27.01.2014 Views

From Accurate Discovery to Targeted Quantitation - Peptide - IMP

From Accurate Discovery to Targeted Quantitation - Peptide - IMP

From Accurate Discovery to Targeted Quantitation - Peptide - IMP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>From</strong> <strong>Accurate</strong> <strong>Discovery</strong> <strong>to</strong><br />

<strong>Targeted</strong> <strong>Quantitation</strong> - <strong>Peptide</strong><br />

Identification and <strong>Quantitation</strong><br />

Based on HR/AM Data<br />

27-Aug-2012, <strong>IMP</strong>/IMBA Workshop, Vienna<br />

Dr. Yue Xuan, Dr. Michaela Scigelova<br />

Thermo Fisher Scientific, Bremen, Germany<br />

1<br />

The world leader in serving science


2<br />

Bremen Fac<strong>to</strong>ry


Outline<br />

• <strong>From</strong> <strong>Discovery</strong> <strong>to</strong> <strong>Targeted</strong> Quan: A Complete Solution<br />

• Introduction of Q Exactive<br />

• Introduction of Proteome Discoverer 1.3<br />

• Introduction of Pinpoint 1.3<br />

• Walking through <strong>Discovery</strong>-<strong>to</strong>-<strong>Quantitation</strong> with an example study<br />

• Q Exactive recommended TopN experiment for Proteome <strong>Discovery</strong> Study<br />

• Guide through P.D. database search<br />

• Guide through Pinpoint for generating inclusion mass list<br />

• Q Exactive recommended targeted SIM (tSIM) experiment for <strong>Quantitation</strong> Study<br />

• Guide through Pinpoint for au<strong>to</strong>matic data process<br />

• Other <strong>Quantitation</strong> Experiments on Q Exactive<br />

• Full scan only<br />

• (multiplexed) <strong>Targeted</strong> HCD MS2 experiment<br />

• Data Independent Acquisition (DIA) experiment<br />

3


<strong>From</strong> <strong>Discovery</strong> <strong>to</strong> <strong>Targeted</strong> Quan: A Complete Solution<br />

Biomarker <strong>Discovery</strong><br />

High-resolution, informationrich<br />

data, Lower-throughput<br />

Database<br />

search<br />

LC-MS/MS<br />

Differential<br />

Expression<br />

Analysis<br />

Patient Samples<br />

LC-MS/MS<br />

Intelligent SRM<br />

Q Exactive<br />

List of candidate<br />

biomarkers<br />

<strong>Targeted</strong> Assay<br />

Development For<br />

Clinical Research<br />

Fast, high-throughput<br />

Sensitive, specific,<br />

targeted<br />

Robust, reproducible<br />

Cost-effective<br />

Final list of<br />

target<br />

proteins<br />

Refine<br />

Target<br />

List<br />

Pinpoint Software<br />

Refined list<br />

of target<br />

proteins<br />

4


Q Exactive - <strong>Discovery</strong>-<strong>to</strong>-<strong>Quantitation</strong> Flowchart<br />

• Target peptide ID<br />

• High speed<br />

• dd acquisition<br />

• Quan info<br />

• Proteome Discoverer<br />

• SIEVE<br />

• Target list<br />

• Low-level targets tSIM, tHCD<br />

• Other targets full MS<br />

• Au<strong>to</strong>mated quantification<br />

• Pinpoint<br />

5


Q Exactive<br />

6<br />

The world leader in serving science


Q Exactive TM - Innovations and Features<br />

First Bench<strong>to</strong>p Quadrupole-Orbitrap Mass Spectrometer<br />

HCD/C-Trap Combo Cell<br />

QUADRUPOLE MASS FILTER<br />

Mass Range: 50 – 6000 amu<br />

Precursor Isolation: 0.4 – 10 amu<br />

ORBITRAP<br />

Resolution: 140,000<br />

Mass Accuracy: < 3 ppm<br />

ION SOURCE<br />

S-Lens<br />

7


Q Exactive: S-Lens Assembly<br />

• Stepped RF-level for different<br />

mass ranges<br />

• Number of S-lens levels set<br />

according <strong>to</strong> mass range set.<br />

• 2-3x lower inject times overall<br />

Improved ion transmission<br />

8


High Sensitivity with Quadrupole-based SIM Scan<br />

Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

195.0876<br />

N=248402.81<br />

195.0877<br />

N=20741.58<br />

Full MS<br />

S/N = 745<br />

SIM (10amu)<br />

S/N = 5400<br />

S/N (spectrum)<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Gain in sensitivity (7x)<br />

