27.01.2014 Views

Stein's method, Malliavin calculus and infinite-dimensional Gaussian

Stein's method, Malliavin calculus and infinite-dimensional Gaussian

Stein's method, Malliavin calculus and infinite-dimensional Gaussian

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where, for every v = (v 1 ; :::; v n ) 2 R n ,<br />

Z "<br />

1<br />

nX<br />

1<br />

S(v) =<br />

0 2 p t E @g<br />

(v) @g ( p tv + p #<br />

1 tV ) dt; (9.6)<br />

@v<br />

i=1 i @v i<br />

so that, for instance, for N N (0; 1) <strong>and</strong> by using (8.7), Lemma 8.1 (iii), (8.5) <strong>and</strong> Cauchy-<br />

Schwarz inequality,<br />

d T V (Y; Z) 2E[(S(V ) 1) 2 ] 1=2 : (9.7)<br />

We shall prove that (9.5) is a very special case of the …rst equality in (7.30), <strong>and</strong> therefore that<br />

(9.7) is a special case of (9.3). Observe …rst that, without loss of generality, we can assume that<br />

V i = X(h i ), where X is an isonormal process over some Hilbert space of the type H = L 2 (Z; Z; )<br />

<strong>and</strong> fh 1 ; :::; h n g is an orthonormal system in H. Since Y = g(V 1 ; : : : ; V n ), according to (7.3)<br />

we have that D a Y = P n @g<br />

i=1 @x i<br />

(V )h i (a). On the other h<strong>and</strong>, since Y is centered <strong>and</strong> square<br />

integrable, it admits a chaotic representation of the form Y = P q1 I q( q ). This implies in<br />

particular that D a Y = P 1<br />

q=1 qI q 1( q (a; )). Moreover, one has that L 1 Y = P q1 1 q I q( q ),<br />

so that D a L 1 Y = P q1 I q 1( q (a; )). Now, let T z , z 0, denote the Ornstein-Uhlenbeck<br />

semigroup introduced in (7.21), whose action on r<strong>and</strong>om variables F 2 L 2 ( (X)) is given by<br />

T z (F ) = P q0 e qz J q (F ), where J q (F ) denotes the projection of F on the qth Wiener chaos.<br />

We can write<br />

Z 1<br />

0<br />

1<br />

2 p t T ln(1= p t) (D aY )dt =<br />

Z 1<br />

0<br />

e z T z (D a Y )dz = X q1<br />

1<br />

q J q 1(D a Y )<br />

= X q1<br />

I q 1 ( q (a; )) = D a L 1 Y: (9.8)<br />

Now recall that Mehler’s formula (7.24) implies that<br />

T z (f(V )) = E[f(e z v + p 1 e 2z V )] ; z 0:<br />

v=V<br />

In particular, by applying this last relation to the partial derivatives @g<br />

@v i<br />

, i = 1; :::; n, we deduce<br />

from (9.8) that<br />

Z 1<br />

0<br />

1<br />

2 p t T ln(1= p t) (D aY )dt =<br />

nX<br />

i=1<br />

Z 1<br />

<br />

1 @g<br />

h i (a)<br />

0 2 p t E ( p t v + p <br />

1 t V ) dt<br />

@v i<br />

:<br />

<br />

v=V<br />

Consequently, (9.5) follows, since<br />

* nX<br />

hDY; DL 1 @g<br />

nX<br />

Y i H = (V )h i ;<br />

@v<br />

i=1 i<br />

= S(V ):<br />

i=1<br />

Z 1<br />

0<br />

<br />

1 @g<br />

2 p t E ( p t v + p <br />

1 t V ) dt<br />

@v i<br />

+<br />

h i<br />

v=V<br />

H<br />

Remark. By inspection of the proof of Theorem 9.1, one sees that it is possible to re…ne<br />

the bounds (9.1)–(9.3) <strong>and</strong> (9.4), by replacing DF; DL 1 F h DF;<br />

H with E DL 1 F i<br />

H<br />

j F DF;<br />

<strong>and</strong> Var DL 1 F h DF;<br />

with Var E<br />

H<br />

DL 1 F i<br />

H j F .<br />

45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!