0 2000 4000 6000 8000 10000<br />

fg/uL<br />

Orbitrap 25 mass spectrometer”. Proc. 59th Conf. Amer. Soc. Mass Spectrom., Denver June 5-9, 2011.<br />

Zoom 10 ppt- 100ppt<br />

120000<br />

110000<br />

100000<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

0 20 40 60 80<br />

fg/uL<br />

100 120<br />

See also: X. He; M. Kozak. “Evaluation of quantitative performance for testosterone analysis in plasma on a novel quadrupole<br />

Area


48 Protein Experiment on Q Exactive<br />

• 204 identical peptides were targeted by three approaches:<br />

• Full scan MS,<br />

• Targeted SIM (t-SIM),<br />

• Targeted MS/MS (t-MS2) = t-SIM+ HCD (practically no time overhead)<br />

• Number of peptides quantifiable at respective spike concentration<br />

Total peptides quantified<br />

250<br />

#peptides quantified<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1<br />

197 201 204 204 204<br />

164<br />

148<br />

137<br />

123<br />

106<br />

99<br />

35<br />

4 0<br />

0.5 5 12.5 25 >25<br />

Amount of spiked peptides [fmol/column]<br />

Full MS<br />

t-SIM<br />

t-MS2<br />

26<br />

t-MS2 method performs best


Minimum total number of ions needed for quantitation<br />

3000<br />

Min. number of ions for CV=10%<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Qq-Q<br />

Qq-Orbi<br />

Qq-TOF<br />

.<br />

.<br />

.<br />

1<br />

2<br />

3<br />

N<br />

27<br />

0<br />

1 2 3 4 5 6 7 8 9 10<br />

Number of transitions in MRM<br />

CV=10% on the sum of fragment ion<br />

intensities<br />

Assumptions:<br />

• The same Qq for all<br />

• Transmission: 50% for Q3,<br />

30% for Orbitrap, 4% for TOF<br />

• Equal intensities of fragments<br />

• No interferences in QqQ…


Utilization of “Charge budget concept” using spectrum<br />

multiplexing<br />

Standard<br />

operation mode<br />

vs<br />

Spectrum<br />

multiplexing<br />

5.0x10 8<br />

4.5x10 8<br />

4.0x10 8<br />

3.5x10 8<br />

Ion count (arb.)<br />

3.0x10 8<br />

2.5x10 8<br />

2.0x10 8<br />

1.5x10 8<br />

1.0x10 8<br />

m/z195.08770<br />

m/z262.60000<br />

m/z393.20000<br />

m/z524.26500<br />

m/z1622.00000<br />

C-Trap storage: No ion loss<br />

over a broad range of<br />

storage times!<br />

(St.Steel, fused silica, ceramics)<br />

5.0x10 7<br />

28<br />

0.0<br />

1 10 100 1000<br />

Inject time [ms]