Caffeine<br />

195.082195.084195.086195.088 195.09 195.092195.094<br />

0<br />

S/N (FMS)<br />

S/N (SIM10)<br />

Sensitivity Gain: 5 – 10 folds<br />

9


Improved Resolution – Advanced Signal Processing<br />

• Increases resolution by 2X at the same transient length<br />

160000<br />

Resolution<br />

140000<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

Exactive<br />

Q-Exactive<br />

0 5 10 15<br />

Scan Speed [Hz]<br />

Resolution<br />

at m/z 200<br />

Resolution<br />

at m/z 400<br />

Max. scan<br />

speed (Hz)<br />

17,500 12,500 12<br />

35,000 25,000 7<br />

70,000 50,000 3<br />

140,000 100,000 1.5<br />

10


Spectrum Multiplexing Principle<br />

Parallel Filling and Detection<br />

Spectrum Multiplexing<br />

Demonstration of 10-fold spectrum multiplexing<br />

20110503 JPH TargetSIM MSX10_110503181236 #40 RT: 0.34 AV: 1 NL: 1.35E8<br />

T: FTMS + ESI SIM msx ms [193.09-197.09, 260.64-264.64, 522.26-526.26, 1120.00-1124.00, 1219.99-1223.99, 1319.98-1323.98, 1419.98-1423.98, 1619.9 ...<br />

195.0876<br />

R=157606<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Relative Abundance100<br />

262.6363<br />

R=133906<br />

524.2648<br />

R=93206<br />

1421.9758<br />

R=53006<br />

1621.9656<br />

R=47806<br />

1221.9862<br />

R=58406 1821.9543<br />

R=42104<br />

200 400 600 800 1000 1200 1400 1600 1800 2000<br />

m/z<br />

11<br />

See poster MP103 J.-P.Hauschild et al<br />

Multiple C-Trap Fills as a Tool for Massive Parallelization of Orbitrap Mass<br />

Spectrometry- a new Concept for <strong>Targeted</strong> Mass Analysis


Animation about Q Exactive<br />

12


http://plane<strong>to</strong>rbitrap.com/<br />

13


New EASY-Spray: Robust and Reproducible<br />

• Plug-and-spray simplicity<br />

• With state-of-the-art performance<br />

• Amazing peak capacity with coiled-up long<br />

columns<br />

• Outstanding reproducibility<br />

• Razor sharp peaks using nanoViper<br />

connections and zero dead-volume unions<br />

• Integrated Design<br />

• Complexity made simple<br />

• Robust performance <strong>to</strong> 1000 bar<br />

• Reliable spray with precision positioned glass<br />

emitters<br />

• Maximum reliability with integrated heating<br />

More details – Tuesday workshop<br />

6. Easy Nano Spray Source for Increased<br />

Performance nanoLC-MS with Plug-and-<br />

Spray Configuration<br />

14


<strong>From</strong> <strong>Discovery</strong> <strong>to</strong> targeted Quan<br />

15<br />

The world leader in serving science


Experimental Overview<br />

16


<strong>Discovery</strong><br />

• Strategies for discovery<br />

• Selecting a pathway<br />

• Finding differences<br />

• Spectral counting<br />

• Labeled quantitation<br />

− Precursor based: SILAC, di-methylation<br />

− Reporter based: TMT, iTRAQ<br />

• Label free<br />

17


Select a workflow<br />

18


Analyze data<br />

finding candidate proteins<br />

To <strong>Targeted</strong> Quantitiation<br />

19


20<br />

Proteome Discoverer 1.3


New features in Proteome Discoverer 1.3<br />

This release expands the workflow-based system for “deep sequencing”<br />

applications.<br />

1. Deep spectral data mining using Percola<strong>to</strong>r<br />

2. Confident site localization for phosphopeptides with phosphoRS<br />

3. Improved protein and peptide grouping<br />

4. Biological annotation<br />

5. 64 bit support (Windows XP and Windows 7)<br />

6. Graphics<br />

1. Proportionally scaling Venn Diagram<br />

2. Volcano plots<br />

3. Colorful pie charts<br />

New purchase includes 3 years maintenance, while upgrades from PD 1.2 and<br />

earlier get 1 year of maintenance for free<br />

• All core software upgrades free during maintenance period<br />

• Up-<strong>to</strong>-date biological annotation through ProteinCenter access<br />

21


Confidence: Deep data mining using Percola<strong>to</strong>r<br />

• Percola<strong>to</strong>r uses >30 features of a<br />

peptide spectral match (PSM) <strong>to</strong><br />

distinguish true positives from random<br />

matches<br />

• Result: more peptides and proteins<br />

identified with high confidence (1% FDR)<br />

• CID, HCD: >30% increase in PSM’s<br />

• ETD: Up <strong>to</strong> 80% increase in PSM’s<br />

ASMS 2011 Poster: MP25<br />

Breaking the 2000 proteins barrier in a<br />

standard LC run using a new bench<strong>to</strong>p<br />

Orbitrap instrument and multiple search<br />

engines. (download @ : http://portal.thermobrims.com)<br />

22<br />

Käll et al, Nature Methods 4:923-925 (2007)


PTM Localisation: Phospho-analysis Using PhosphoRS<br />

• Developed in collaboration with Karl Mechtler’s lab at <strong>IMP</strong> Vienna<br />

• Phosphorylation site confidence determination<br />

• is it phosphorylated?<br />

• site of phosphorylation?<br />

New protein identification details<br />

view compares identified PTM’s<br />

<strong>to</strong> those annotated by UniProt<br />

23


Annotation: Providing Biological Context Using ProteinCenter<br />

• 3 year support subscription includes ProteinCenter annotation node:<br />

• GO, protein family (Pfam), PTM, and ProteinCard annotation is au<strong>to</strong>matically<br />

retrieved and s<strong>to</strong>red in the PD result files<br />

• All can be filtered<br />

• Displayed in the PD Viewer<br />

• Previous results can be annotated or re-annotated<br />

Molecular Function Cellular Component Biological Process<br />

ASMS 2011 Poster: ThP22 401<br />

“Integration of a central protein reposi<strong>to</strong>ry in<strong>to</strong> a standard data processing application<br />

for mining proteomics data” (download @ : http://portal.thermo-brims.com )<br />

24


Example 1: Intelligent data analysis and reduction<br />

Complex data sets generated with hybrid instruments require optimized search<br />

strategies that are easily enabled in PD with cus<strong>to</strong>mized data analysis workflows<br />

CID, PQD,<br />

MSA & ETD<br />

HCD<br />

Workflow for Comprehensive Identification<br />

Using Multiple MS/MS Modes<br />

ETD<br />

HCD<br />

• All MS/MS modes<br />

supported<br />

• 3 search engines<br />

• Powerful workflow<br />

edi<strong>to</strong>r<br />

• Au<strong>to</strong>matic FDR<br />

calculation for<br />

measurement of peptide<br />

ID confidence<br />

25


Example 2: Robust quantification results<br />

Number of raw files 72<br />

Total file size (GB) 18.5<br />

Total number of MS2 spectra 893636<br />

• Excellent<br />

variability!<br />

• Summary of 3 replicates of 24 fractions of a<br />

HeLa experiment (raw files provided with<br />

the MaxQuant Software):<br />

• > 190,000 peptides at 1% FDR<br />

• 3560 protein groups; >12,000 proteins<br />

• 96.5% of peptides quantified<br />

26


Example 3: Graphical validation of results<br />

27


Example 4: Analysis of very large datasets<br />

Pre-filter large data sets for faster viewing of results<br />

Filter data before opening<br />

28


Example 5: Increased productivity through au<strong>to</strong>mation<br />

•Schedule Processing in<br />

Xcalibur<br />

Different workflows<br />

Exp 1, 5-8 Exp 2-4<br />

CID PQD ETD<br />

HCD<br />

LTQ Velos &<br />

LTQ Orbitrap<br />

Velos<br />

Daemon<br />

Au<strong>to</strong>mation<br />

•Transfer raw<br />

files and<br />

parameters <strong>to</strong><br />

data processing<br />

PC<br />

• Maximize workflow flexibility and labora<strong>to</strong>ry productivity.<br />

• Match scheduled data processing with high throughput data acquisition.<br />

• Acquire and process 24/7<br />

29


Example 6: Collaborate easily and share results quickly<br />

Viewer<br />

VIEWER is free!<br />

Viewer<br />

• Send files from any PC or instrument, process, and view results on any PC<br />

• Process batches of data from any computer<br />

• Analyze data as individual files or in single MudPIT file<br />

• Simplified data processing on centralized analysis computer<br />

• Handles larger, more data rich files resulting from faster scanning instruments<br />

30


Example 7: Publish results quickly and effortlessly<br />

• After extracting the content of the zip archive the index.html<br />

file can be opened in any web browser<br />

31


Thermo Scientific Proteomics Software Portal<br />

For more information about any of our Thermo Scientific Proteomics software<br />

products, please visit our new web portal, at: http://portal.thermo-brims.com/<br />