Low Attomole LOD, 4 Orders of Linear Dynamic Range<br />

Heavy-labeled peptides of eicosanoid pathway enzymes in 250 ng CSF digest.<br />

1E+09<br />

1E+09<br />

Peak Area<br />

100000000<br />

160000000<br />

10000000<br />

140000000 1000000<br />

100000<br />

120000000<br />

10000<br />

100000000<br />

1000<br />

1 10 100 1000 10000 100000<br />

80000000<br />

60000000<br />

40000000<br />

y = 1372.1x + 278774<br />

R² = 0.9998<br />

VAHTVAYLGK<br />

Peak area<br />

450000000<br />

400000000<br />

350000000<br />

300000000<br />

250000000<br />

200000000<br />

150000000<br />

100000000<br />

100000000<br />

10000000<br />

1000000<br />

100000<br />

10000<br />

1000<br />

1 10 100 1000 10000 100000<br />

y = 3820.1x + 578349<br />

R² = 0.9999<br />

YFQGYAR<br />

20000000<br />

50000000<br />

0<br />

0 20000 40000 60000 80000 100000 120000<br />

Sample amount (amole)<br />

0<br />

0 20000 40000 60000 80000 100000 120000<br />

Sample amount (amole)<br />

Protein Peptide LOQ (amole) LOD (amole)<br />

PTGDS GPGEDFR 25 8<br />

PTGS2 QFQYQNR 25 8<br />

PTGS1 LVLTVR 10 3<br />

HPGDS STLPFGK 25 8<br />

PTGES VAHTVAYLGK 30 10<br />

PTGIS FLNPDGSEK 50 17<br />

29<br />

TBXA1 SVADSVLFLR 100 33<br />

ALOX15 YTLEINVR 250 83<br />

ALOX12 LWEIIAR 500 167<br />

LTCS4 YFQGYAR 10 3<br />

Data courtesy Y. Xuan, M. Scigelova, ThermoFisher Scientific- Workshop 5


Data Independent Acquisition: why multiplexing?<br />

Classical data-independent acquisition (DIA )<br />

30<br />

• Lacks the specificity of DDA<br />

• 40 scans in this example to cover 400 amu


Data Independent Acquisition: multiplexing improves<br />

signal-to- noise<br />

Multiplexed DIA (msx-DIA )<br />

12 Hz Acquisition Rate<br />

60 Precursors / second<br />

Broad<br />

isolation<br />

5-plex injection<br />

Adding 5 x 4 amu<br />

isolation windows<br />

1s<br />

64ms detection<br />

1 6 11 16 21 26 31 36 41 46 51 56 …<br />

2 7 12 17 22 27 32 37 42 47 52 57 …<br />

3 8 13 18 23 28 33 38 43 48 53 58 …<br />

4 9 14 19 24 29 34 39 44 49 54 59 …<br />

5 10 15 20 25 30 35 40 45 50 55 60 …<br />

• 20 scans in this example to cover 400 amu<br />

msx-SIM:<br />

“great<br />

equalizer”<br />

m/z<br />

m/z<br />

31<br />

ASMS Poster ThP571: „Multiplexed Data Independent Acquisition for Comparative Proteomics.“<br />

Jarrett D. Egertson 1 ; Andreas Kuehn 2 ; Gennifer Merrihew 1 ; Nicholas Bateman 3 ; Brendan MacLean 1 ; Ying S.<br />

Ting 1 ; Jesse D. Canterbury 4 ; Markus Kellmann 2 ; Vlad Zabrouskov 4 ; Christine Wu 3 ; Michael J. MacCoss 1<br />

1<br />

University of Washington, Seattle, WA; 2 Thermo Fisher Scientific, Bremen, Germany; 3 University of<br />

Pittsburgh, Pittsburgh PA; 4 Thermo Fisher Scientific, San Jose, CA


Current and future uses of spectrum multiplexing<br />

Multiplexed SIMs/MRMs in a single Orbitrap<br />

spectrum<br />

Multiple fragmentation conditions in a single<br />

Orbitrap spectrum (e.g. HCD energy scan)<br />

• Selection of multiple charge states of the same<br />

precursor, each fragmented at optimum<br />

conditions, will increase sequence coverage<br />

• Combining several fragmentation techniques<br />

for the same precursor<br />

• Segmenting mass range of full MS (inc. datadependent)<br />

• ……<br />

De-couple<br />

LC from MS,<br />

better LOQs<br />

↑ quality of<br />

spectra and<br />

ID rate<br />

without<br />

increase of<br />

data files<br />

↑ dynamic<br />

range<br />

32


Conclusion<br />

• Ultra-high resolution<br />

• MS/MS sensitivity<br />

• Quantitation<br />

• Throughput<br />

33<br />

• Advances in technology continue to make quantitative Orbitrap mass spectrometry<br />

increasingly more sensitive and accurate<br />

• For peptide quantitation, Orbitrap mass spectrometry is the best technical solution<br />

• Further improvements of quantitation will be directed along directions of:<br />

• Better selectivity of precursors<br />

• Improvements of ion population control and of corresponding corrections<br />

• Higher spectral acquisition speed<br />

• Further development of spectra multiplexing


Acknowledgements<br />

34<br />

S. Horning<br />

T. Moehring<br />

E. Denisov<br />

A. Kholomeev<br />

A. Wieghaus<br />

W. Balschun<br />

O. Lange<br />

O. Hengelbrock<br />

K. Strupat<br />

S. Moehring<br />

J. Griep-Raming<br />

U. Froehlich<br />

D. Nolting<br />

F. Czemper<br />

R. Malek<br />

A. Kuehn<br />

T. Rietpietsch<br />

R. Malek<br />

M. Kellmann<br />

M. Biel<br />

C. Henrich<br />

M. Mueller<br />

A.Venckus<br />

F. Grosse-Coosmann<br />

My Family:<br />

Anna Makarova<br />

Dasha Makarova<br />

Nikita Makarov<br />

My parents:<br />

Alla & Alexei Makarov<br />

I. Mylchreest<br />

A.Guiller<br />

E. Schroeder<br />

R.A.Purrmann<br />

R. Pesch<br />

J. Srega<br />

I. Jardine<br />

7 th European Framework Program: Health-F4-2008-<br />

201648/PROSPECTS<br />

M. Antonczak<br />

E. Hemenway<br />

M. Senko<br />

J. Syka<br />

J. Schwartz<br />

V. Zabrouskov<br />

T. Second<br />

T. Ziberna<br />

T. Second<br />

K.Scheffler<br />

F. Paffen<br />

B. Rose<br />

A. Boegehold<br />

J. Grote<br />

W. Huels<br />

A. Schumbera<br />

S. Simmel<br />

M. Zeller


vv<br />

Thank you !<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!