32


PinPoint<br />

33<br />

The world leader in serving science


Pinpoint – Main Features<br />

• Software package supporting targeted protein quantitation<br />

• Direct integration between discovery <strong>to</strong> quantitation through<br />

import of Sieve, Proteome Discoverer, and ProteinCenter<br />

output<br />

• Verification strategies <strong>to</strong> support all quan/qual applications<br />

• Robust retention time prediction approaches based on<br />

hydrophobicity fac<strong>to</strong>rs and peptide retention time calibration<br />

kit (PRTC)<br />

• Au<strong>to</strong>mated method refinement, also across various MS<br />

platforms<br />

• ROC analysis<br />

34


Pinpoint - Look and Feel<br />

Target Method Building<br />

Data Analysis/Verification<br />

35


http://portal.thermo-brims.com/<br />

36


Walking through <strong>Discovery</strong> – <strong>to</strong> -<br />

<strong>Quantitation</strong> based on HR/AM<br />

Data<br />

37<br />

The world leader in serving science


Protein Kinases and Inhibi<strong>to</strong>r Profiling<br />

Reasons <strong>to</strong> study protein kinase/drug interactions:<br />

•Protein kinases are commonly mutated or misregulated in<br />

cancer (e.g. Bcr-Abl in leukemia).<br />

•Numerous kinase inhibi<strong>to</strong>rs are approved drugs for the<br />

treatment of specific cancers with most binding <strong>to</strong> conserved<br />

ATP binding domain (e.g. Gleevec).<br />

•Need <strong>to</strong> evaluate kinase inhibi<strong>to</strong>r IC 50 and identify off-targets<br />

Difficulties <strong>to</strong> contend with:<br />

•Over 500 protein kinases are present in the human genome.<br />

•Large dynamic range for endogenous protein kinase levels in a<br />

complex matrix (whole cell lysate).<br />

•Enzymatic digestion results in peptides with varying<br />

sequences, sizes, and missed cleavages making it difficult for<br />

enrichment and targeted LC-MS strategies.<br />

38


Desthiobiotin-ATP and -ADP Active Site Probes<br />

Desthiobiotin-ATP<br />

NH 2<br />

O<br />

H<br />

N<br />

N<br />

H<br />

O<br />

O<br />

O<br />

P<br />

O -<br />

O<br />

O<br />

P<br />

O -<br />

O<br />

O<br />

P<br />

O -<br />

O<br />

N<br />

N<br />

O<br />

OH OH<br />

N<br />

N<br />

Desthiobiotin-ADP<br />

NH 2<br />

O<br />

H<br />

N<br />

N<br />

H<br />

O<br />

O<br />

O<br />

P<br />

O -<br />

O<br />

O<br />

P<br />

O -<br />

O<br />

OH<br />

O<br />

N<br />

N<br />

OH<br />

N<br />

N<br />

Tag<br />

Reactive<br />

Group<br />

Selectivity<br />

Group<br />

Patricelli, M. P., et al. Functional Interrogation of the Kinome using Nucleotide Acyl Phophates Biochem. 2007, 46(2), 350-8<br />

39


Study: <strong>Targeted</strong> Kinase Inhibi<strong>to</strong>r Profiling<br />

40


Q Exactive - <strong>Discovery</strong>-<strong>to</strong>-<strong>Quantitation</strong> Flowchart<br />

• ProteinID / <strong>Peptide</strong> ID<br />

• High speed<br />

• dd acquisition<br />

41


Methodolgy on Q Exactive for <strong>Discovery</strong> Proteomics<br />

- DDA + 10Hz HCD Scan<br />

• Parallel Filling and Detection<br />

• Fast Orbitrap Scanning<br />

• pAGC<br />

10 HR/AM HCD scans in 1s<br />

256ms<br />

64ms<br />

42


Typical Shotgun Proteomics on Q Exactive<br />

High Load<br />

>150ng on column<br />

Low Load<br />

< 150ng on column<br />

43


1 Full MS +10 HR/AM HCD Scans in One Second<br />

Ecoli_50min_newcolumn_Top10_15cm_reje...<br />

2/17/2011 3:39:42 PM<br />

RT: 15.8279 - 51.4773<br />

Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

16.0095<br />

17.9024<br />

25.9001<br />

27.4920<br />

22.3863 25.7411<br />

27.1739<br />

30.4806<br />

33.0433<br />

30.9771<br />

35.5786<br />

39.1805<br />

38.7325<br />

20.3567<br />

23.9072 28.4175 49.3818<br />

18.7207 34.8784<br />

37.5942<br />

41.1998<br />

21.9561<br />

25.4406 43.4203<br />

34.7425 41.0942<br />

43.5925<br />

46.5441<br />

49.1418<br />

41.5779<br />

41.6221<br />

47.5177<br />

49.6742<br />

0<br />

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50<br />

Time (min)<br />

RT: 32.2438 - 32.2701<br />

Relative Abundance<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.3<br />

32.2447<br />

32.2464 32.2645<br />

∆ = 0.0181 min = 1.086 sec<br />

32.2512 32.2525 32.2538 32.2551 32.2564 32.2577 32.2590 32.2603 32.2616 32.2629 32.2694<br />

1 2 3 4 5 6 7 8 9 10<br />

0.2<br />

0.1<br />

0.0<br />

32.244 32.246 32.248 32.250 32.252 32.254 32.256 32.258 32.260 32.262 32.264 32.266 32.268 32.270<br />

Time (min)<br />

Ecoli_50min_newcolumn_Top10_15cm_reject_1 #12365 RT: 32.25 AV: 1 NL: 1.58E8<br />

T: FTMS + p NSI Full ms [300.00-2000.00]<br />

x2<br />

536.7949<br />

z=2<br />

100<br />

x5<br />

Relative Abundance<br />

80<br />

60<br />

40<br />

20<br />

0<br />

4<br />

329.2184<br />

z=2<br />

382.9046<br />

z=3<br />

392.7555<br />

z=2<br />

6<br />

419.2133<br />

z=3<br />

5<br />

445.7585<br />

z=2<br />

484.2459<br />

z=3<br />

505.2733<br />

z=2<br />

8<br />

575.8452<br />

z=2<br />

3<br />

551.8184<br />

z=2<br />

10<br />

581.9907<br />

z=3<br />

630.3730<br />

z=2<br />

664.3292<br />

z=2<br />

9<br />

700.3623<br />

z=2<br />

711.3712<br />

z=3<br />

7<br />

725.8647<br />

z=2<br />

1<br />

350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150<br />

m/z<br />

784.5037<br />

z=?<br />

835.3868<br />

z=2<br />

871.9796<br />

z=2<br />

902.8879<br />

z=2<br />

950.9638<br />

z=2<br />

2<br />

1008.5358<br />

z=1<br />

1072.5819<br />

z=1<br />

1096.3795<br />

z=?<br />

1150.6826<br />

z=1<br />

1182.6012<br />

z=?<br />

44


Guide through P.D. database search<br />

1, Set up a workflow<br />

45


Guide through P.D. database search<br />

2, Open a .raw data file<br />

46


Guide through P.D. database search<br />

3, Set the search parameters (example via Mascot)<br />

47


Guide through P.D. database search<br />

4, Submit the search<br />

48


Guide through P.D. database search<br />

5, P.D. result .msf file, select “Desthiobiotin” modification<br />

49


Q Exactive - <strong>Discovery</strong>-<strong>to</strong>-<strong>Quantitation</strong> Flowchart<br />

• Target list<br />

• tSIM, tHCD<br />

50


Guide through Pinpoint for generating inclusion mass list<br />

1, Add Protein (<strong>From</strong> Spectral Library)<br />

51


Guide through Pinpoint for generating inclusion mass list<br />

2, Add/Edit Modifications<br />

SIM Quan on Precursor<br />

52


Guide through Pinpoint for generating inclusion mass list<br />

3, export inclusion mass list<br />

53


Q Exactive - <strong>Discovery</strong>-<strong>to</strong>-<strong>Quantitation</strong> Flowchart<br />

• <strong>Targeted</strong> experiments on Q Exactive<br />

• tSIM, tHCD<br />

• Au<strong>to</strong>mated quantification<br />

• Pinpoint<br />

54


Profiling Staurosporine Kinase Inhibition in A549 Cells<br />

Multiplex SIM (msxSIM) <strong>Targeted</strong> Quantification Workflow<br />

0.00 µM<br />

XICs<br />

IC50 Curves<br />

0.01 µM<br />

0.10 µM<br />

0.30 µM<br />

1.00µM<br />

3.00 µM<br />

10.00 µM<br />

The cell lysate was incubated<br />

with different levels of kinase<br />

inhibi<strong>to</strong>r, Kinase- enriched,<br />

tryptic digested and analyzed<br />

using targeted msxSIM.<br />

Data was processed and<br />

statistics calculated by<br />

Pinpoint 1.2.<br />

IC50 curve for each<br />

kinase was generated<br />

based on the relative<br />

quantification results.<br />

*Thermo Scientific Pierce ActivX Probes and Enzyme Enrichment Kits<br />

55


<strong>Quantitation</strong> on Precursor ion – targeted multiplex SIM<br />

1. Selection of targeted precursor ion in the quadrupole<br />

2. Accumulation in C-trap<br />

• In multiplexing mode, step 1 and 2 are repeated <strong>to</strong> accumulate multiple precursors<br />

before orbitrap measurement.<br />

3. Transfer of ions <strong>to</strong> orbitrap for detection. In multiplexing mode, multiple<br />

precursors isolated separately are measured <strong>to</strong>gether.<br />

SIM → High S/N ratio<br />

Multiplexing SIM → High Speed<br />

56


<strong>Quantitation</strong> on Precursor ion – targeted multiplex SIM<br />

R: 35K R: 70K<br />

R: 140K<br />

492.2634<br />

492.2665<br />

492.2495<br />

492.2511<br />

492.2661<br />

30ppm<br />

m/z<br />

High Resolution → Selectivity<br />

<strong>Accurate</strong> Mass → Accuracy<br />

57


<strong>Targeted</strong> SIM (tSIM) Experiments on Q Exactive<br />

inclusion list from Pinpoint can be directly imported in<strong>to</strong> Method edi<strong>to</strong>r!<br />

58


<strong>Targeted</strong> SIM (tSIM) Experiments on Q Exactive<br />

Example is multiplexed tSIM<br />

59


Examples of <strong>Targeted</strong> Kinase <strong>Peptide</strong>s<br />

Peak definition and selectivity<br />

RT: 43.39 - 45.66<br />

Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

43.41<br />

709.1611<br />

43.66<br />

835.4882<br />

43.66<br />

843.4794<br />

44.22<br />

835.4895<br />

44.20<br />

44.27<br />

835.4896<br />

44.32<br />

835.4898<br />

835.4894 44.36<br />

835.4896<br />

44.15<br />

835.4898 44.41<br />

44.10<br />

835.4895<br />

44.62<br />

835.4901<br />

835.4901<br />

44.10<br />

843.4764<br />

44.34<br />

709.1624<br />

44.29<br />

709.1623<br />

44.39<br />

709.1622<br />

44.46<br />

709.1624<br />

DTVTSELAAVkIVK ( Q12851 GCK)<br />

45.03<br />

835.4913<br />

NISHLDLkPQNILLSSLEKPHLK (Q6PHR2 ULK3)<br />

44.48<br />

709.1622<br />

44.53<br />

709.1624<br />

44.25<br />

709.1622 44.60<br />

709.1623 44.81<br />

709.1618<br />

44.20<br />

843.4753<br />

44.79<br />

843.4759<br />

44.72<br />

843.4758<br />

44.86<br />

843.4756<br />

44.69<br />

843.4758 44.88<br />

843.4756<br />

44.65<br />

843.4756<br />

45.16<br />

709.1624<br />

44.93<br />

843.4756 45.16<br />

843.4761<br />

43.5 44.0 44.5 45.0 45.5<br />

Time (min)<br />

DLkPSNIFLVDTK (P19525 PKR)<br />

45.64<br />

843.4785<br />

Resolution> 70K is required<br />

60


Guide through Pinpoint for au<strong>to</strong>matic data process<br />

1, import the .raw data files and group them<br />

61


Guide through Pinpoint for au<strong>to</strong>matic data process<br />

2, au<strong>to</strong>matic data processing<br />

62


Inhibi<strong>to</strong>r Titration for IC50 Value Determination<br />

GCK (Q12851)<br />

DTVTSELAAVkIVK<br />

835.4927 GCK(K1)<br />

709.1641 ULK3(K2)<br />

843.4797 PKR(K2)<br />

44 min 45 min<br />

GCK<br />

ULK3<br />

PKR<br />

100<br />

ULK3 (Q6PHR2)<br />

NISHLDLkPQNILLSSLEKPHLK<br />

% Kinase Inhibition<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.01 0.1 1 10<br />

Staurosporine, uM<br />

PKR (P19525)<br />

DLkPSNIFLVDTK<br />

Kinase<br />

IC 50 (µM)<br />

GCK(K1) 0.0062<br />

0 0.1 0.3 1 3 10<br />

µMStaurosporine<br />

ULK3(K2) 0.035<br />

63<br />

PKR(K2) 4.21


<strong>Targeted</strong> msxSIM and Western Blot Results Agree<br />

100<br />

% Kinase Inhibition<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

0.01 0.1 1 10<br />

Staurosporine, uM<br />

CDK5<br />

AurA<br />

RSK2(1)<br />

Erk1/2<br />

• Available result from Western blot<br />

for two of the kinases, Erk1/2 and<br />

Rsk2, agrees very well with the<br />

targeted msxSIM result.<br />

• Staurosporine has nearly no<br />

inhibition <strong>to</strong> Erk1/2.<br />

• At 0.1 µM, the inhibition <strong>to</strong> Rsk2<br />

was at least 70% inhibited.<br />

Rsk2<br />

Erk1/2<br />

0 0.01 0.03 0.1 0.3 1 3 10 µM Staurosporine<br />

64


Other <strong>Quantitation</strong><br />

Experiments on Q Exactive<br />

Yue Xuan<br />

65<br />

The world leader in serving science


Other <strong>Quantitation</strong> Experiments on Q Exactive<br />

• Full scan only<br />

• (multiplexed) <strong>Targeted</strong> HCD MS2 experiment<br />

• Data Independent Acquisition (DIA) experiment<br />

66


1, Full scan only (HR/AM, <strong>Quantitation</strong> on Precursor<br />

ion)<br />

• Pros<br />

• For middle <strong>to</strong> high<br />

concentrate<br />

analytes<br />

• Very easy <strong>to</strong> set up<br />

• Can moni<strong>to</strong>ring the<br />

entire<br />

chroma<strong>to</strong>graphic<br />

eluting peaks<br />

• Cons<br />

• For low abundant<br />

peptides with high<br />

complex matrix is<br />

not easy<br />

67


2, <strong>Quantitation</strong> on Product ion - targeted HCD (SRM-<br />

Like)<br />

1. Selection of targeted precursor ion in the quadrupole.<br />

2. Fragmentation in collision cell.<br />

3. Accumulation of fragment ions.<br />

4. Transfer of fragment ions <strong>to</strong> Orbitrap mass analyzer for detection.<br />

Multiplexed<br />

HCD MS2<br />

tHCD<br />

→ Sensitivity<br />

is experimental<br />

and Confirmation<br />

available!<br />

Pinpoint 1.3 is able <strong>to</strong> process the data!<br />

High Resolution → Selectivity<br />

<strong>Accurate</strong> Mass → Accuracy<br />

68


Example of setting up msx tHCD on Q Exactive<br />

69


Highly Selective, Fast and Sensitive<br />

10 amole of heavy peptides in 250 ng human CSF digest<br />

RT: 14.97 - 21.09<br />

Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

15.72<br />

15.67<br />

15.74<br />

15.82<br />

15.85<br />

15.88<br />

15.96<br />

GPGEDFR<br />

394.193-633.3051<br />

Relative Abundance<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

VAHTVAYLGK<br />

355.877-324.2350<br />

18.62<br />

18.67<br />

18.60<br />

18.57<br />

18.69<br />

18.55<br />

Relative Abundance<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

YFQGYAR<br />

457.732-594.2989<br />

20.61<br />

20.58<br />

20.57<br />

20.54<br />

20.64<br />

20.65<br />

20.67<br />

0<br />

15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0<br />

Time (min)<br />

70


Low At<strong>to</strong>mole LOD, 4 Orders of Linear Dynamic<br />

Range<br />

Heavy-labeled peptides of<br />

eicosanoid pathway enzymes in 250 ng CSF digest.<br />

1E+09<br />

100000000<br />

160000000<br />

10000000<br />

140000000 1000000<br />

450000000<br />

400000000<br />

1E+09<br />

100000000<br />

10000000<br />

1000000<br />

Peak Area<br />

120000000<br />

100000000<br />

80000000<br />

60000000<br />

40000000<br />

100000<br />

10000<br />

1000<br />

1 10 100 1000 10000 100000<br />

y = 1372.1x + 278774<br />

R² = 0.9998<br />

VAHTVAYLGK<br />

Peak area<br />

350000000<br />

300000000<br />

250000000<br />

200000000<br />

150000000<br />

100000000<br />

100000<br />

10000<br />

1000<br />

1 10 100 1000 10000 100000<br />

y = 3820.1x + 578349<br />

R² = 0.9999<br />

YFQGYAR<br />

20000000<br />

50000000<br />

0<br />

0 20000 40000 60000 80000 100000 120000<br />

Sample amount (amole)<br />

0<br />

0 20000 40000 60000 80000 100000 120000<br />

Sample amount (amole)<br />

Protein <strong>Peptide</strong> LOQ (amole) LOD (amole)<br />

PTGDS GPGEDFR 25 8<br />

PTGS2 QFQYQNR 25 8<br />

PTGS1 LVLTVR 10 3<br />

HPGDS STLPFGK 25 8<br />

PTGES VAHTVAYLGK 30 10<br />

PTGIS FLNPDGSEK 50 17<br />

71<br />

TBXA1 SVADSVLFLR 100 33<br />

ALOX15 YTLEINVR 250 83<br />

ALOX12 LWEIIAR 500 167<br />

LTCS4 YFQGYAR 10 3


3, Data Independent Acquisition (DIA) experiment<br />

Multiplexed Data Independent<br />

Acquisition (DIA) for Comparative<br />

Proteomics<br />

• Jarrett D. Egertson1; Andreas Kuehn2; Gennifer Merrihew1; Nicholas Bateman3; Brendan MacLean1;<br />

Ying S. Ting1; Jesse D. Canterbury4; Markus Kellmann2; Vlad Zabrouskov4; Christine Wu3; Michael J.<br />

MacCoss1<br />

• 1University of Washing<strong>to</strong>n, Seattle, WA; 2Thermo Fisher Scientific, Bremen, Germany; 3University of<br />

Pittsburgh, Pittsburgh PA; 4Thermo Fisher Scientific, San Jose, CA<br />

72<br />

Poster: ThP26


Classical Data independent approach<br />

DIA lacks the specificity of DDA<br />

73


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

74


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

75


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

76


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

77


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

Scan 3<br />

78


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

Scan 3<br />

. . .<br />

Scan 20<br />

79


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

Scan 3<br />

. . .<br />

Scan 20<br />

80


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

Scan 3<br />

. . .<br />

Scan 20<br />

81


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

Scan 3<br />

. . .<br />

Scan 20<br />

Scan 21<br />

82


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

Scan 3<br />

. . .<br />

Scan 20<br />

Scan 21<br />

83


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

Scan 3<br />

. . .<br />

Scan 20<br />

Scan 21<br />

84


Multiplexed DIA<br />

100 4 m/z-wide windows = 400 m/z<br />

500 m/z<br />

900<br />

Scan 1<br />

Scan 2<br />

Scan 3<br />

. . .<br />

Scan 20<br />

Scan 21<br />

85


Demultiplexing<br />

Intensity<br />

m/z<br />

86


Demultiplexing<br />

Intensity<br />

87<br />

m/z


88<br />

Demultiplexing


Sensitivity Similar <strong>to</strong> MS1 Quantification<br />

Bovine proteins spiked in<strong>to</strong> S. cerevisiae lysate<br />

(soluble fraction)<br />

89


DIA experiment updates<br />

• DIA data can be multiplexed by mixing precursors prior <strong>to</strong><br />

fragment ion analysis<br />

• MSX de-multiplexing and isolation list export will be included<br />

in Skyline v1.3 (http://skyline.maccosslab.org)<br />

• Plan <strong>to</strong> implement DIA in<strong>to</strong> next instrument SW<br />

90


Summery<br />

• Thermo Fisher Complete Solution from ProteinID <strong>to</strong> <strong>Peptide</strong> Quan<br />

• Q Exactive<br />

• Proteome Discoverer 1.3<br />

• Pinpoint 1.3<br />

• Walking through <strong>Discovery</strong>-<strong>to</strong>-<strong>Quantitation</strong> with an example study<br />

• Q Exactive recommended TopN experiment for Proteome <strong>Discovery</strong> Study<br />

• Guide through P.D. database search<br />

• Guide through Pinpoint for generating inclusion mass list<br />

• Q Exactive recommended targeted SIM experiment for targeted <strong>Quantitation</strong> Study<br />

• Guide through Pinpoint for au<strong>to</strong>matic data process<br />

• Other <strong>Quantitation</strong> Experiments on Q Exactive<br />

• Full scan only<br />

• (mulitplexed) <strong>Targeted</strong> HCD MS2 experiment<br />

• Data Independent Acquisition (DIA) experiment<br />

91


Acknowledgements<br />

• Scott Peterman (Kinase experiments and Pinpoint part)<br />

• Rosa Viner (Kinase experiments)<br />

• Ryan Bomgarden (ActivX samples and data acquisition)<br />

• Bernard Delarghe (Proteome Discoverer slides)<br />

• Markus Kellmann (Q Exactive and DIA slides)<br />

• Claire Dauly (Example files)<br />

• Zhiqi Hao (tSIM and tHCD slides)<br />

92

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!